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Abstract 
Aim: To review the advancing role of CNNs in the last decade in detecting glaucoma.

Methods: Google Scholar and PubMed were searched for CNN methodology in image detection, the use of CNNs to detect glaucoma and CNNs 
with 90% or better outcomes in glaucoma diagnosis. MobileNet, ResNet, InceptionV3, ReLU, Sigmoid, Max Pooling, SoftMax, loss function, binary 
cross-entropy, Stochastic Gradient Descent, and forward and backward pass and “you only look once” (Yolo) were also used as search terms with 
glaucoma. References obtained were then checked for accuracy metrics; additional references were obtained from papers citing previous CNN 
glaucoma papers with high accuracy metrics.

Significance: Over the last decade CNN because of its leveraged hierarchical approach to extract salient optic nerve features from color fundus 
photos and OCT images has become a valuable, non-invasive tool in diagnosing glaucoma with over 90% accuracy. 

Keywords: Glaucoma; Optic nerve images: fundus photos and OCT images; CNN; AI Deep Learning Models; Accuracy; Convolutional Layers; 
Kernels; Activation Functions; Max Pooling; Loss functions; stochastic gradient descent; Forward pass; Backward pass.

Introduction

Glaucoma Epidemiology

The global prevalence of glaucoma in 2020 was approximately 
79.6 million individuals affected with open angle and closed angle 
glaucoma [1]. About 4.5 million individuals worldwide are blinded 
by glaucoma, such that glaucoma worldwide is the second most 
common cause of loss of vision [2].

Glaucoma Diagnostics Plus CNN

While intraocular pressure, visual field testing, (especially with 
the digital field analyzers), and Optical Coherence Tomography,  

 
OCT, and gonioscopy are all valuable tools in the diagnosis of 
glaucoma, the addition of CNN to analyze fundus photo and OCT 
images of the optic nerve is a valuable, relatively inexpensive, non-
invasive, adjunctive technique to gain earlier diagnostic knowledge 
of individual, familial and population at risk levels in this silent but 
threatening disease. 

The glaucoma diagnostic leverage with the addition of CNN 
has widespread implications in terms of early: personal care 
adjustments, community access in underdeveloped areas, and 
management of lack of sustained glaucoma medication adherence 
over extended periods.

http://dx.doi.org/10.33552/WJOVR.2025.05.000617
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The CNN optic nerve layers from fundus or OCT images, with 
their guided deep learning and, forward and backward numeric 
tensor propagations, can iteratively decipher glaucoma patterns, at 
close to experienced ophthalmologist level.

CNNs Deep Historical Elements

CNNs historically go back to Hubel and Wiesel who discovered 
that the visual cortex has “simple cells” that respond to bars and 
edges and “complex cells” (less position sensitive) responding to 
bars/slits [3]. Torsten Wiesel’s 1981 Nobel Lecture begins with 
“In the early sixties, having begun to describe the physiology of 
cells in the adult cat visual cortex, David Hubel and I decided to 

investigate how the highly specific response properties of cortical 
cells emerged during postnatal development” [4].  “This modest 
statement belies the tidal wave of experiments on developmental 
brain plasticity that was initiated by their publications in 1962, 
continues to this day, and extends well beyond the occipital lobe 
to virtually all sensory areas, motor areas, and to “higher centers” 
involved in learning, memory, and decision making” [5]. This 
neurophysiological tapestry of simple to more complex sensory 
responses to visual stimuli morphing into contextually plastic and 
developmental iterations resulting in motor “learning, memory and 
decision making” forms the basis of the granular elements of CNN.

Table 1: Some Operational Roles of CNN Layers/Terms in Diagnosing Glaucoma.

Convolutional Layers Function Reference Source

Convolutional Layers Apply filters to the input for edge, texture, and key feature detection at different spots of 
the image Yamashita R (2018) [9]

Pooling Layers Downsample feature maps of Convolutional layers Sarvamangala DR (2022) 
[10]

Fully Connected Layers Collect the features learned from the image and predict spatial info, transforming info 
into a format for classification Yamashita R (2018) [9]

Hierarchical Representa-
tion

Extract key features of subtle patterns automatically: optic nerve cupping, neuroretinal 
rim thinning, and retinal nerve fiber layer defects, and distinguish different classes of 

images e.g. levels of advance in optic nerve damage

Raghavendra DR (2018), 
Haja SA (2023), Chen J 

(2021) [11, 12, 13]

