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Abstract

Aim: To review the advancing role of CNNs in the last decade in detecting glaucoma.

Methods: Google Scholar and PubMed were searched for CNN methodology in image detection, the use of CNNs to detect glaucoma and CNNs
with 90% or better outcomes in glaucoma diagnosis. MobileNet, ResNet, InceptionV3, ReLU, Sigmoid, Max Pooling, SoftMax, loss function, binary
cross-entropy, Stochastic Gradient Descent, and forward and backward pass and “you only look once” (Yolo) were also used as search terms with
glaucoma. References obtained were then checked for accuracy metrics; additional references were obtained from papers citing previous CNN

glaucoma papers with high accuracy metrics.

Significance: Over the last decade CNN because of its leveraged hierarchical approach to extract salient optic nerve features from color fundus
photos and OCT images has become a valuable, non-invasive tool in diagnosing glaucoma with over 90% accuracy.

Keywords: Glaucoma; Optic nerve images: fundus photos and OCT images; CNN; Al Deep Learning Models; Accuracy; Convolutional Layers;
Kernels; Activation Functions; Max Pooling; Loss functions; stochastic gradient descent; Forward pass; Backward pass.

Introduction
Glaucoma Epidemiology

The global prevalence of glaucoma in 2020 was approximately
79.6 million individuals affected with open angle and closed angle
glaucoma [1]. About 4.5 million individuals worldwide are blinded
by glaucoma, such that glaucoma worldwide is the second most
common cause of loss of vision [2].

Glaucoma Diagnostics Plus CNN

While intraocular pressure, visual field testing, (especially with
the digital field analyzers), and Optical Coherence Tomography,

@ @ This work is licensed under Creative Commons Attribution 4.0 License | WJOVR.MS.ID.000617.

OCT, and gonioscopy are all valuable tools in the diagnosis of
glaucoma, the addition of CNN to analyze fundus photo and OCT
images of the optic nerve is a valuable, relatively inexpensive, non-
invasive, adjunctive technique to gain earlier diagnostic knowledge
of individual, familial and population at risk levels in this silent but
threatening disease.

The glaucoma diagnostic leverage with the addition of CNN
has widespread implications in terms of early: personal care
adjustments, community access in underdeveloped areas, and
management of lack of sustained glaucoma medication adherence
over extended periods.
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The CNN optic nerve layers from fundus or OCT images, with
their guided deep learning and, forward and backward numeric
tensor propagations, can iteratively decipher glaucoma patterns, at
close to experienced ophthalmologist level.

CNNs Deep Historical Elements

CNNs historically go back to Hubel and Wiesel who discovered
that the visual cortex has “simple cells” that respond to bars and
edges and “complex cells” (less position sensitive) responding to
bars/slits [3]. Torsten Wiesel's 1981 Nobel Lecture begins with
“In the early sixties, having begun to describe the physiology of
cells in the adult cat visual cortex, David Hubel and I decided to

investigate how the highly specific response properties of cortical
cells emerged during postnatal development” [4]. “This modest
statement belies the tidal wave of experiments on developmental
brain plasticity that was initiated by their publications in 1962,
continues to this day, and extends well beyond the occipital lobe
to virtually all sensory areas, motor areas, and to “higher centers”
involved in learning, memory, and decision making” [5]. This
neurophysiological tapestry of simple to more complex sensory
responses to visual stimuli morphing into contextually plastic and
developmental iterations resulting in motor “learning, memory and
decision making” forms the basis of the granular elements of CNN.

Table 1: Some Operational Roles of CNN Layers/Terms in Diagnosing Glaucoma.

