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Abstract

Glaucoma, the second leading cause of blindness worldwide is a neurodegenerative disease, with or without elevated ocular pressure, exhibiting 
several different phenotypic presentations, which result in progressive visual field loss after compromise of retinal ganglion cells and their axons to 
the optic nerve and brain. Predominant clinical glaucoma types are primary open angle, POAG, angle closure, and congenital; secondary glaucomas 
are: psuedoexfoliaiton, pigmentary, neovascular, traumatic, iridoendothelial, and uveitic glaucoma. In each of these types of glaucoma, genetic, 
epigenetic, proteomic, environmental, and mechanical forces may converge as well to cause or advance the disease. Alternatively, but not necessarily 
in an independent fashion, stress related pathways of oxidative stress, inflammation, infection, trauma, immune reaction, neuro-degeneration and 
mutant genomic products can produce deleterious misfolded proteins, antibodies, and aggregate deposits in the trabecular meshwork, TM, raise the 
intraocular pressure and result in optic nerve damage and loss of vision. Examining the interplay of these stress pathways with genetic, epigenetic, 
proteomic, environmental and mechanical forces to gain some understanding of molecular causes of glaucoma is the goal of this paper.

Keywords: Glaucoma GWAS, Myocilin mutants/misfolded proteins, Oxidative stress, HSP, Inflammation, Immune/autoimmune response, 
Mitochondrial lysosome axis dysfunction, Autophagy pathways, Trabecular meshwork ECM dynamics, RGC/brain neuroprotection, Epigenetic role

Abbreviations: AH: Aqueous Humor; ATP: Adenosine Triphosphate; Bcl-2: B cell lymphoma 2; CHOP: A multifunctional transcription factor in 
endoplasmic reticulum oxidative stress and protein misfolding; CLAN: Cross linked actin network; DARC: Detecting apoptosing retinal ganglion 
cell technique; ECM: Extracellular matrix; ELAM: Endothelial leukocyte cell adhesion molecule; EM: Electron microscopy; ER: Endoplasmic 
reticulum; GWAS: Genome wide association study; HSP: Heat shock protein; IOP: Intraocular pressure; JCT: Juxtacanalicular region of the trabecular 
meshwork; JNK: Jun N-Terminal Kinase; MAGP-1: Microfibril associated glycoprotein; MAP: Kinase mitogen activated protein kinase, increase ECM 
production in TM cells; ERK: Kinase extracellular; MAP: Microtubular kinase; MIP: Macrophage inflammatory protein; MITF: Microphthalmia 
associated transcription factor; MMP: Matrix metalloproteinase; MTORC-1: Mechanistic target of rapamycin complex overseas protein synthesis 
for Lysosome function; Myoc-OLF: Myocilin olfactomedin domain five-bladed β-propeller protein family; NAD: Nicotinamide adenine dinucleotide; 
NFKB: Nuclear factor kappa-light-chain-enhancer of activated B cells, major transcription factor for inflammation/immune modification in the cell; 
NMDA: N-methyl D Aspartate; NTG: Normal tension glaucoma; Nrf2: Nuclear factor erythroid 2, major oxidative stress transcription factor; PDS: 
Pigmentary dispersion syndrome; PERG: Pattern electroretinogram; PG: Pigmentary glaucoma; PI-3: Kinase phosphoinositide-3 kinase; PMEL: 
Premelanosome protein that may form physiologic amyloid beta protein in melanosomes; POAG: Primary open angle glaucoma; PTEN: Phosphatase 
and tension homologue; PTP: Mitochondrial permeability transition pore; PXG: Pseudoexfoliaiton glaucoma; PXS: Pseudoexfoliaiton syndrome; 
REST: Repression element silencing transcription factor; Retinal Ganglion Cell; Rho Kinase protein kinase modifying cell shape, size and adhesion; 
SC: Schlemm’s Canal; SPARC: Secreted Protein Acidic Rich in cysteine, binds to ECM proteins and regulate matrix metalloproteinase expression; 
SMAD: ‘Small Mothers against decapentaplegic homolog’ literally but actually transcription factor which mediates TGF beta transduction or simply 
helps transfer cytoplasmic signals to nucleus to activate molecules like MAP or Rho kinase; TEK: Receptor tyrosine kinase; TGF: Beta transforming 
growth factor beta (signalling differentiation, proliferation, chemotaxis and fibrosis); TIMP 3: Tissue inhibitor of metalloproteinase; TLR4: Toll like 
receptor 4; TM: Trabecular meshwork; TNF: Tumour necrosis factor; TNFR: Tumour necrosis factor receptor; UPR: Unfolded protein response; 
VCAM1: Vascular adhesion protein; VEP: Visual evoked potential
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Introduction
Glaucoma is a complex disease with many different phenotypes 

that can manifest over a lifetime. Childhood glaucoma, for example,  

 
also referred to as congenital or infantile glaucoma occurs in 
babies and young children. Although it is a rare condition, it may be 
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inherited and is usually diagnosed within the first year of life by the 
elevated ocular pressure, abnormal drainage angle structure and 
excavated optic nerve. It develops from improper development of 
the eye’s TM/SC (trabecular meshwork/Schlemm’s Canal) drainage 
system before birth [1].

By comparison, recent work has suggested that typical 
alterations for open angle glaucoma, POAG, one of the leading causes 
of irreversible worldwide blindness, were observed in a subset of 
ocular normotensive Alzheimer’s disease patients on Heidelberg 
Retinal Tomograph-3, (which photographically and statistically 
monitors: linear cup/disc ratio, cup shape measurement, rim area, 
rim volume, height variation contour, and mean retinal nerve fiber 
layer (RNFL) thickness) [2].

Thus, over a lifetime, different pathways from within the two 
large glaucoma defect categories of impaired aqueous outflow 
channels and nerve damage to percipient and conductive neural 
elements of the eye and brain have been implicated in the 
neurodegenerative glaucoma process [3].

From a historical perspective, trabecular meshwork, TM/ 
Schlemm’s canal, SC, defects were primal to the development of 
elevation of intraocular pressure and optic neuropathy. However, 
in the last two decades the narrative has become more detailed 
with the elucidation of glaucoma category genes, proteins, and 
transcription factors in both the TM, and retinal ganglion cell, RGC, 
anatomic regions. These glaucoma category details encompass 
the language of RGC and TM cell survival after sustained oxidative 
stress from mutant derived and misfolded protein challenging 
mitochondrial sufficiency, provoking immune and inflammatory 
reaction, and leading to either repair/maintenance or apoptosis 
and cell death.