VGG 16 16 layers, multiple convolution layers with small filters for greater image classification Haja SA (2023), Ananda KC 
(2020) [12, 14]

ResNet Residual connections allow the network to skip some connections and train with large 
layers

Haja SA (2023), Alzubaldi 
L (2021) [12, 15]

GoogleNet Uses “inception” modules, which are parallel convolution operations to learn discrimina-
tive features; high accuracy for glaucoma vs. normals

Haja SA (2023), Ananda 
KC (2020), Camara (2022) 

[12, 14, 16]

Automated CNNs; VGG + 
Resnet Auto extract relevant features, separating glaucoma features from normals

Haja SA (2023), Chen J 
(2021), Camara J (2022) 

[12, 13,16]

CNNs Technical Evolution, Historical Elements

In 1979 and 1980 K Fukushima published the basic CNN 
architecture of convolutional layers and downsampling layers. 
(Fukushima first introduced non-linear activation units ReLU, 
rectified linear units to learn edges and complex patterns [7,6]) in 
1969). His network was trained by unsupervised learning rules and 
was 100x more expensive than in 1989 and a billion times more 
expensive than today [6,7]. Fukushima made a video in 1986 of a 
CNN that recognizes handwritten digits [7].  In 1987, Alex Waibel (a 
German researcher working in Japan) trained supervised learning, 
weight sharing neural networks with 1-dimensional convolutions 
by Linnainmaa’s 1970 backpropagaton algorithm to recognize 
speech.  A similar proposal by Homma et al. introduced the 

“convolution” terminology to neural networks. Convolving means 
taking a small numerical sample of a pattern in an image [7].

Both Wei Zhang and Yann LeCun, et al. (at Bell Labs) 
independently developed backpropagation-trained CNNs, (Zhang 
for Chinese letter character recognition and LeCun for zip codes) 
[7]. Backpropagation generates gradients or derivatives backward 
from the output layer to correct how much each weight and bias 
needs to be reduced to minimize the forward propagation overages; 
thus, using differential calculus to find optimal layers adjustments 
to fine tune the forward propagation of weights and biases, the back 
propagation allows for weights to be updated and reduce prediction 
errors and avoid redundant calculations [7,8].
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Table 2: CNN lexicon of terms.

Term Definition

ADAM

An optimization method that helps neural networks learn by adjusting the learning rates* for each parameter individu-
ally. It combines the benefits of two other methods: momentum and Root Mean Square Prop.  Example: Imagine you’re 
trying to find the fastest route to work every day. Some days, traffic is heavier, so you adjust your route based on that. 
ADAM does something similar by adjusting how much it changes the model’s parameters based on past experiences.

Accuracy
The ratio of correctly predicted instances to the total instances in a dataset. It is a measure of the overall performance of 
a model. **AUC or area under the curve, typically AUC-ROC is related to balancing true positive and true negative rates 

across all thresholds acting as a single measure of a classifier’s ability. 

Back Propagation A training algorithm used for neural networks, where the model learns by adjusting weights based on the error from 
the output layer back through the network.

Biases Values added to the output of neurons to allow models to fit the data better. They help adjust the output along with the 
weights.

Confusion Matrix A table used to evaluate the performance of a classification model by comparing predicted and actual values. It shows 
true positives, false positives, true negatives, and false negatives.

Convolutional Layer A layer in a CNN that applies a convolution operation to the input, extracting features from the data through the use of 
filters (kernels).

Data Loader A utility that provides an efficient way to load and preprocess data in batches for training or testing a model.

Data Set A collection of data used for training and evaluating models. It can be divided into training, validation, and test sets.

Dense Layer(s) Fully connected layers in a neural network where each neuron is connected to every neuron in the previous layer. They 
are used for classification tasks after feature extraction.

Deep Learning A subset of machine learning that uses multi-layered neural networks to model complex patterns in large datasets.

Epoch One complete pass through the entire training dataset during the training process.

EfficiencyNet B3 A family of CNN architectures that optimize both accuracy and efficiency, often used in image classification tasks.

Flattening Layer A layer that converts multi-dimensional input (like images) into a one-dimensional vector, allowing it to be processed 
by dense layers. It is used before the dense layers.

F1 Score A measure of a model’s accuracy that considers both precision and recall, calculated as the harmonic mean of the two.

Forward Propagation The process of passing input data through the network to obtain an output, which is then compared to the actual value 
to compute the loss.