Convolutional Layers

Apply filters to the input for edge, texture, and key feature detection at different spots of
the image

Yamashita R (2018) [9]

Pooling Layers

Downsample feature maps of Convolutional layers

Sarvamangala DR (2022)
[10]

Fully Connected Layers

Collect the features learned from the image and predict spatial info, transforming info
into a format for classification

Yamashita R (2018) [9]

Hierarchical Representa-

Extract key features of subtle patterns automatically: optic nerve cupping, neuroretinal
rim thinning, and retinal nerve fiber layer defects, and distinguish different classes of

Raghavendra DR (2018),
Haja SA (2023), Chen]

tion images e.g. levels of advance in optic nerve damage (2021) [11, 12,13]
VGG 16 16 layers, multiple convolution layers with small filters for greater image classification Haja SA (2023), Ananda KC
(2020) [12, 14]
ResNet Residual connections allow the network to skip some connections and train with large Haja SA (2023), Alzubaldi
layers L (2021) [12, 15]
« - : . . o Haja SA (2023), Ananda
GoogleNet Uses “inception” modules, which are parallel convolution operations to learn discrimina KC (2020), Camara (2022)

tive features; high accuracy for glaucoma vs. normals

[12, 14, 16]

Automated CNNs; VGG +
Resnet

Auto extract relevant features, separating glaucoma features from normals

Haja SA (2023), Chen ]
(2021), Camara J (2022)
[12,13,16]

CNNs Technical Evolution, Historical Elements

In 1979 and 1980 K Fukushima published the basic CNN
architecture of convolutional layers and downsampling layers.
(Fukushima first introduced non-linear activation units ReLU,
rectified linear units to learn edges and complex patterns [7,6]) in
1969). His network was trained by unsupervised learning rules and
was 100x more expensive than in 1989 and a billion times more
expensive than today [6,7]. Fukushima made a video in 1986 of a
CNN that recognizes handwritten digits [7]. In 1987, Alex Waibel (a
German researcher working in Japan) trained supervised learning,
weight sharing neural networks with 1-dimensional convolutions
by Linnainmaa’s 1970 backpropagaton algorithm to recognize
speech. A similar proposal by Homma et al. introduced the

“convolution” terminology to neural networks. Convolving means
taking a small numerical sample of a pattern in an image [7].

Both Wei Zhang and Yann LeCun, et al. (at Bell Labs)
independently developed backpropagation-trained CNNs, (Zhang
for Chinese letter character recognition and LeCun for zip codes)
[7]. Backpropagation generates gradients or derivatives backward
from the output layer to correct how much each weight and bias
needs to be reduced to minimize the forward propagation overages;
thus, using differential calculus to find optimal layers adjustments
to fine tune the forward propagation of weights and biases, the back
propagation allows for weights to be updated and reduce prediction
errors and avoid redundant calculations [7,8].
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Table 2: CNN lexicon of terms.

An optimization method that helps neural networks learn by adjusting the learning rates* for each parameter individu-
ADAM ally. It combines the benefits of two other methods: momentum and Root Mean Square Prop. Example: Imagine you're

trying to find the fastest route to work every day. Some days, traffic is heavier, so you adjust your route based on that.
ADAM does something similar by adjusting how much it changes the model’s parameters based on past experiences.

The ratio of correctly predicted instances to the total instances in a dataset. It is a measure of the overall performance of

Accuracy amodel. **AUC or area under the curve, typically AUC-ROC is related to balancing true positive and true negative rates
across all thresholds acting as a single measure of a classifier’s ability.
Back Propagation A training algorithm used for neural networks, where the model learns by adjusting weights based on the error from
pag the output layer back through the network.
Biases Values added to the output of neurons to allow models to fit the data better. They help adjust the output along with the
weights.
. . A table used to evaluate the performance of a classification model by comparing predicted and actual values. It shows
Confusion Matrix " s . .
true positives, false positives, true negatives, and false negatives.
. Alayer in a CNN that applies a convolution operation to the input, extracting features from the data through the use of
Convolutional Layer )
filters (kernels).
Data Loader A utility that provides an efficient way to load and preprocess data in batches for training or testing a model.
Data Set A collection of data used for training and evaluating models. It can be divided into training, validation, and test sets.
Fully connected layers in a neural network where each neuron is connected to every neuron in the previous layer. They
Dense Layer(s)

are used for classification tasks after feature extraction.

Deep Learning A subset of machine learning that uses multi-layered neural networks to model complex patterns in large datasets.