In this article I would like to first highlight some of the salient 
genes and proteins from each of these categories. SIX6, (retinal 
ganglion cell related), FNDCB3, FMNL2, (IOP, POAG related), 
CDKN2B-A (vertical cup/disc related), PLEKHA7, HGF, FERMT2, 
and GLIS, (narrow angle glaucoma related), ANGPT1, ANGPT2 and 
VEGF-C, (Schlemm’s canal regulation through receptor tyrosine 
kinase), LOXYL1 (through the window of pseudoexfoliaiton 
glaucoma), and PMEL, ( a protein related to pigmentary glaucoma). 
These elements constitute the first section of the paper. 

POAG, IOP, Cupping of the optic nerve, visual field defects, 
TM/Schlemm’s canal outflow issues, pseudoexfoliaiton glaucoma 
and pigmentary glaucoma are the basic vocabulary of the 
ophthalmologist in first considering a diagnosis of glaucoma. Thus, 
genomic and proteomic correlates to these glaucoma characteristics 
and glaucoma types are discussed second.

Characteristic proteins from the aqueous humor, AH, of 
glaucoma patients, associated with cell signalling, glycosylation, 
immune response, molecular transport, and lipid metabolism 
initiates the global protein or second sub-section of the paper.

Then, proteins of the TM extracellular matrix, myocilin, TGF 
beta, clusterin, amyloid, heat shock proteins, Toll receptors, 
interleukins, and ubiquitins are reviewed. In their individual 
and concerted efforts in RGC and TM these proteins constitute a 
pervasive framework for advancing or retarding glaucomatous 
damage.

In the third section, the mechanism of glaucoma elements as 
seen through the windows of the proteomics of adult prevalent: 
pseudoexfoliaiton, primary open angle, and pigmentary glaucoma 
are reviewed. Incriminating data on mutated/misfolded myocilin, 
(the first gene linked to glaucoma) and its contributors to 
compromised AH outflow and their repair pathways and their 
alternate roads to apoptosis are explored.

That said, it is worth keeping in mind that enhanced differential 
gene/protein expression levels of these (and other glaucoma genes) 
do not necessarily dictate a linear relationship to their functional 
outcomes. Thus, the concluding sections of this paper examine other 
dynamic vectors which characterize the somewhat hidden, non IOP 
elements of the disease: heat shock proteins, (with their immune 
clearance effect or their potential axonal cushioning effect), nitrous 
oxide donating moieties for increased AH outflow, glaucoma signal 
pathways, epigenetic and other modifiers for neuroprotection vs 
neurodegeneration in glaucoma. Such signal vectors as TGF beta, 
for example, can produce excess ECM, extracellular matrix protein, 
in the TM which can block AH outflow. But other transcription 
factors, such as MAP kinase can initiate a process for removal of 
aberrant proteins. Certain inflammatory factors can overload the 
clearance of misfolded proteins and other epigenetic chromatin 
modifiers can activate genes for alternate pathway clearance. The 
analysis of interactions of fortifying and debilitating vectors and 
their outcomes constitute the next platform for glaucoma therapy.

Thus, these vectors as well as aging, oxidative stress, protein 
misfolding, mitochondrial lysosome axis dysfunction/repair are all 
on a dynamic, wide stage of activity (for TM and RGC categories of 
glaucoma) with many actors in a comprehensive, ongoing dialogue 
of intracellular homeostasis, survival vs. glaucomatous damage and 
apoptosis.

Outline

POAG

GWAS

Genes Clinical Features

PXG Proteins & Features

AH Proteins in POAG

Myocilin Protein Changes in Glaucoma

Pigmentary Glaucoma

POAG TM/RGC: Ox. Stress,
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Materials and Methods
To obtain a broad spectrum of papers in genomics, proteomics, 

epigenetics and signal transduction pathways of glaucoma, each 
of these topics was named in association with glaucoma and 
searched in pub med and Google Scholar over the last two decades 
up to the year 2020. Papers that provided a systematic review 
with clear supporting evidence for associations of glaucoma to 
evidence-based mechanisms such as: genes from genome wide 
association studies, protein misfolding as a consequence of e.g. 
myocilin mutations, the role of oxidative stress in mitochondrial/
cytochrome demise and apoptosis or E-3 ligase involvement in 
clearing dysfunctional protein were given greater weight as were 
their supporting reference papers. In this regard, papers that linked 
mechanistic findings with risk elements in glaucoma, such as visual 
field loss or vertical cup disc ratio were also weighted heavily in the 
initial selection.

Results

POAG Genome wide association studies, GWAS, ethnic 
genetic associations and genes associated with glaucoma 
clinical features

GWAS, have documented some 74 genomic loci that have been 
associated with POAG susceptibility. Some of these characterize 
ethnic specific risk factors as well as risk factors across diverse 
ancestry [8].

In the age groups, 40-80 years, the global prevalence of POAG 
is 3.54%. In those of African descent, it is even higher at 4.2%. 
Worldwide in 2020 it was estimated to be a total of 64.3 million 
with glaucoma [5]. While elevated intraocular pressure, IOP, may 
or may not be associated with glaucoma, early on patients are often 

asymptomatic or only experience mild peripheral or central visual 
field disturbance, usually after silent optic nerve micro hemorrhage, 
ischemia, oxidative stress, inflamma tion, and immune reaction has 
caused some damage [6,7].

Genome- wide association studies in POAG over the last decade 
have identified risk loci in European, Asian, Japanese and African 
populations [8]. Individuals of African ancestry have three to five 
times the POAG risk and worse visual field and disease progression 
than other populations [8-13]. Thus far, as is the case with 
Japanese populations, it is unclear if Asian study gene markers for 
the Japanese are able to be associated with other Japanese study 
loci, and, if loci from the African populations are compatible with 
studies of loci of African Americans [8,10-14]. However, Hispanic/
Latino populations, although much less explored in GWAS, have 
illustrated loci previously identified in GWAS of European or 
Asian populations in their Hispanic/Latino sample [8]. These and 
other genetic ethnic loci variances in different studies illustrate 
the genetic heterogeneity across populations. Other studies in 
glaucoma clinical features, such as intraocular pressure and vertical 
cup to disc ratio, have been examined with respect to genetic locus 
and potential POAG risk. Patients with these features and genetic 
loci may be higher risk and may require earlier intervention.