Inception V3 A deep learning architecture that uses multiple types of convolutions (1x1, 3x3, and 5x5) in parallel within the same 
layer, allowing the model to capture different aspects of the input data efficiently.

Kernel A small matrix used to perform convolution operations on the input data, extracting features such as edges and textures.

Kernel Size The dimensions of the kernel (e.g., 3x3, 5x5) that determine how much of the input the kernel covers during the convo-
lution operation.

Learning Transfer Model A model that leverages knowledge from previously learned tasks to improve learning efficiency and performance on 
new tasks.

Linear Activation Function An activation function where the output is directly proportional to the input. It is defined as f(x)=x and is often used in 
the output layer for linear regression tasks.

Loss Function A function that measures the difference between the predicted output and the actual output, guiding the optimization 
process during training.

Max Pooling A downsampling technique that reduces the spatial dimensions of the input by taking the maximum value in each patch 
defined by the kernel.

MobileNet A lightweight deep learning architecture designed for mobile and embedded vision applications. It uses depth wise 
separable convolutions to reduce the number of parameters and computation while maintaining performance.

Non-linear Activation 
Layers

Layers that apply non-linear transformations to the input, enabling the network to learn complex and non-linear pat-
terns. Common examples include ReLU, sigmoid, and tanh.

Optimizer An algorithm used to adjust the weights of the network based on the gradients computed during backpropagation. 
Examples include SGD and ADAM.

Padding The process of adding extra pixels (usually zeros) around the edges of an image before applying a convolution opera-
tion. This helps preserve the spatial dimensions of the input and allows the model to capture features at the borders.

Pooling Layers Layers that reduce the spatial dimensions of the input, helping to decrease computational cost and control overfitting.

Precision The ratio of true positive predictions to the total positive predictions made by the model.

Recall The ratio of true positive predictions to the total actual positives in the dataset.

http://dx.doi.org/10.33552/WJOVR.2025.05.000617
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ReLU (Rectified Linear 
Unit)

A non-linear activation function defined as. It allows CNNs to learn edges and complex patterns by introducing non-lin-
earity, enabling better feature representation.

ResNet A deep learning architecture that uses skip connections to allow gradients to flow more easily through the network, 
making it easier to train very deep networks.

Segmentation The process of partitioning an image into multiple segments to simplify the representation of an image and make it 
more meaningful for analysis.

Sensitivity Also known as recall, it measures the proportion of actual positives that are correctly identified by the model.

SGD (Stochastic Gradient 
Descent) An optimization algorithm that updates the model’s weights incrementally based on a subset of the training data.

SoftMax An activation function often used in the output layer of a model for multi-class classification. It converts raw scores 
(logits) into probabilities, ensuring they sum to one.

Specificity The proportion of actual negatives that are correctly identified by the model.

Strides The number of pixels by which the kernel moves over the input data during convolution.

Tensor

A multi-dimensional numeric array that can represent data of various dimensions. In the context of neural networks, 
tensors are the data structures that hold inputs, outputs, and intermediate values (activations) during forward and 
backward propagation. For example, a tensor can represent a batch of images as a 4D array with dimensions corre-

sponding to batch size, height, width, and color channels.

Training Data*** The portion of the dataset used to train the model, allowing it to learn patterns and make predictions.

Unet A CNN architecture designed for image segmentation tasks, characterized by its U-shaped structure that captures con-
text and enables precise localization.

VGG A deep convolutional network architecture known for its simplicity and depth, using small (3x3) convolutional filters.

You Only Look Once 
(YOLO)

A real-time object detection system that predicts bounding boxes and class probabilities from full images in one evalua-
tion, making it extremely fast and efficient for detecting objects in images.

Weights Parameters within the model that are adjusted during training to minimize the loss function, determining the strength 
of the connection between neurons.

Zip Code An example of structured data that can be processed by CNNs in tasks like handwriting recognition.

*Learning rate “literally is a hyperparameter that the coder uses to determine the step size the model takes as it adjusts the internal weights during 
training so as to minimize error. Adam optimizer (Adaptive Movement Estimation) dynamically adjusts the learning rate for each individual parameter 
of a CNN during training, rather than using a single fixed learning rate for an entire batch being convoluted in the network.