Epoch One complete pass through the entire training dataset during the training process.
EfficiencyNet B3 A family of CNN architectures that optimize both accuracy and efficiency, often used in image classification tasks.
. A layer that converts multi-dimensional input (like images) into a one-dimensional vector, allowing it to be processed
Flattening Layer .
by dense layers. It is used before the dense layers.
F1 Score A measure of a model’s accuracy that considers both precision and recall, calculated as the harmonic mean of the two.
. The process of passing input data through the network to obtain an output, which is then compared to the actual value
Forward Propagation
to compute the loss.
. A deep learning architecture that uses multiple types of convolutions (1x1, 3x3, and 5x5) in parallel within the same
Inception V3 . < . L
layer, allowing the model to capture different aspects of the input data efficiently.
Kernel A small matrix used to perform convolution operations on the input data, extracting features such as edges and textures.
Kernel Size The dimensions of the kernel (e.g., 3x3, 5x5) that determine how much of the input the kernel covers during the convo-
lution operation.
Learning Transfer Model A model that leverages knowledge from previously learned tasks to improve learning efficiency and performance on

new tasks.

. - . An activation function where the output is directly proportional to the input. It is defined as f(x)=x and is often used in
Linear Activation Function . .
the output layer for linear regression tasks.

. A function that measures the difference between the predicted output and the actual output, guiding the optimization
Loss Function . L
process during training.
. A downsampling technique that reduces the spatial dimensions of the input by taking the maximum value in each patch
Max Pooling )
defined by the kernel.
MobileNet A lightweight deep learning architecture designed for mobile and embedded vision applications. It uses depth wise

separable convolutions to reduce the number of parameters and computation while maintaining performance.

Non-linear Activation Layers that apply non-linear transformations to the input, enabling the network to learn complex and non-linear pat-

Layers terns. Common examples include ReLU, sigmoid, and tanh.
Optimizer An algorithm used to adjust the weights of the network based on the gradients computed during backpropagation.
P Examples include SGD and ADAM.
Paddin The process of adding extra pixels (usually zeros) around the edges of an image before applying a convolution opera-
8 tion. This helps preserve the spatial dimensions of the input and allows the model to capture features at the borders.
Pooling Layers Layers that reduce the spatial dimensions of the input, helping to decrease computational cost and control overfitting.
Precision The ratio of true positive predictions to the total positive predictions made by the model.
Recall

The ratio of true positive predictions to the total actual positives in the dataset.
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ReLU (Rectified Linear A non-linear activation function defined as. It allows CNNs to learn edges and complex patterns by introducing non-lin-

Unit) earity, enabling better feature representation.

ResNet A deep learning architecture that uses skip connections to allow gradients to flow more easily through the network,
making it easier to train very deep networks.

. The process of partitioning an image into multiple segments to simplify the representation of an image and make it

Segmentation p p J & P &t Py p g
more meaningful for analysis.
Sensitivity Also known as recall, it measures the proportion of actual positives that are correctly identified by the model.

SGD (Stochastic Gradient

An optimization algorithm that updates the model’s weights incrementally based on a subset of the training data.

Descent)
SoftMax An activation function often used in the output layer of a model for multi-class classification. It converts raw scores
(logits) into probabilities, ensuring they sum to one.
Specificity The proportion of actual negatives that are correctly identified by the model.
Strides The number of pixels by which the kernel moves over the input data during convolution.
A multi-dimensional numeric array that can represent data of various dimensions. In the context of neural networks,
Tensor tensors are the data structures that hold inputs, outputs, and intermediate values (activations) during forward and

backward propagation. For example, a tensor can represent a batch of images as a 4D array with dimensions corre-
sponding to batch size, height, width, and color channels.

Training Data***

The portion of the dataset used to train the model, allowing it to learn patterns and make predictions.

A CNN architecture designed for image segmentation tasks, characterized by its U-shaped structure that captures con-

Unet text and enables precise localization.
VGG A deep convolutional network architecture known for its simplicity and depth, using small (3x3) convolutional filters.
You Only Look Once A real-time object detection system that predicts bounding boxes and class probabilities from full images in one evalua-
(YOLO) tion, making it extremely fast and efficient for detecting objects in images.
Weisghts Parameters within the model that are adjusted during training to minimize the loss function, determining the strength
g of the connection between neurons.
Zip Code An example of structured data that can be processed by CNNs in tasks like handwriting recognition.