Unfortunately, thus far GWAS have not provided a specific over-
riding genetic mechanism for understanding glaucoma. However, 
certain POAG gene candidates have led to further investigation. 
For example, SIX6 (which is important in retina and optic nerve 
development) expressed abnormal gene variants and illustrated 
reduced protein elaboration in zebrafish in vivo assays, [15-
18]. With abnormal human homozygous SIX6 alleles vs normal 
homozygous alleles, the nerve fiber layer was thinner in the 
abnormal SIX6 homozygous population. The RGC are the primary 
target in glaucoma [31]. Moreover, a SIX6 gene variant showed 
increased expression of another POAG normal tension glaucoma 
locus, CDKN2A, in cell lines, and in human glaucoma with increased 
IOP causing senescence in retinal ganglion cells [19].

Clinical features of glaucoma have been correlated to GWAS 
POAG gene loci. FNDCB3 and FMNL2 have been associated with 
increased IOP [20,21], and common loci variants CDKN2B-AS and 
SIX6 were linked to increased vertical cup disc ratio [22].

PLEKHA7, HGF, FERMT2, and GLIS, four loci conferring risk 
to angle closure glaucoma, were from the group with increased 
intraocular pressure, suggesting that angle closure may contribute 
to elevated IOP even in patients ostensibly within the normotensive 
range [8,20,23].

Corneal thickness glaucoma GWAS study association

A GWAS for central corneal thickness association with POAG 
found only one locus FNDC3B and surprisingly one central corneal 
thickness allele was found protective for POAG [24]. Another 
GWAS in over 25,000 European and Asian patients did not find 
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any correlation between central corneal thickness and POAG or 
angle closure glaucoma [4,25]. This raises the question of whether 
the central cornea thickness-glaucoma criterium is in the same 

category as intraocular pressure, vertical cup to disc ratio, and optic 
nerve change phenotypes, but rather another risk factor as yet to be 
understood on the genetic/proteomic landscape [8]. (Table 1)

Table 1: Genome Wide Association Studies, Genes related to Glaucoma.

Genome Wide Assoc Genes Glaucoma Outcome

Six6 Retinal Ganglion Cell, RGC/Optic Nerve Dev Early and later life [30]

CDKN2A/Six6 RGC Pathogenesis in Glaucoma [32]

FNDCB3, FMNL2 Increased IOP [33]

CDKN2B-AS and SIX6 Increased vertical cup: disc ratio [35]

PLEKHA7, HGF, FERMT2, and GLIS Angle Closure Glaucoma [4,33,36]

Glaucoma: GWAS hints at systemic disease, angiogenesis 
pathways/tyrosine receptor kinase schlemm’s canal IOP 
regulation; Glaucoma: Subacute bacterial inflammation 
(Toll Receptors) and Immune (Heat Shock Proteins, Toll 
Receptors in retinas with Glaucoma)

Despite the fact that GWAS have not provided clear cut gene 
to disease understanding, they have provided candidate genes for 
further glaucoma study in animal models and human cell lines and 
glaucoma association with systemic disease, such as type 2 diabetes 
and cardiovascular disease [8,31]. 

In addition, not unlike the GWAS highlighting Complement 
Factor H polymorphisms in macular degeneration, and systemic 
disease associations [26-30], GWAS in glaucoma may have begun 
to elucidate loci linkages to (1) glaucoma phenotypes, (IOP and 
vertical cup to disc ratio) and (2) to systemic diseases, such as 
diabetes, myocardial infarction and stroke [8,28]. In the latter, 
for example, from both IOP GWAS studies, genes involved in 
angiogenesis and “vascular endothelial cell morphology” emerged 
with ANGPT1, ANGPT2 and VEGF-C gene variants. These genes are 
TEK (receptor tyrosine kinase) signal regulators for Schlemm’s 
Canal modification of aqueous pressure. Mutations in TEK may 
cause primary congenital glaucoma [32]. Lesser alterations of the 
angiopoietin-TEK pathways may curtail efficient Schlemm’s IOP 
regulation. TEK receptors are highly expressed in Schlemm’s canal, 
[33]. In the mouse model, efficient maintenance of angiopoietin-
TEK signalling may be responsible for protective VEGF-C anterior 
chamber levels and normal intraocular pressure at the Schlemm’s 
canal collector channels [34]. At this point, it is unclear if this 
VEGF-C IOP balancing/unbalancing may be in conjunction with TM 
dynamics in glaucoma, or, by itself a source of increased IOP.

Returning to the possible role of complement and immune 
response and inflammation in glaucoma (as in macular degeneration 
cited above) a recent study showed that glaucoma patients had 
higher bacterial oral counts compared to control subjects. Low dose 
bacterial lipopolysaccharide administration in glaucoma animal 
models developed enhanced axonal degeneration and neuronal cell 
loss. Microglial activation in the optic nerve and retina along with 
upregulation of TLR4 (Toll receptor 4) signaling and complement 
system, which was blocked by naloxone, suggested a bacterial/ 

infection, immune and possibly inflammatory role in glaucoma 
development [35].

In a related way, retinas from humans with glaucoma had 
parallel proteomic mass spectrometric and immunostaining for Toll 
Receptors 2,3,4. In line with upregulation of toll receptor signaling 
in the glaucoma samples, prominent expression increases in heat 
shock proteins were noted. Analysis of microglia and astrocytes in 
glaucoma vs control retinas also showed toll receptor expression 
increases. In vitro experiments after oxidative stress also showed 
heat shock protein increases in line with upregulation of glial Toll 
receptors and MHC Class II expression. Increased cytokine and T 
cell production were also linked to Toll Receptor upregulation [36]. 
These papers tie glaucomatous retinal tissue stress to upregulation 
of immune and inflammatory response [35,36].

Pseudoexfoliaiton glaucoma PXG, extracellular matrix, 
LOXYL1 gene, homocysteine, clusterin, misfolded 
protein, amyloid, hypoxia, chronic organic and brain 
disease association, life expectancy, hypoperfusion and 
elevated oxidative stress

Pseudoexfoliaiton syndrome (PXS), an aging disorder involving 
the extracellular matrix of the trabecular meshwork, ECM, 
(multiadhesive protein glycans, collagens, fibronectin, laminin, 
elastin, and others, secreted by TM cells for cell support, molecule 
migration, proliferation and differentiation) [37] is the most 
common risk factor for secondary glaucoma and a major cause 
of worldwide blindness. An estimated 60-70 million patients are 
affected [38-41]. 