**AUC, area under the curve, is most closely related to balancing Sensitivity (True positive rate ) and Specificity (True negative rate) as a single 
measure of a classifier ability to separate  between different classes; Accuracy (True Positives + True Negatives divided by total samples) is a single 
point at one threshold, often 0.5, and Precision-Rcall focuses on the positive class performance; thus, when Accuracy fails on imbalanced data, Pre-
cision-Recall AUC is useful; AUC-ROC (Area under the receiver Operating Characteristic Curve) plots Sensitivity, true positives vs Specificity false 
positives at various thresholds.

***Training data is the primary data set to learn patterns and relationships from the data by adjusting parameters, such as weights and biases. Val-
idation data is used during the model development to provide an unbiased evaluation of the model’s performance on unseen data not used during 
training; it can help prevent “overfitting” of the training model because it works with different portion of the data set and does not learn from the model 
the way the training data does; Test data, like the validation data is usually a smaller percentage of the data, e.g. 15%, unlike the 70% for the trained 
data set, and the test data set, not having been trained, is only used after the model has been fully trained; thus test data set represents the actual 
outcome and evaluation of the model, its accuracy and its ability to generalize or make predictions about the data.

The Centrality of the optic nerve changes to glaucoma 
diagnosis; non-AI glaucoma diagnostic accuracy, and 
false positives that can look like glaucomatous optic 
atrophy

CNNs, after importing an optic nerve image on a computer, for 
example, can convert it to a numeric array and then with coded 
directions through guided neural net layers iteratively identify 
glaucoma patterns in the optic nerve. These glaucoma associated 
patterns are learned so well from the CNN models, that their 
accuracy rivals that of experienced ophthalmologists. 

In 2002 a randomized controlled study in ocular hypertension 
found: 

1.	 Ocular hypertension is a major risk factor in developing 
primary open angle glaucoma.

2.	 Treatment of ocular hypertension with pressure lowering 
medication delayed or prevented glaucoma onset.

3.	 Over half the patients who developed glaucoma showed 
optic nerve changes, without early visual field loss, emphasizing 
the need for optic nerve monitoring alongside ocular pressure 
checks.
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4.	 Lowering intraocular pressure helps protect the optic 
nerve and slows down the damage rate.

5.	 Thinner central corneal thickness is another significant 
risk factor for glaucoma [17].

Therefore, by using CNN to detect glaucoma optic nerve 
changes, even before visual field loss, early diagnosis, treatment 
and patient counseling can be achieved.  The latter, of course, 
contextually demands a critical evaluation of the individual patient: 
the patient’s medical history, physical data, lab data, and clinical 
and familial background.

That said, over the last decade several papers using CNN on 
optic nerve images found glaucoma patterns, and their level of 
identification compared well to that of trained ophthalmologists.

However, to start with, let’s examine a non-AI baseline accuracy 
level in trained eyecare settings, in a “masked performance study” 
in Scotland.  Patients suspected of having glaucoma, within one 
month, underwent a full ophthalmic assessment in both a newly 
established community led glaucoma management location, 
AGO, and a consultant led eye hospital. Agreement between the 
AGO and the consultant unit in diagnosing glaucoma was 89%. 
Agreement between trainee ophalmologists and the consultant 
unit was 83%. The accuracy of optometrists in detecting glaucoma 
in this population was good with a specificity of .93, but lower for 
sensitivity at .76. There was no difference in sensitivity between 
AGO and junior ophthalmologist [18]. The diagnosis of glaucoma 
in this study rested on optic nerve changes and or visual field 
abnormalities [18].

The other side of the coin, false positives, may be neuro-
ophthalmological conditions that mimic glaucoma and result in 
misdiagnosis [19]. These include:  ischemic optic neuropathy, 25%, 
compressive optic neuropathy, 18.7%, hereditary optic neuropathy, 
18.7%, and congenital optic neuropathy, 2%, from a study of 68 
patients enrolled with neuroophthalmological diseases screened 
from a single Eye Clinic within a 24-month period.

The researchers selected the eyes with pre-defined glaucoma 
criteria:

Vertical cup-to-disc ratio greater than or equal to 0.6, 
asymmetric disc ratio greater than 0.2 between the two eyes, 
presence of localized retinal nerve fiber layer and or neuroretinal 
rim defects and disc hemorrhages.