*Learning rate “literally is a hyperparameter that the coder uses to determine the step size the model takes as it adjusts the internal weights during
training so as to minimize error. Adam optimizer (Adaptive Movement Estimation) dynamically adjusts the learning rate for each individual parameter
of a CNN during training, rather than using a single fixed learning rate for an entire batch being convoluted in the network.

**AUC, area under the curve, is most closely related to balancing Sensitivity (True positive rate ) and Specificity (True negative rate) as a single
measure of a classifier ability to separate between different classes; Accuracy (True Positives + True Negatives divided by total samples) is a single
point at one threshold, often 0.5, and Precision-Rcall focuses on the positive class performance; thus, when Accuracy fails on imbalanced data, Pre-
cision-Recall AUC is useful; AUC-ROC (Area under the receiver Operating Characteristic Curve) plots Sensitivity, true positives vs Specificity false
positives at various thresholds.

***Training data is the primary data set to learn patterns and relationships from the data by adjusting parameters, such as weights and biases. Val-
idation data is used during the model development to provide an unbiased evaluation of the model’s performance on unseen data not used during
training; it can help prevent “overfitting” of the training model because it works with different portion of the data set and does not learn from the model
the way the training data does; Test data, like the validation data is usually a smaller percentage of the data, e.g. 15%, unlike the 70% for the trained
data set, and the test data set, not having been trained, is only used after the model has been fully trained; thus test data set represents the actual

outcome and evaluation of the model, its accuracy and its ability to generalize or make predictions about the data.

In 2002 a randomized controlled study in ocular hypertension
found:

The Centrality of the optic nerve changes to glaucoma
diagnosis; non-Al glaucoma diagnostic accuracy, and
false positives that can look like glaucomatous optic

1.  Ocular hypertension is a major risk factor in developing
atrophy

primary open angle glaucoma.

CNNs, after importing an optic nerve image on a computer, for
example, can convert it to a numeric array and then with coded
directions through guided neural net layers iteratively identify
glaucoma patterns in the optic nerve. These glaucoma associated
patterns are learned so well from the CNN models, that their
accuracy rivals that of experienced ophthalmologists.

2. Treatment of ocular hypertension with pressure lowering
medication delayed or prevented glaucoma onset.

3. Over half the patients who developed glaucoma showed
optic nerve changes, without early visual field loss, emphasizing
the need for optic nerve monitoring alongside ocular pressure
checks.
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4.  Lowering intraocular pressure helps protect the optic
nerve and slows down the damage rate.

5. Thinner central corneal thickness is another significant
risk factor for glaucoma [17].

Therefore, by using CNN to detect glaucoma optic nerve
changes, even before visual field loss, early diagnosis, treatment
and patient counseling can be achieved. The latter, of course,
contextually demands a critical evaluation of the individual patient:
the patient’s medical history, physical data, lab data, and clinical
and familial background.

That said, over the last decade several papers using CNN on
optic nerve images found glaucoma patterns, and their level of
identification compared well to that of trained ophthalmologists.

However, to start with, let’s examine a non-Al baseline accuracy
level in trained eyecare settings, in a “masked performance study”
in Scotland. Patients suspected of having glaucoma, within one
month, underwent a full ophthalmic assessment in both a newly
established community led glaucoma management location,
AGO, and a consultant led eye hospital. Agreement between the
AGO and the consultant unit in diagnosing glaucoma was 89%.
Agreement between trainee ophalmologists and the consultant
unit was 83%. The accuracy of optometrists in detecting glaucoma
in this population was good with a specificity of .93, but lower for
sensitivity at .76. There was no difference in sensitivity between
AGO and junior ophthalmologist [18]. The diagnosis of glaucoma
in this study rested on optic nerve changes and or visual field
abnormalities [18].

The other side of the coin, false positives, may be neuro-
ophthalmological conditions that mimic glaucoma and result in
misdiagnosis [19]. These include: ischemic optic neuropathy, 25%,
compressive optic neuropathy, 18.7%, hereditary optic neuropathy,
18.7%, and congenital optic neuropathy, 2%, from a study of 68
patients enrolled with neuroophthalmological diseases screened
from a single Eye Clinic within a 24-month period.