A global sample of PXS identified new variants of LOXL1, a rare 
protective allele with greater cellular adhesion ability compared to 
the wild type and five new loci [42]. The protective LOXL1 in follow 
up histological investigation demonstrated decreased (1) elastic 
fiber formation, (2) tissue stiffness, and (3) cell adhesion in ocular 
tissues of patients with PXS [43].

LOXYL1 variation genes at the POAG locus have been associated 
with pseudoexfoliaiton glaucoma PXG. Of particular note, however, 
is that while the rare variant at LOXYL1 is protective, the five others 
nearby were only susceptibility loci. All five “LOXYL1 haplotypes 
detected by the resequencing effort showed reversal of genetic 
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effect, their functional consequences remaining in doubt.” [42]. 
Although LOXL1 participates in crosslinking of collagen and elastin 
in the extracellular matrix, LOXL1 has not been specifically shown to 
cause pseudoexfoliaiton. Another gene, CACNA1A, however, which 
codes for a subunit in the voltage-gated calcium channels, (which 
are widely expressed in the brain and ocular tissues), through 
calcium deposition on electron microscopy in pseudoexfoliaiton, 
may be linked to pseudoexfoliaiton [43,44].

While the genomics of LOXL1 in pseudoexfoliaiton are as yet 
unclear, the role of lysyl oxidase, LOX, in the cell seems to be gaining 
greater understanding. Lysyl oxidase oxidizes the side chain 
peptide of lysine converting it to a semialdehyde which permits the 
covalent crosslinking of collagen chains and elastin. This stabilizes 
fibrous deposits and proteins in the ECM. Four LOXL proteins with 
varying similarity to LOX have been described. From this family of 
related proteins, a proLOX protein can emerge, which is activated to 
the enzyme lysyl oxidase, LOX.

LOX, in addition to overseeing crosslinking of collagen and 
elastin, plays a role in chemotactic responses, proliferation and 
shifts between normal and malignant phenotypes [45]. Thus, 
with the multifaceted and complex intracellular role of this gene/
protein family, the genomics await further clarification. This 
study, for example, demonstrated that some LOXL1 polymorphism 
alleles have different effects in different populations, with a given 
allele increasing pseudoexfoliation risk in certain populations but 
providing protection in others [46].

Increased levels of homocysteine in pseudoexfoliaiton 
patients in several studies may disrupt disulfide bonds of cysteine 
residues in extracellular matrix proteins. This homocysteine/
pseudoexfoliaiton may be relate to chronic folate deficiency 
which could disrupt the methione-homocysteine cycle and affect 
methylation of LOXYL1 and its expression [47].

Results remain mixed on the role of clusterin single nucleotide 
polymorphisms, SNPs. SNPs in some populations are positive and 
other populations negative for association to PXG. Clusterin, or 
apolipoprotein J, is secreted by almost all cell types and is named 
for its ability to cluster red blood cells. It is an extracellular matrix 
protein involved in reducing protein misfolding. Clusterin also binds 
amyloid and reduces amyloid formation in Alzheimer’s disease 
[48-50]. In the eye, studies examining common clusterin protein 
variants for association with PXS have been inconsistent [50]. It is 
of interest, that the literature has a report of a 70-year-old with PXG 
and lattice corneal dystrophy with amyloid accumulation [51].

In addition, clusterin because of its in inhibition of oxidative 
stress, induced aggregation and precipitation of misfolded proteins, 
and regulation of complement, may mitigate heat shock protein 
elaboration and resist apoptosis [52]. 

However, Zenkel et al showed reduced immunoreactivity for 
clusterin in ocular tissues of PXG eyes [53]. Patients with focal 

segmental glomerulosclerosis also have reduced blood and urine 
levels of clusterin [54,55].

Thus, there may be an initial beneficial clusterin level to reduce 
misfolded proteins in PXG, but its production is exhausted and 
its immunoreactivity in eye tissues diminishes. In other similar 
pathophysiologic situations such as drusen, corneal amyloid, 
arteriosclerotic plaques senile plaques in Alzheimer’s disease, 
prominent initial immunoreactivity for clusterin is present. 
Continued oxidative stress and mitochondrial lysosome axis 
dysfunction may exhaust clusterin levels and reduce clearance of 
misfolded protein and increase tissue fibrosis [56,57].

Despite the well-known higher prevalence of pseudoexfoliaiton 
glaucoma in Scandinavia, a US cohort of Scandinavian ancestry 
was not found to be at risk for pseudoexfoliaiton glaucoma [58]. 
Environmental factors, such as number of days of solar exposure 
were suggested to play a role there. Others have linked lifetime 
residential latitude from the equator with increased odds of 
pseudoexfoliaiton glaucoma [59].

The variable risk of pseudoexfoliaiton glaucoma with some 
LOXL1 polymorphisms but not with others, as well as protective 
LOXL1 alleles in some populations, suggests that these alleles in 
different environments or under different stress factors, and even 
in different systemic diseases, (which have been associated with 
pseudoexfoliaiton glaucoma) may behave differently [44,60,61].

Chronic diseases of the brain, such as cerebral atrophy, chronic 
cerebral ischemia, and dementia were more common in PXG than 
POAG [62]. While some studies have illustrated risk of carotid, renal 
and cardiovascular disease in PXG, [63-67], others have not found 
linkage to cerebrovascular and cardiovascular disease [62]. A meta-
analysis, however suggested the association of pseudoexfoliaiton 
syndrome with coronary artery disease, cerebrovascular 
disease and aortic aneurysm [64]. Despite the variability of 
pseudoexfoliaiton glaucoma with different systemic diseases, it 
would appear albeit paradoxically that multiple studies have not 
shown increased mortality in patients with pseudoexfoliaiton, 
[63,66,67], and specifically a decrease in overall mortality and no 
difference in cardiovascular or cerebrovascular mortality [68]. 
Another study from Finland, interestingly, found increased life 
expectancy in pseudoexfoliaiton glaucoma patients compared to 
patients with POAG [69].

Poor pupillary dilation and loose zonules in pseudoexfoliaiton 
patients presents greater intraoperative complication risk with 
cataract surgery. Over half the late intraocular lens/capsule 
dislocations that occur more than three months after cataract 
surgery are related to pseudoexfoliaiton syndrome [70]. 

Corneas in patients with pseudoexfoliaiton regardless of the 
presence of glaucoma have decreased endothelial cell density and 
the central cornea is thin [71]. Decreased tear production and tear 
film stability has also been observed in pseudoexfoliaiton syndrome 
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[70].