The images were mixed randomly and a masked glaucoma 
expert was asked to distinguish if each patient exam derived from 
a patient with glaucoma or a neurophthalmological condition. 
“Based on the analysis of fundus photographs and HVF, (Humphrey 
Visual Field) tests, 25% of these were misdiagnosed as glaucoma 
(two ischemic optic neuropathies and two congenital optic disc 
anomalies). Conversely, 11.9% of the glaucomatous neuropathies 
were misdiagnosed as neurophthalmological disorders. Overall, the 
glaucoma specialist correctly diagnosed 84.5% of the eyes” [19].

References 18 and 19 illustrate the need for extensive analysis 
and for thorough individual patient data review for a glaucoma 

diagnosis to be made, even in the setting of prima facie, conventional 
clinical markers of glaucoma.

With that introduction, we can explore the results of CNN 
glaucoma pattern recognition in about a decade worth of papers, 
using different CNN deep learning models to detect glaucoma and 
their relative accuracies.

Results

CNN Layers, Activators, features to develop a Model to 
test, validate and train optic nerve images for normal/ 
glaucoma prediction, Procedural Considerations

After downloading a series of “procedural software packages”, 
the initial activity of the CNN neural network coder is to import 
the image or data set of images. In this setting the image(s) will 
be either fundus photo(s) or an OCT, Optical Coherent Tomogram, 
image(s) of an optic nerve with an identifying label.

The programmer can then elect to use an established, well 
vetted deep learning platform with its parameters or implement 
a custom platform with additional parameters.  In any case, the 
platform will serve as a base for the CNNs network to import the 
image data set, convolve it, add weights, adjust it, and optimize it, 
prior to train, validate, test and predict dynamics.  Yet additional 
modulatory features that the coder wishes to adjust /add called 
hyperparameters can also be implemented. How different the CNN 
model is from the actual desired outcome or its loss function as well 
as and the training model’s accuracy will determine just how much 
adjustment the training model requires.

One or more convolutional neural network layers, each with 
a specific function, such as feature extraction, segmentation, 
classification [12, 20], will without the knowledge or assistance 
of the coder/observer process large amounts of visual data. The 
CNN layer will capture an extracted kernel of the image (which is 
a smaller sample of numerical matrix feature) for the character of 
the item it is detecting and connect it to others of a similar nature. 
These are joined and either made to relate, or not, to other layers. 
A hierarchy of layer connections results in optimizing the input and 
creating an architecture of learning matrices with corresponding 
numeric outputs called logits that represent complex digital 
outputs of salient patterns in the image. These logits or quantized 
outputs can then be used for training, testing, and plotting the 
image data, and evaluating the data for inference and predictions 
[12, 20,21,22].

To reduce the large spatial dimensions of the convolutional 
layers, pooling layers downsize the feature data maps but still 
preserve the essential data [12,22].

To introduce non-linearity into the CNN model, the ReLU, 
rectified linear unit, is used; other activation functions are sigmoid 
and tanh; sigmoid maps from 0 to 1 and tanh maps from -1. to 1; 
tanh is zero centered which leads to faster image data convergence 
and better hidden layer performance. Sigmoid, on the other hand, 
is better for working the output layer in binary classification where 
you need a probability of 0 to 1 [21].
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Connected layers join the learned features of the other layers, 
combine spatial information and transform it into a format suitable 
for classification and provide the basis for making relationships 
and enabling high level decisions [12, 22].

Thus, the CNN architecture provides a learning platform 
for image pattern recognition, representation, segmentation, 
classification and automatic aggregation to facilitate identification 
of normal vs glaucoma, e.g. cupping, neuronal rim thinning, and 
retinal nerve fiber layer features. This collection of CNN aggregated 
images can be used to develop, test, and train data sets of new 

images that can (with a background of good accuracy validation) be 
used to predict normal from abnormal optic nerves in successive 
glaucoma test samples [9,11,12,22].

Table 3 illustrates some of the papers with greater than or 
equal to 90% accuracy in diagnosing glaucoma with various CNN 
methods. These papers reflect glaucoma detection from fundus 
photos (from conventional fundus photo units as well as a portable 
ophthalmoscope combined with a smart phone) as well as glaucoma 
detection from 3D OCT images of the optic nerve, and recurrent 
neural network images of sequential video fundus images. 

