Open Access Mini Review

Multiple Linear Regression Method for Deeper Analyses of Abrasive Tribological Behaviour of Engineering Materials

Gábor Kalácska1*, László Székely2 and Ádám Kalácska3

1Faculty of Mechanical Engineering, Szent István University, Hungary

2Institute of Mathematics and Basic Science, Szent István University, Hungary

3Department of Electromechanical, Systems and Metal Engineering, University of Ghent, Belgium

Corresponding Author

Received Date: November 23, 2020;  Published Date: December 10, 2020

Abstract

Tribology (friction, wear, lubrication) studies the elements made of different materials in relative motion. While the individual materials can be well characterized e.g. by their physical and chemical properties the description and prediction of the friction and wear behaviour is not an easy task. There is no uniform, analytical calculation method, because the behaviour of the structural materials depends on the operating conditions and the effects occurring during operation, thus, the tribological behaviour is system dependent. In order to have information about wear, friction and heat generation during operation, it is advisable to use the modelling method. The result of either mechanical or numerical modelling can help machine designers. The use of simplified models performed under laboratory conditions (DIN50322, testing category VI.) is very common, where relative comparison of friction materials is possible under fixed conditions. The laboratory tribotest equipments are usually suitable for online data collection, so that friction force, heat generation, wear and deformation can be continuously recorded during a sliding process. These datasets provide an opportunity not only for primary trend analysis of the measured quantities, but also for in-depth analysis of the relationships between tribological trends and material characteristics. Hundreds of articles have been published in the tribological literature where wear, surface deformation, or friction have been evaluated as a function of some material characteristics or simple combinations thereof. The first famous results e.g. in the field of abrasion wear, the wear estimates published by Lancaster in the late 1960s [1]. Not highlighting each work, overall the surface hardness (H), tensile modulus of elasticity (E) and tensile strength (R) were mainly in focus, as a function of which tribological processes, the friction and wear behaviour of materials were evaluated.

Citation
Signup for Newsletter
Scroll to Top