It is possible that some of the above findings in patients with 
pseudoexfoliaiton syndrome may relate to hypoxia, oxidative stress 
and ischemia. On electron microscopy, progressive iris vasculature 
degeneration from adventitia to endothelium was noted in the 
setting of hypoxia in pseudoexfoliaiton patients not seen in 
controls [72]. Subfoveal choroidal thinning was more recently 
noted in pseudoexfoliaiton eyes perhaps secondary to choroidal 
hypoperfusion secondary to impaired carotid flow [73,74]. Color 
Doppler imaging of the ophthalmic artery in pseudoexfoliaiton 
glaucoma patients identified increased vascular resistance [75]. 
Oxidative stress and inflammation have been cited in patients 
with early pseudoexfoliaiton syndrome. Elevated oxidative 
stress with decreased antioxidant capacity was found in AH of 
pseudoexfoliaiton patients compared to controls [76]. TNF-alpha, 
IL-6, and IL-17 were also reported increased in AH of early stage 
pseudoexfoliaiton glaucoma patients compared to controls [77].

Prominent Aqueous Humor Proteomic Changes in POAG, 
ele vated:

1) immune globulin and alpha trypsin inhibitor (immune and 
inflammatory responses),

 2) lipid metabolism (protein-lipid, lysosomal degradation 
transport, clearance), 

3) ATP dependent chromatin remodelling (epigenetic energy 
dependent methylation/acetylation, balancing, re- balancing),

4) glycoproteins (associated with ECM function and 
remodelling) 

5) isocitrate dehydrogenase (NAD mitochondrial balance)

In fact, in line with higher inflammatory and immune response 
in the AH of PXG patients, using liquid chromatography-mass 
spectrometry informatics, 33 distinct proteins from the aqueous 
humor of POAG glaucoma patients were identified. They were 
characterized by such diverse cell functions such as signalling, 
glycosylation, immune response, molecular transport and lipid 
metabolism [78]. An increasing trend in the odds ratios of having 
POAG was noted with increased levels of these proteins in the 
aqueous humor, AH. The four highest protein levels in AH proteins 
were found in Ig j chain C region:13.56 fold (immunity related), 
inter-a-trypsin inhibitor heavy chain 4: 4.10 fold (protease inhibitor, 
also involved in immunity and inflammation), apolipoprotein C III: 
3.36 fold (triglyceride metabolism), and isocitrate dehydrogenase 
(NAD) (mitochondrial enzyme for energy balance) 3.1 fold [78].

To understand associations of the 33 significantly altered 
proteins in POAG, bioinformatics (canonical pathways using 
ingenuity pathway analysis) in POAG were compared to controls.

Thus, the proteins in the POAG group were highly involved in 
immune, inflammatory response, lipid metabolism, (likely lipid 
transport in and out of lysosomes), extracellular space activities (as 

in the aqueous humor), repressor element silencing transcription 
factor (REST), and ATP dependent chromatin remodeler 
transcription factor [78].

Fifteen of the thirty-three elevated AH proteins in POAG belong 
to the glycoprotein and glycosaminoglycan category. One of the key 
components of the POAG juxtacanalicular TM tissue is accumulation 
of ECM fibrillary elements associated with glycoproteins [78,79]. 
These TM proteomic distinctions will be reviewed in several of the 
later result topics such as myocilin/ misfolded protein, oxidative 
stress, and pigmentary dispersion syndrome and signal pathways 
in glaucoma.

MYOC TM Endoplasmic Reticulum Dynamics: Mutations/ 
Misfolded Proteins trigger Autophagy; Myocilin and 
IOP Increase after Oxidative Stress; overload misfolded 
protein results in amyloid myocilin accumulation and 
TM thickening and pre apoptotic signalling; secondary 
autophagic pathway activated through Unfolded Protein 
Response for misfolded protein overload; sustained 
elevated IOP (Intraocular Pressure) results in NFKB/ IL1 
and variable Metalloproteinase, MMP, IOP responses, 
which can relax TM and lower IOP, or increase TIMP3, 
inhibit MMP and raise IOP; and Dexamethasone raises 
fibronectins, tightens ECM and raises IOP; Antioxidants, 
higher Temperatures: protective: less myocilin 
misfolding, lower IOP

MYOC gene, which codes for myocilin protein (highly expressed 
in the TM), is likely inherited as a familial trait, and may be helped by 
familial genetic assessment and counselling. It has been associated 
with a more aggressive, juvenile onset open angle glaucoma 
(accounting for 10%) and adult onset open angle glaucoma 
(accounting for 2-4%). Mutations in myoc-OLF, olfactomedin 
domain, (protein structured like five bladed beta-propellers, beta 
protein sheets around a central axis), are responsible for aberrant 
myocilin protein and enzyme interactions and thought to be 
associated with the development of glaucoma [80,81]. They have 
a sodium and calcium ion and glycerol molecule within a central 
hydrophilic cavity that is accessible after movements of surface 
loop residues [81].

That said, it is unclear if overexpression of mutant myocilin 
is the actual source of development of glaucoma. For example, 
Pro370Leu is one of the most severe glaucoma phenotypes, which 
is tied to TM cell mitochondrial dysfunction leading to apoptosis 
[80,82]. However, Gln368Stop, which is the most common myocilin 
mutation, has low penetrance for glaucoma. So, from the genetic 
standpoint, while mutant associations do exist, it is unclear whether 
various mutant allele types determine gain or loss of function with 
respect to the pathogenic glaucoma mechanism [80,82-85].

Recent studies [86-88] have indicated that the lack of sufficient 
myocilin is not the source of glaucoma, but that it is dependent on the 
over expression of mutant/misfolded myocilin. It is the aggregate 
of the misfolded proteins in the endoplasmic reticulum of the TM 
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cells which produces stress in the endoplasmic reticulum as well 
as increased oxidative stress which leads to excess reactive oxygen 
species, reduction/oxidation imbalance, decreased antioxidative 
enzymes and to apoptosis [89,91-93]. Repeat misfolded protein 
accumulation without clearance of degraded products leads 
to amyloid containing myocilin [94]. This adds to the reduced 
clearance in glaucoma and with the greater protein aggregate raises 
IOP and further damages outflow channels [94].