Table 3: Papers with >90% Accuracy Diagnosing Glaucoma with CNN

Reference CNN used Accuracy, Sensitivity, Specificity, AUC, F-1

Shoukat A, Auto Dx Gl from retinal images, 
Diagnostics (Basal)2023 ResNet-50 Architecture Accuracy: 98.48%

Akbar S, Detection of microscopic GL, fundus 
photos, deep transfer approach, Micrsc Res 

Tech, 2022
Fusion of DenseNet and DarkNet Accuracy: 99.7% 

Ataly E, CNN architectures Dx Gl using color 
photography, Turkish J Ophthalmol, 2022

Deep Residual Networks and Very Deep Neural 
Networks Accuracy: 96.2%

Liu H, Dev and Validation DL to detect Gl 
from fundus photos, JAMA 2019 Glaucoma Diagnosis CNN. AUC .996

Braganca CP, Det of Gl from fundus images 
w DL on new image from smart phone and 

handheld ophthalmoscope, Healthcare 
(Basel)2022

CNN Ensemble Model: ResNet50V2, ResNet 101, 
InceptionResnet, Densenet, Mobilnet, InceptionV3, 

Xception
Accuracy 90%

Maetschke S, feature agnostic glaucoma 
detection OCT volumes 2018

3D CNN 5 convolutional layers, ReLU Activation; 
Class Activ Maps, CNN identified neuroretinal rim, 

cup and lamina cribrosa: glaucoma regions
AUC .94

George Y, Attention-guided 3D-CNN Glauco-
ma detection and Structure-Functional Assoc 

using Volume images,2020

End to End attention guidance to 3D DL Model 
Estimating visual function from retinal structures; 
same network architecture but with 3 pathways: 1. 

3D OCT cube, 2. other 2: 3D gradient class activation 
heatmaps

AUC 93.8%

Gheisari S, Combined CNN and recurrent 
neural network for glaucoma detection Sci 

Rep 2021

Combined CNN and recurrent neural network which 
extracts temporal features embedded in sequential 

fundus video images
F-1 96.2%

CNN workflow: 

1.Data Download, 
2.CNN layers, Activating layers, Pooling Layers
3.Flattening Layers, Hidden Layers, Linear/non-Linear Layers
4.Dense, Condensing Layers, Optimizers Layers,
5.Initial Model Output, Check Loss function and Accuracy, if good,
6.Train, Validate, Test Data Set; make predictions, compare outputs
7.From different CNN methods and platforms, Optimize CNNs and platform, adjust hyperparameters, re-train the model for lower loss function and 
greater accuracy

8.Re-adjust platform/ parameter(s) and hyperparameters as necessary [21].

Discussion

Exploring the realm of refining CNN choices from the 
established CNN glaucoma deep learning models requires 
experienced investigation in not only the basic parameters of the 
established model, but also the adaptation of hyperparameters 

by the programmer for the new model.  This type of experienced 
investigation, (at least until agentic modelling in this area can 
be validated) is definitely one of the drawbacks of the current 
CNN application to the diagnosis of glaucoma in a given data set, 
especially if the data set needs adaptation to a particular CNN 
model that may not have been used with that data set previously.
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Collection and transferring images, as was evident in Bragance, 
et al. (using e.g. portable ophthalmoscope and smart phone) 
can also be a challenge. However, if functional code programs or 
agentic programs connect image: intake, preparation for CNN, 
integration with CNN and development of optimal outputs for 
glaucoma predictions, then even in an eye clinic setting portable 
ophthalmoscopes and smart phones may be used in the future. 

That said, agentic deep learning is progressing at a nice pace.  
With the laudable ideal of streamlining CNNs and their linkage to 
diagnosing glaucomatous optic nerve photos for millions in need, 
the technology may be short in coming.

Conclusion

From the above work on using CNNs to detect glaucoma from 
fundus or OCT images of the optic nerves, it would appear that it is 
only a matter of time for the conventional eye clinic to integrate CNN 
with tonometry and visual fields for glaucoma detection. As fundus 
or OCT imaging gains greater bandwidth with CNN integration, 
in house earlier glaucoma detection can become a reality even in 
more rural areas.

Conflicts of interest

None.

Acknowledgements

Monica chatbot, Microsoft Copilot, and Google Gemini were 
used to cross check CNN methodology definitions with references 
used; also, these sources were helpful in understanding Accuracy 
metrics in different papers.

References
1.	 https://glaucoma.ph 

2.	 Y C Tham, X Li, TY Wong, HA Quigley, T Aung, et al. (2014) Global 
prevalence of glaucoma and projections of glaucoma burden through 
2040: a systematic review and meta-analysis. Ophthalmology 121(11): 
2081-2090.