The researchers selected the eyes with pre-defined glaucoma
criteria:

Vertical cup-to-disc ratio greater than or equal to 0.6,
asymmetric disc ratio greater than 0.2 between the two eyes,
presence of localized retinal nerve fiber layer and or neuroretinal
rim defects and disc hemorrhages.

The images were mixed randomly and a masked glaucoma
expert was asked to distinguish if each patient exam derived from
a patient with glaucoma or a neurophthalmological condition.
“Based on the analysis of fundus photographs and HVF, (Humphrey
Visual Field) tests, 25% of these were misdiagnosed as glaucoma
(two ischemic optic neuropathies and two congenital optic disc
anomalies). Conversely, 11.9% of the glaucomatous neuropathies
were misdiagnosed as neurophthalmological disorders. Overall, the
glaucoma specialist correctly diagnosed 84.5% of the eyes” [19].

References 18 and 19 illustrate the need for extensive analysis
and for thorough individual patient data review for a glaucoma
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diagnosis to be made, even in the setting of prima facie, conventional
clinical markers of glaucoma.

With that introduction, we can explore the results of CNN
glaucoma pattern recognition in about a decade worth of papers,
using different CNN deep learning models to detect glaucoma and
their relative accuracies.

Results

CNN Layers, Activators, features to develop a Model to
test, validate and train optic nerve images for normal/
glaucoma prediction, Procedural Considerations

After downloading a series of “procedural software packages”,
the initial activity of the CNN neural network coder is to import
the image or data set of images. In this setting the image(s) will
be either fundus photo(s) or an OCT, Optical Coherent Tomogram,
image(s) of an optic nerve with an identifying label.

The programmer can then elect to use an established, well
vetted deep learning platform with its parameters or implement
a custom platform with additional parameters. In any case, the
platform will serve as a base for the CNNs network to import the
image data set, convolve it, add weights, adjust it, and optimize it,
prior to train, validate, test and predict dynamics. Yet additional
modulatory features that the coder wishes to adjust /add called
hyperparameters can also be implemented. How different the CNN
model is from the actual desired outcome or its loss function as well
as and the training model’s accuracy will determine just how much
adjustment the training model requires.

One or more convolutional neural network layers, each with
a specific function, such as feature extraction, segmentation,
classification [12, 20], will without the knowledge or assistance
of the coder/observer process large amounts of visual data. The
CNN layer will capture an extracted kernel of the image (which is
a smaller sample of numerical matrix feature) for the character of
the item it is detecting and connect it to others of a similar nature.
These are joined and either made to relate, or not, to other layers.
A hierarchy of layer connections results in optimizing the input and
creating an architecture of learning matrices with corresponding
numeric outputs called logits that represent complex digital
outputs of salient patterns in the image. These logits or quantized
outputs can then be used for training, testing, and plotting the
image data, and evaluating the data for inference and predictions
[12,20,21,22].

To reduce the large spatial dimensions of the convolutional
layers, pooling layers downsize the feature data maps but still
preserve the essential data [12,22].

To introduce non-linearity into the CNN model, the ReLU,
rectified linear unit, is used; other activation functions are sigmoid
and tanh; sigmoid maps from 0 to 1 and tanh maps from -1. to 1;
tanh is zero centered which leads to faster image data convergence
and better hidden layer performance. Sigmoid, on the other hand,
is better for working the output layer in binary classification where
you need a probability of 0 to 1 [21].
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Connected layers join the learned features of the other layers,
combine spatial information and transform it into a format suitable
for classification and provide the basis for making relationships
and enabling high level decisions [12, 22].

Thus, the CNN architecture provides a learning platform
for image pattern recognition, representation, segmentation,
classification and automatic aggregation to facilitate identification
of normal vs glaucoma, e.g. cupping, neuronal rim thinning, and
retinal nerve fiber layer features. This collection of CNN aggregated
images can be used to develop, test, and train data sets of new

Table 3: Papers with >90% Accuracy Diagnosing Glaucoma with CNN

images that can (with a background of good accuracy validation) be
used to predict normal from abnormal optic nerves in successive
glaucoma test samples [9,11,12,22].

