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Introduction, AI Groups and Vision Impairment 
Diagnosis

AI is comprised of: 1. Machine Learning, ML, (central branch of 
AI) that develops algorithms to learn from data to identify patterns 
and make decisions based on data like fraud detection;  2. Deep 
learning, DL, (a subset of machine learning), uses convolutional 
neural networks, CNN, to model and solve complex problems like 
image recognition; 3. Natural Language Processing, (e.g. Virtual 
Assistants)  allow AI systems to process text and speech and make 
them more responsive to human needs and activities; 4. Robotics, 
AI helps robots move and make decisions in real time, like drones; 
5. Fuzzy logic, handles uncertainty in AI decision making, e.g. 
weather prediction [1].

AI works by gathering data and organizing data for analysis, 
(texts, images, video, voice). AI systems then use and further 
develop algorithms to train, test and validate the data to learn 
relationships and make predictions from the patterns and iterative 
learning and reinforcement learning it uses to come to conclusions. 
The repetitive reinforcement of learning strengthens the validity of 
iterative outcomes and can be checked for individual iterative level 
accuracy [1].

The five leading causes of vision impairment and blindness 
in the world are: uncorrected refractive error, cataracts, diabetic 
retinopathy, age-related macular degeneration, and glaucoma [2].

 
Approximately 1billion individuals of the 2.2 billion who have near 
vision impairment may have been prevented [2].

AI Examples in Uncorrected Refractive Errors 

Several papers recently illustrated AI helping improve vision 
care in uncorrected refractive errors, with respect to (1) general 
optometry correction in a clinical setting [3].

(2) predicting refractive error from retinal fundus images:  
e.g. Using 30 and 45degree field images from the UK Biobank and 
Age-related Eye Disease Study, AREDS, clinical trials, for a total of 
226,870 images and validated on 24,007 UK Biobank and 15,750 
AREDS images, the AI algorithm had a mean absolute error of 0.56 
diopters for estimating spherical equivalent on the UK Biobank 
data and 0.91diopters on the AREDS data set in a total of 70,000 
participants [4].

(3) Myopia, (defined as spherical equivalence less than or equal 
to -.5 diopters), globally is estimated to be 49.8% (or 4.758 billion) 
of the world population. 938 million will have high myopia by 2050 
[5]. Over 80% of high school students in some Asian countries are 
myopic and a larger portion of younger individuals go on to high 
myopia, spherical equivalence of 6 diopters or more, which carries 
a higher risk of visual impairment or blindness [5-16]. 

Lin et al using refraction data with a random forest machine 
learning AI model endeavored the prediction of high myopia onset 
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[17]. The AUC ranged from .903 to .986 for 3 years, 0.875 to 0.901 
for 5 years and 0.852 to 0.888 for 8 years [17]. 

Rampat, et al. with three ML (gradient boosted tree) algorithms, 
on wavefront aberrometry data, predicted subjective refractions of 
350 other eyes, unknown to the model [18]. The machine learning 
models were significantly better than the paraxial matching method 
with a mean error of .30 diopters for the M vector, 0.12 diopters for 
the JO vector and 0.094 for the J45 vector, for predicting subjective 
refraction from polynomial wavefront data [18].

Using machine learning-based algorithms, (six types were 

implemented in the model), with input variables including: age, 
sex, central corneal thickness, spherical equivalence, mean K and 
white to white corneal diameter, the best-performing algorithm 
was applied to predict axial length to estimate the physiological 
elongation of ocular length in myopic children. Based on the partial 
derivatives of the axial length predicted age curves, the estimated 
elongation varied from 0.003 to 0.110 mm/year in female subjects. 
The model found that physiological elongation of axial length 
decreased with increasing age and was negatively correlated with 
spherical equivalent and K mean [19].

Table 1: Ocular Disease vs Number Worldwide vs AI Methodology Used.

Ocular Disease Disease World Prevalence in Millions AI Study Methodology and Reference #

Uncorrected Refractive 
Errors By 2050: 938, Ref 5 Ref 17, Lin et al, high myopia prediction in children, Random Forest ML; 

3yrs:.903-.986 AUC

Cataracts 57.1, ref 21 Ref 20, KY Son et al, cataract classification: DL, ResNet18, WideRes-
Net50-2; Resnext50, prediction performance AUC.95

Diabetic Retinopathy, DR 3.2, ref 21 Ref 30, MAdos Reis et al, DL with CNN vs ophthalmologist on fundus 
images, DL, specificity 96.41%

Adult-Onset Macular degen-
eration 58, ref 21 Ref 35, N Motozawa et al, DL CNN +transfer learning OCT model distin-

guishing exudative from non-exudative, sensitivity 100%

Glaucoma 4, ref 21 Ref 37, Yu et al, DL CNN classifiers for OCT with Angle Closure Glaucoma, 
.928 AUC detection

AI Examples in the Management of Cataracts

Using slit lamp and retro-illumination lens photos based on 
the Lens Opacities Classification System, LOCS III, a convolutional 
neural network was trained and tested on 1335 slit lamp images 
and 637 retro illumination images from 596 patients to detect and 
grade cataracts. The images were also graded by two trained graders 
using LOCS III. Four key strategies were trained and validated in the 
AI domain: (1) region detection for redundant information of inside 
data, (2) data augmentation and transfer learning for the small 
data set problem, (3) generalized cross-entropy loss for the small 
dataset size problem and (4) class balanced loss for class imbalance 
problems. The AI platform performance was strengthened by an 
ensemble of 3 AI algorithms: ResNet18, WideResNet50-2, and 
ResNext50. The AI platform AUC was 0.99, accuracy 98.82%, and 
98.51% and LOCSIII based grading prediction performance AUC 
95%, accuracy 91.22% and 90.26% for nuclear opalescence and 
nuclear color. AUC and accuracy for cortical opacity and posterior 
subcapsular opacity in slit lamp and retro illumination categories 
were also quite good but slightly less. [20].