3.	 Hubel, DH, Wiesel, TH (1962) Receptive fields, binocular interaction and 
functional architecture in the cat’s visual cortex. J Physiol 160(1): 106-
154.

4.	 http://nobelprize.org/nobel_prizes/medicine/laureates/1981/wiesel-
lecture.html 

5.	 Martha Constantine Paton (2008) Pioneers of cortical plasticity: six 
classic papers by Wiesel and Hubel. Journal of Neurophysiology 99: 6.

6.	 Fukushima K (1980) Neocognitron: A self-organizing neural network 
model for mechanism of pattern recognition unaffected by shift in 
position. Biological Cybernetics 36(4): 193-202.

7.	 Jürgen Schmidhuber (2025) Who invented convolutional neural 
networks.

8.	 Y LeCun, B Boser, JS Denker, D Henderson, RE Howard (1989) 
Backpropagation applied to handwritten Zip Code recognition. Neural 
Computation 1(4): 541-551.

9.	 Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural 
networks: an overview and application in radiology Insights Imaging 
9(4): 611-629.

10.	Sarvamangala DR, KuLkarni RV (2022) Convolutional neural networks 
in medical image understanding: Evol Intell 15(1): 1-22.

11.	Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH (2018) Acharya 
UR. Deep convolution neural network for accurate diagnosis of glaucoma 
using digital fundus images, Inf Sci (Ny) 441: 41-49.

12.	Haja SA, Mahadevappa V, Romanian (2023) J Ophthalmol 67:(3): 222-
237.

13.	Chen J, Li S, Bai Q, Yang J, Jiang S, Miao Y (2021) Classification Algorithms 
based in Convolutional Neural Networks, Remote Sens (Basel) 22: 4712.

14.	Ananda, Karabag C, Ter Sarkisov A, Alonso E, Reyes Aldasoro CC (2020) 
Radiography classification: A comparison between eleven convolutional 
neural networks. In: 2020 Fourth International Conference on 
Multimedia Computing, Networking and Applications (MCNA). IEEE: 
119-125.

15.	Alzubaidi L, Zhang J, Humaidi AJ, (2021) Review of deep learning: 
concepts, CNN architectures, challenges, applications, future directions. 
J Big Data 8(1): 53.

16.	Camara J, Neto A, Pires IM, Villasana MV, Zdravevski E, et al. (2022) A 
comprehensive review of methods and equipment for aiding automatic 
glaucoma tracking. Diagnostics (Basel) 2(4): 935.

17.	Kass MA, Heuer DK, Higgenbottom EJ, Johnson CA, Keltner JL (2002) The 
Ocular Hypertension Treatment Study: a randomized trial determines 
that topical ocular hypotensive medication delays or prevents the onset 
of primary open-angle glaucoma, Arch Ophthalmol 120(6): 701-713.

18.	Azuara Blanco A, Burr J, Thomas R, Maclennan G, McPherson (2007) 
The accuracy of accredited glaucoma optometrists in the diagnosis and 
treatment recommendation for glaucoma, British J Ophthalmol 91(12): 
1639-1643.

19.	Dias DT, Ushida M, Battisella R, Dorairaj S, Prata ES, (2017) 
Neurophthalmological conditions mimicking glaucomatous optic 
neuropathy: analysis of the most common causes of misdiagnosis, BMC 
Ophthalmol. 

20.	Ribeiro E, Uhl A, Wimmer G, Häfner M, Exploring Deep Learning and 
transfer learning for colonic polyp classification. Comput Math Methods 
Med: 6584725. 

21.	Bourke D, learnpytorch.io, Learn Pytorch in a day, youtube.com 

22.	Sarvamangala DR, Kulkarni RV (2022) Convolutional neural networks in 
medical image understanding: a survey. Evol Intell 15(1): 1-22. 

23.	Shoukat A, Shahzad A, Syed AH, Hassan SA, Igbal S (2023) Automatic 
Diagnosis of glaucoma from retinal images using deep learning 
approach, Diagnostics (Basel) 13(10): 1738.

24.	Akbar S, Hassan SA, Shoukat A, Alyami J, Bahaj SA (2022) Detection 
of microscopic glaucoma through fundus images using deep transfer 
learning approach, Microsc Res Tech 85(6): 2259-2276.

25.	Bragance CP, Torres JM, Soares CPDA, Macedo LO (2022) Detection of 
Glaucoma on Fundus Images Using Deep Learning on a New Image 
Set Obtained with a Smartphone and Handheld Ophthalmoscope, 
Healthcare (Basel) 10(12): 2345.