Table 3 illustrates some of the papers with greater than or
equal to 90% accuracy in diagnosing glaucoma with various CNN
methods. These papers reflect glaucoma detection from fundus
photos (from conventional fundus photo units as well as a portable
ophthalmoscope combined with a smart phone) as well as glaucoma
detection from 3D OCT images of the optic nerve, and recurrent
neural network images of sequential video fundus images.

Shoukat A, Auto Dx Gl from retinal images, . . o
Diagnostics (Basal)2023 ResNet-50 Architecture Accuracy: 98.48%
Akbar S, Detection of microscopic GL, fundus
photos, deep transfer approach, Micrsc Res Fusion of DenseNet and DarkNet Accuracy: 99.7%
Tech, 2022
Ataly E, CNN archlte-ctures Dx Gl using color Deep Residual Networks and Very Deep Neural Accuracy: 96.2%
photography, Turkish ] Ophthalmol, 2022 Networks
Liu H, Dev and Validation DL to detect Gl . .
from fundus photos, JAMA 2019 Glaucoma Diagnosis CNN. AUC .996
Braganca CP, Det of Gl from fundus images CNN Ensemble Model: ResNet50V2, ResNet 101,
w DL on new image from smart phone and . . .
InceptionResnet, Densenet, Mobilnet, InceptionV3, Accuracy 90%
handheld ophthalmoscope, Healthcare Xception
(Basel)2022 P
. 3D CNN 5 convolutional layers, ReLU Activation;
Maetschke S, feature agnostic glaucoma . . o - .
. Class Activ Maps, CNN identified neuroretinal rim, AUC .94
detection OCT volumes 2018 . . .
cup and lamina cribrosa: glaucoma regions
End to End attention guidance to 3D DL Model
George Y, Attention-guided 3D-CNN Glauco- Estimating visual function from retinal structures;
ma detection and Structure-Functional Assoc | same network architecture but with 3 pathways: 1. AUC93.8%
using Volume images,2020 3D OCT cube, 2. other 2: 3D gradient class activation
heatmaps
Gheisari S, Combined CNN and recurrent Combined CNN and recurrent neural network which
neural network for glaucoma detection Sci extracts temporal features embedded in sequential F-196.2%
Rep 2021 fundus video images

CNN workflow:

1.Data Download,

2.CNN layers, Activating layers, Pooling Layers

3.Flattening Layers, Hidden Layers, Linear/non-Linear Layers
4.Dense, Condensing Layers, Optimizers Layers,

5.Initial Model Output, Check Loss function and Accuracy, if good,
6.Train, Validate, Test Data Set; make predictions, compare outputs

7.From different CNN methods and platforms, Optimize CNNs and platform, adjust hyperparameters, re-train the model for lower loss function and
greater accuracy

8.Re-adjust platform/ parameter(s) and hyperparameters as necessary [21].

Discussion by the programmer for the new model. This type of experienced
investigation, (at least until agentic modelling in this area can

Exploring the realm of refining CNN choices from the be validated) is definitely one of the drawbacks of the current

established CNN glaucoma deep learning models requires
experienced investigation in not only the basic parameters of the
established model, but also the adaptation of hyperparameters

CNN application to the diagnosis of glaucoma in a given data set,
especially if the data set needs adaptation to a particular CNN
model that may not have been used with that data set previously.
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Collection and transferring images, as was evident in Bragance,
et al. (using e.g. portable ophthalmoscope and smart phone)
can also be a challenge. However, if functional code programs or
agentic programs connect image: intake, preparation for CNN,
integration with CNN and development of optimal outputs for
glaucoma predictions, then even in an eye clinic setting portable
ophthalmoscopes and smart phones may be used in the future.

That said, agentic deep learning is progressing at a nice pace.
With the laudable ideal of streamlining CNNs and their linkage to
diagnosing glaucomatous optic nerve photos for millions in need,
the technology may be short in coming.

Conclusion

From the above work on using CNNs to detect glaucoma from
fundus or OCT images of the optic nerves, it would appear that it is
only a matter of time for the conventional eye clinic to integrate CNN
with tonometry and visual fields for glaucoma detection. As fundus
or OCT imaging gains greater bandwidth with CNN integration,
in house earlier glaucoma detection can become a reality even in
more rural areas.
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