Interestingly, co-aggregation of Grp94, glucose regulated 
protein 94, with mutant/misfolded myocilin OLF protein while 
resulting in greater endoplasmic reticulum deposits also enhances 
coprecipitation of myocilin-OLF [94,95,97] and has been suggested 
as an anti-glaucoma therapy to clear mutant/misfolded myocilin 
[94,95,97]. Alternatively, using a secondary autophagic pathway 
through 4-Br-BnIm (which is a Grp94 inhibitor), 4-Br-BnIm clears 
aggregated myocilin and alleviates myocilin TM toxicity [98]. Thus, 
with TM endoplasmic reticulum congestion from excess mutant 
misfolded myocilin aggregates, co-precipitators, like Grp94, as well 
as two autophagy pathways can help alleviate the toxic misfolded 
protein accumulation.

Apparently under normal conditions, myocilin misfolded 
aggregates are cleared by ubiquitin-proteasome lysosomal 
pathways. However, mutated or misfolded myocilin, after 
dysfunction of the primary proteasomal pathway, induce a 
secondary autophagic pathway (through activated unfolded protein 
response UPR) in an endeavour to protect TM cells. So, while Grp94 
may act as a co-aggregator of myocilin misfolded protein and reduce 
their contribution to glaucoma, it may also induce the alternate 
clearance autophagy pathway. [95,96,99,100] Grp94 inhibitors 
prevent Grp94 from aggregating with myocilin mutants, but also 
result in initiation of the secondary autophagic pathway leading to 
mutant myocilin clearance [96]. 

The TM in patients with glaucoma with myocilin mutations 
is thicker than that of patients without myocilin mutations [101]. 
Misfolded myocilin aggregates in the ER of TM cells not only illustrate 
morphological changes but also lead to apoptosis [90,101,102]. The 
mutant misfolded myocilin aggregates in the ER promote increased 
reactive oxygen species, [89,95,96,102] induce TM ER dysfunction, 
apoptosis, and increased IOP [86-87,105-107]. Reactive oxygen 
species that are then in the aqueous humor plus those from the TM 
cause additional protein misfolding [93]. So, it becomes a vicious 
cycle of cellular and aqueous reactive oxygen species increasing 
mutant myocilin misfolding which renders cells more sensitive 
to oxidative stress [93-94]. Mutant myocilin inhibits antioxidant 
enzymes, such as paraoxonease 2, which with less oxidative stress 
efficiently inhibits endoplasmic stress-induced apoptosis [94]. 
Also, with greater oxidative stress, aggregated misfolded myocilin 
initiates the unfolded protein response, UPR, which (as mentioned 
above activates the alternate autophagy response to help protect 
TM cells), [107,108], reduce protein misfolding and degrades 

misfolded proteins [108-109]. If ER stress is not checked, then 
UPR induces apoptosis [89-90]. The aggregate myocilin misfolded 
proteins after high ER and oxidative stress aggregate amyloid to 
the myocilin misfolded products resulting in more severe glaucoma 
[89,94]. Thus, in addition, the excess aggregates are not readily 
cleared by the primary proteasomal pathway and require Grp94 
inhibition with 4-Br-BnIm to reduce misfolded myocilin protein 
pile-up and TM toxicity [93,94,97] via the secondary autophagic 
pathway [95,99,100].

In line with the activation of IL-1/NFKB inflammatory stress 
response in high tension glaucoma [110], other proinflammatory 
mediators such as IL1 beta and mutant myocilin aggregate within 
the TM cells, activate the NFKB inflammatory pathway and raise 
IOP. Extracellular mutant myocilin, (outside the TM cells), does not 
activate NFKB signaling pathway [111].

The flip side to this is that IL-1 by stimulating matrix 
metalloproteinase MMP [111] and inhibiting apoptosis caused by 
oxidative stress through NFKB, [110] may reduce IOP. However, 
both IOP and oxidative stress are associated with the aggregation 
of misfolded mutant myocilins [86]. Interestingly, the aggregation 
of different misfolded mutant myocilins may upregulate IL-1 to 
different levels. Gln368Stop increased IL-1 tenfold in TM cells 
while those TM cells harboring Try437His induced IL-1 only six-
fold. Gln368Stop, with the higher anti-inflammatory effect of IL-
1, had a greater IOP reduction than Try437His in the short term. 
Gln368Stop is the most prevalent mutation but exhibits less 
elevated IOP glaucoma phenotype [80,111].

Matrix metalloproteinase 2, MMP2, which is abundant in 
TM [112], is involved in extracellular matrix breakdown [113] 
and facilitates the outflow of aqueous humor. However, myocilin 
mutations, or MYOC null, can increase TIMP3, tissue inhibitor of 
metalloproteinase, which can inhibit MMP2 and cause POAG [114]. 
Lowering MMP2 can reduce the breakdown of extracellular matrix 
altering TM function leading to elevated IOP [80,93,116].

In addition to metalloproteins, inflammatory cytokines, 
misfolded/ mutant myocilin, amyloid, clusterin, reactive oxygen 
species, antioxidant enzymes, primary and secondary proteasome/
lysosome proteins (all interacting in the dynamic of the TM/
aqueous humor outflow system), fibronectin [115] and flotillin-1 
[116] have also been identified as interacting with myocilin. The 
five bladed protein propellers of myocilin-OLF is an accepted 
bioenergetic platform for protein-protein interactions [80,81].

Mice with myocilin-Tyr437His which is less of an anti-
inflammatory inducer of IL-1, have a higher fibronectin and CHOP (a 
TM ER stress marker) protein expressions [115]. Mutant myocilins 
in another study [110] increased CHOP and Grp78 in TM.

Of note is that following dexamethasone anterior chamber 
treatment [117] myocilin, fibronectin, CHOP and Grp78 levels were 
increased. Treatment with sodium 4-phenylbutyrate decreased the 
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dexamethasone induced increased IOP and fibronectin aggregation 
in TM cells [117]. The failure of the TM to control ER stress from 
misfolded/mutant myocilin results in increased CHOP which leads 
to apoptosis and increased IOP in TM cells [109].

Flotilin-1 a structural protein of the plasma membrane, which 
is rich in cholesterol and sphingolipids and involved in moving 
protein molecules from the cell surface to the interior, (like a raft), 
using endocytosis, also interacts with myocilin. Myocilin mutations, 
however, including Tyr437His and Gly364Val fail to interact with 
Flotilin-1 [117]. The absence of myocilin mutant interaction with 
flotillin-1, because of its centrality to aqueous humor protein 
dynamics may be another step-in protein mismanagement and 
glaucoma progression [117].