26.	Maetschke S, Anthony B, Ishikawa H, Wollstein G, Schuman J (2019) A 
feature agnostic approach for glaucoma detection in OCT volumes, PLoS 
One 14(7): e0219126. 

27.	George Y, Anthony BJ, Ishikawa H, Wollstein G, Schuman JS, (2020), 
Attention-guided 3D-CNN Framework for Glaucoma Detection and 
Structural-Functional Association using Volumetric Images, IEEE J 
Biomed Health Inform 24(12): 3421-3430. 

28.	Gheisari S, Shariflou S, Phu J, Kennedy P, Agar A (2021) Sci Rep 11: 1.

http://dx.doi.org/10.33552/WJOVR.2025.05.000617
https://glaucoma.ph
https://pubmed.ncbi.nlm.nih.gov/24974815/
https://pubmed.ncbi.nlm.nih.gov/24974815/
https://pubmed.ncbi.nlm.nih.gov/24974815/
https://pubmed.ncbi.nlm.nih.gov/24974815/
https://pubmed.ncbi.nlm.nih.gov/14449617/
https://pubmed.ncbi.nlm.nih.gov/14449617/
https://pubmed.ncbi.nlm.nih.gov/14449617/
http://nobelprize.org/nobel_prizes/medicine/laureates/1981/wiesel-lecture.html
http://nobelprize.org/nobel_prizes/medicine/laureates/1981/wiesel-lecture.html
https://pubmed.ncbi.nlm.nih.gov/18216235/
https://pubmed.ncbi.nlm.nih.gov/18216235/
https://pubmed.ncbi.nlm.nih.gov/29934920/
https://pubmed.ncbi.nlm.nih.gov/29934920/
https://pubmed.ncbi.nlm.nih.gov/29934920/
https://pubmed.ncbi.nlm.nih.gov/33816053/
https://pubmed.ncbi.nlm.nih.gov/33816053/
https://pubmed.ncbi.nlm.nih.gov/33816053/
https://pubmed.ncbi.nlm.nih.gov/35453985/
https://pubmed.ncbi.nlm.nih.gov/35453985/
https://pubmed.ncbi.nlm.nih.gov/35453985/
https://pubmed.ncbi.nlm.nih.gov/12049574/
https://pubmed.ncbi.nlm.nih.gov/12049574/
https://pubmed.ncbi.nlm.nih.gov/12049574/
https://pubmed.ncbi.nlm.nih.gov/12049574/
https://pubmed.ncbi.nlm.nih.gov/17537783/
https://pubmed.ncbi.nlm.nih.gov/17537783/
https://pubmed.ncbi.nlm.nih.gov/17537783/
https://pubmed.ncbi.nlm.nih.gov/17537783/
https://pubmed.ncbi.nlm.nih.gov/28073365/
https://pubmed.ncbi.nlm.nih.gov/28073365/
https://pubmed.ncbi.nlm.nih.gov/28073365/
https://pubmed.ncbi.nlm.nih.gov/28073365/
https://pubmed.ncbi.nlm.nih.gov/27847543/
https://pubmed.ncbi.nlm.nih.gov/27847543/
https://pubmed.ncbi.nlm.nih.gov/27847543/
https://pubmed.ncbi.nlm.nih.gov/33425040/
https://pubmed.ncbi.nlm.nih.gov/33425040/
https://pubmed.ncbi.nlm.nih.gov/37238222/
https://pubmed.ncbi.nlm.nih.gov/37238222/
https://pubmed.ncbi.nlm.nih.gov/37238222/
https://pubmed.ncbi.nlm.nih.gov/35170136/
https://pubmed.ncbi.nlm.nih.gov/35170136/
https://pubmed.ncbi.nlm.nih.gov/35170136/
https://pubmed.ncbi.nlm.nih.gov/36553869/
https://pubmed.ncbi.nlm.nih.gov/36553869/
https://pubmed.ncbi.nlm.nih.gov/36553869/
https://pubmed.ncbi.nlm.nih.gov/36553869/
https://pubmed.ncbi.nlm.nih.gov/31260494/
https://pubmed.ncbi.nlm.nih.gov/31260494/
https://pubmed.ncbi.nlm.nih.gov/31260494/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7811826/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7811826/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7811826/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7811826/