By 2020 in the global population the number of people with 
cataracts was about 57.1 million [21]. Visual impairment from 
cataracts is higher in low to moderate income economies compared 
to developed countries [22, 23].  A diagnostic machine language 
platform named “CC cruiser”, developed by Zhongshan Ophthalmic 
Center, [22-24] using a CNN algorithm to grade and diagnose 
cataracts on slit lamp images achieved a diagnostic accuracy of 
98% [23]. However, in a multicenter randomized controlled trial 

only achieved an 87.4% for accuracy of cataract diagnosis [24]. 
Nonetheless, the time to diagnosis using “CC Cruiser” was about 
three times shorter than pediatric ophthalmologists and had a high 
level of patient satisfaction because of the reduced waiting time 
[25].

AI Examples in Diabetic Retinopathy, DR

DR which increased in prevalence globally between 1990 and 
2015 has about 3.2 million people with moderate to severe visual 
impairment [21].

AI using CNN applied to photos and OCT images of diabetic 
retinopathy can detect edges, lines, colors and even more complex 
patterns. Thus, AI algorithms can automate the detection of 
microaneurysms and hemorrhages from fundus photos and OCT 
images [26].

However, because of computational complexity, accuracy 
questions in DR staging and maintenance cost, more advanced 
AI models have been suggested to examine initial stages of 
DR [27]. Also, although AI study in DR screening showed high 
sensitivity, there was low specificity, 82% for referrable DR. Thus, 
4 out of 5 patients without referrable DR would still be referred 
to an ophthalmologist, causing unnecessary burden to patient and 
physicians [28].

In contrast, AI diabetic eye exams in racially and ethnically 
diverse youths at point of care had a considerably higher completion 
rate than controls, 64% vs 22% [29].
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Also in contrast, a total of 4590 patients in an Endocrinology 
Unit, in Porto Alegre, Brazil, with an overall prevalence of 26.5% for 
DR, had manual diagnosing of DR performed by an ophthalmologist 
compared to a deep learning, DL, algorithm with CNN using images 
from a dilated exam photographed with a Cannon CR-2 camera. 
The deep learning algorithm had an area under the curve of 98%, 
specificity of 96.4%, and sensitivity of 93.5% [30].

AI Examples in Macular Degeneration, AMD

Despite being a common cause of visual loss, (approximately 
8.8 million worldwide, 2020, with moderate to severe visual 
impairment) [21] early diagnosis of AMD, as well as customized 
treatment, cost control and efficient management of patient and 
doctor time remains difficult. AI by retinal and OCT image analysis 
can leverage large amounts of data to predict disease progression 
by identifying biomarkers and disease criteria and stages [31].

Dong et al, Serner et al, and Rasti et al developed machine 
learning and deep CNN models for classification of dry and wet AMD 
[32-34].  Montazawa et al, using a basic CNN and a transfer deep 
learning model to improve stability and efficiency, [35] found that 
the basic CNN model achieved the following metric significances: 
sensitivity = 100%, specificity = 91.8%, and accuracy = 99% in 
distinguishing exudative and non-exudative AMD from normal OCT 
images [35].

AI Examples in Glaucoma

Studies between 1980 and 2012 as well as unpublished studies 
through the Vision Loss Expert Group found that glaucoma was 
one of the diseases of vison impairment that had increased, to 
approximately 4 million individuals worldwide [21]. 

DP Rao, et al. from a tertiary glaucoma center in India, including 
243 subjects with varying severity of glaucoma, evaluated an 
automated referable glaucoma AI detection system. 65% of the 
retinal images were captured using the Remidio FOP target device 
and 35% using desktop fundus cameras. The AI performance on 
the smartphone camera was the same when compared to image 
grading on either of the Remidio or desktop fundus camera. 

76.1% of the photos were captured from a South African 
population and 23.9% on a Caucasian population. AI cup and 
disc segmentation model and a binary classification model were 
compared to a glaucoma specialist with full glaucoma workup 
and consensus imaging grading. The AI system had a sensitivity 
and specificity of 93.7% and 85.6% respectively in detection of 
referrable glaucoma. The model used ResNet 50 architecture and 
was pre-trained on the ImageNet dataset. Two other AI models were 
trained. The first provides a quality image for reliable glaucoma 
diagnosis. The second localized the disc center in the retinal image. 
These two steps represent the pre-processing for AI segmentation 
and classification algorithms.

 Overall, the glaucoma specialists detected 67/111 true 
glaucoma cases or 60% using just fundus images; the AI model 
detected 104/111 or 94% of true glaucoma patients on the same 
fundus images [36].

Yu et al used large data sets with CNN classifiers to identify OCT 
images for angle closure glaucoma. The best CNN classifier model 
was ResNet-18. It was able to detect angle closure glaucoma types 
on AI automated anterior segment OCT images. The detection of 
angle closure glaucoma was .928 AUC on AI test data set. Yu et al 
concluded that deep learning CNN models were able to illustrate 
differences between angle closure, (without synechiae) vs angle 
closure with synechiae and this differentiation could improve 
eyecare in high-risk populations [37, 38].

Conclusion

This short communication endeavors to provide brief 
illustrations of the contribution of AI methods, machine learning 
and deep learning to: better identify stages and categories of the 
more prevalent eye diseases, consider more effective AI methods 
in learning about different population datasets on common eye 
diseases, and allow the reader to come upon challenges in the 
accuracy of AI outcomes vs expert ophthalmological opinions in the 
diagnosis of these diseases.
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