A severe myocilin glaucoma mutant, Pro370Leu, co-expresses 
hevin a protein involved in assembly of extracellular matrix 
[118]. The myocilin mutation causes intracellular accumulation 
of hevin and reduces its secretion compromising the production 
of extracellular matrix [119]. This may represent yet an additional 

step in the development of glaucoma, albeit not through the TGF 
beta pathway, but rather through cell adhesion to fibronectin or 
myocilin like binding through its homologous C-terminal domain to 
modulate ECM proteins [119].

Returning to the myoc-OLF protein structure, additional 
evidence has pointed to the relationship of pathogenic myocilin 
mutation aggregation and thermal instability [89,102]. The largest 
number of mutations occur in core beta-sheet belts (40%), loop 
B-10/C-11 and cation pi (33%). These misfolded mutants show 
a difference in melting temperature which is about two degrees 
C lower than wild type myocilin-OLF and resulted in more 
intracellular insoluble aggregates and early onset, more severe 
glaucoma [80,102,120-122]. Trimethyl N-oxide and sarcosine hold 
the number of myocilin melting temperature mutations to near the 
wild -type myocilin levels [123]. 30 degrees C is known to facilitate 
proper protein folding [122,124]. Thus, lower temperatures or 
temperature sensitivity (and possibly their greater oxidative 
stress/ energy deficient sources) may be another assailable area 
in proteomic misfolding and glaucoma development [80]. (Table 2)

Table 2: Short List of Myocilin Proteomics and Glaucoma.

Protein Role in Glaucoma

Myocilin ? role mutated vs misfolded; [86-95]

Myocilin: Mutated, misfolded, aggregated >ECM thickness, > IOP ref 101 Inhibits Matrix Metalloproteinase, increases Tissue Inhibi-
tors of Matrix Metalloproteinase: tightens ECM, > IOP; [227,229]

? Combined with amyloid, [87] 

Amyloid [94]

? With clusterin higher concentration <amyloid;

? With clusterin lower concentration >amyloid

? With clusterin [47-49] With amyloid or CHOP > protein folding,

With CHOP [108,109] >aggregates and >resistance to outflow CHOP a vital oxidative stress, protein misfolding 
signal generator and can trigger apoptosis [109,110]

Grp [94,98]
Clears myocilin aggregates,

Opens 2nd autophagic clearance pathway

Paraoxonease [94] antioxidant in oxidative stress

Unfolded protein response Unfolds misfolded proteins; Activates the second autophagic pathway; but excess misfold-
ed proteins and oxidative stress can trigger apoptosis

IL-1 emanating from some misfolded myocilin mutants Inflammatory Activity, >NFKB and >IOP, but also get >matrix metalloproteinase with <risk 
of apoptosis [227,229]

but some myocilin mutants can lower IOP, e.g. wild type 
MYOC activation can inhibit IL-1/NFKB, [104,111] < IOP; stimulates Matrix Metalloproteinase and can reduce the risk of apoptosis

Dexamethasone, [110,113] Fibronectin, >ECM deposits and tightening, >IOP

<30 degrees C, [102] Myocilin misfolding

Pigmentary Dispersion Syndrome (PDS)/Pigmentary 
Glaucoma (PG), differences from PXG, TM pigment deposits 
instead of punctate deposits of PXG; phagocytic pigment 
stress alters TM/ ECM clearance resulting in dysfunctional TM, 
adhesions, and cell death; premelanosome protein, essential 
for melanosome melanin, synthesis, storage and transport, 
had structural changes to pseudo melanosomes with altered 
amyloid fibril formation and significant ocular pigmentation 
defects; complex additional pigment protein interactions 
linked to melanin toxicity, immune attempts at clearance, 

mitochondrial dysfunction, and apoptotic cell progression; 
mechanical forces in PG

Pigment dispersion from the iris pigment epithelium and 
possibly retinal pigment epithelium [125] into the anterior 
segment produces iris transillumination defects in 86% of patients 
with PDS [126], dense pigment in the TM, abnormal iridozonular 
contacts [127,128] and pigment deposits on the back of the 
cornea, Krukenberg’s spindle [129,130]. The deposits on the back 
of the cornea are observed in about 90% of PDS patients but 
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do not correlate with glaucoma/corneal thickness differences 
[131,132]. Unlike the patients with pseudoexfoliaiton syndrome 
who have punctate deposits of material in the TM, PDS patients 
have diffuse and uniformly dense pigmented TM [133]. Histologic 
exam showed that TM and corneal cells phagocytize the excess 
pigment granules but are then subject to phagocytic stress which 
compromises TM ECM structure and causes adhesions. TM cells 
become dysfunctional, exhibit local and then more extensive 
necrosis and death [134]. Aqueous humor outflow is reduced and 
PDS is converted to PG [135,136]. The amount of TM pigmentation 
corresponds to the severity of the optic neuropathy in PG patients 
[137,138]. However, the defect in retinal pigment epithelial cells 
degranulating is unclear.

PG represents about 1.25% of the glaucoma cases and since its 
early age of onset, it is the most common cause of non-traumatic 
glaucoma in young adults. Although not as yet replicated, analysis 
of four pedigrees of three generations, with Irish or mixed Western 
European ancestry affected by PDS/PG showed an autosomal 
dominant transmission, which mapped to human chromosome 
(7q35-q36) [138]. Other potential genes include, human endothelial 
nitric oxide synthase which maintains vascular tone and may 
contribute to iris structural defects [139-141]. MYOC and lysyl 
oxidase genes have had suggested limited association with PDS/
PG glaucoma, but because of small number of associated variants 
of the former and small sample size of the latter [142-147] causal 
relationship is lacking. Known anterior segment developmental 
control genes such as PAX6, [148], FOXC1 [149] and PITX2 [150] 
are not associated with PDS/PG but rather with anterior segment 
dysgenesis, FOXC1 and PITX2, and with microphthalmia, PAX6, 
[151].

Missense mutations in Tryp1, alleles (which would otherwise 
produce tyrosinase and normal melanin pigment) has produced iris 
atrophy in mouse strains. Alteration of cysteine residues in Tryp1 
alleles also causes the release of toxic melanin intermediates from 
melanosomes, which result in melanocyte death. Yet other genetic 
mouse mutations, such as in Dct, has also been associated with PDS 
through the tyrosinase complex and may produce melanosome 
dysfunction and cytotoxic melanin synthesis intermediates [152-
156]. The human homologue OCA2, a melanosome regulator of pH, 
has been linked to oculocutaneous albinism type 2, and has been 
associated with iris color [157-161].

Some recent work suggested a strong possible protein driver 
of PG, defective processing of PMEL, (premelanosome protein 
identified in humans with PDS/PS using whole exome sequencing 
of the two independent pedigrees). PMEL, essential for melanosome 
melanin, synthesis, storage and transport, had structural changes 
to pseudo melanosomes with altered amyloid fibril formation 
in five of nine gene variants. CRISPR introduction of the 11-base 
pair deletions to homologous PMEL in zebrafish caused significant 
ocular pigmentation defects and enlarged anterior segments. This 

suggested that variants in human PMEL are responsible for PDS/
PG [163].

DBA/2 mice, which have iris transillumination defects [161, 
162], have other gene defects that have been implicated in pigment 
dispersion phenotypes, some of which tie into immunosurveillance, 
trafficking, and melanocytic detoxification. Gpnumb, (glycoprotein 
nonmetastatic melanoma protein) which is involved in containing 
melanosome cytotoxic melanin synthesis intermediates, has 
additional neuronal and immune cell adhesion functions. Lyst is 
another protein traffic monitor but at the lysosome interface for 
early melanosome variants. The latter can cause Chediak-Higashi 
syndrome, (childhood immune disorder with reduced skin and 
ocular pigment, immune deficiency with frequent infections and 
easy bruising and bleeding). However, iris pigment epithelial 
dysfunction, whether mediated by: (1) release of synthesis, transport, 
or storage inept premelanosome derivatives, cytotoxic melanosome 
derivatives, (2) oxidative stress with excess melanogenesis over 
and above routine iris pigment maintenance, (3) inappropriate 
immune monitoring and clearance of excess melanin variants (3) 
cytotoxic melanin pigment metabolic derivatives, (4) inappropriate 
melanosome/mitochondrial interfacing and trafficking, and (5) 
melanosome apoptosis or necrosis from inflammatory mediators 
[164-168] has left these oxidative stress/metabolic/inflammation 
and immune research topics open for further investigation.

In the realm of linking signal transduction pathways, Myo5A for 
myosin, protein kinase C, PKC, for signaling, and transcription factor 
zinc finger ZLbtb20 have been associated with iris transillumination 
defects [162]. The association of Myo5a and protein kinase c has 
been through intercellular melanocyte movement [165-167] or 
melanocyte dendrite formation [167]. Interestingly, suppression of 
Rho A, a target gene of micro RNA340 and promoter of actin, appears 
to regulate UVB induced dendrite formation and melanosome 
transport as well [169].

DBA/2J mice develop a pigment dispersing iris disease that 
leads to elevated IOP and RGC loss. The mutant alleles of two 
genes, Gpnumb and Tryp1, respectively cause two components of 
iris disease, iris pigment dispersion and iris stromal atrophy [170]. 
The phenotype for iris pigment dispersion is similar to the pigment 
dispersion syndrome seen in humans [170,171]. By adding bone 
marrow of DBA/2J-Gpnmb+ mice to DBA/2J-Gpnmb- mice, the 
iris disease and subsequent IOP rise can be mitigated [172,173]. 
Bone marrow derived lineages of standard DBA/J2 mice may have 
different immune inflammatory responses than the DBA/J2+ mice. 
While adaptive T and B cell mediated components have been ruled 
out [172] other inflammatory immune or innate genetic immune 
responses may be at work [172,174].

On the other hand, if the structural iris concavity, prevalence of 
myopia, and excess iridozonular contact which removes pigmented 
cells from the iris pigment epithelium via mechanical rubbing 
in patients is the etiology, then midperipheral and radial iris 
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transillumination defects may correlate to just mechanical forces 
[128,175-178].

That said, if the mechanical theory is a root cause of the 
glaucoma, (and there is a type of reverse pupillary block with iris 
concavity and subsequent abnormal iridozonular rubbing with 
pigment shedding), one might argue that laser peripheral iridotomy 
which would flatten the iris and avoid the chafing would retard the 
glaucoma progression. However, a large database review of laser 
peripheral iridotomy did not report any reduction in visual field 
loss or glaucoma progression [179-181].

Thus, the exact sequence of PDS phenotype pathophysiology 
is not yet clear and the genetic and proteomic markers from the 
models also need better correlation.

POAG genes: lipid, cholesterol levels: risk factors; 
Mitochondrial support gene regulation; Retinal 
Oxidative Stress, Misfolded Proteins, Mitochondrial/
Lysosome Pathway Clearance/ Dysfunction, Retinal 
Heat Shock Proteins/Antibodies, autoantibodies (in 
Glaucoma); Excess Inflammation and Immune Reaction, 
Apoptosis

Oxidative stress related to different levels of cholesterol, 
lipid [8], glycoprotein products as well as mutations in genes for 
dysfunctional protein removal lead to endoplasmic reticulum 
protein misfolding, inadequate mitochondrial energy production, 
lysosomal dysfunction and toxic intracellular accumulation [182].

Genes ABCA1, CAV1, DGKG, and ARHGEF12, which are POAG and 
intraocular pressure loci, are involved in lipid metabolism [183]. 
High serum cholesterol has been associated with the risk of POAG, 
while statin use may be protective [184,185].

In a similar fashion, but different metabolic side of the 
picture, TXNRD2, thioredoxin 2, which regulates mitochondrial 
metabolism, and helps reduce oxidative stress, (as well as four 
other mitochondrial loci) have been associated both with POAG and 
IOP loci [186]. These lipid and primary metabolic/energy linkages 
may portend future approaches to glaucoma [8].

Elevated auto antibody levels against heat shock proteins 
(HSP) 27 and 60 were found in human donor retinae from 
normal and high-pressure glaucoma patients [187]. The heat 
shock proteins are highly conserved and ubiquitously expressed 
in response to metabolic, oxidative and thermal stress. They 
endeavor to prevent protein denaturation and aggregation and 
assist in refolding misfolded protein [188]. Immunogenic peptides 
either extracellularly or intracellularly and bound by the HSP are 
taken into lysosomes or proteasomes for degradation [189,190]. 
Thus, the effects of heavy oxidative stress result in dysfunctional 
mitochondrial proteins and other misfolded proteins which invoke 
the assistance of HSP which endeavor to help re-fold misfolded 
proteins and provide anti-apoptotic support as they arrange 
misfolded protein clearance either through the lysosome apparatus 
or immune aggregation [7,189,190].

Lysosomes fuse with autophagosomes to deliver the hydrolases 
that degrade the misfolded protein. mTORC 1 signaling regulates 
lysosomal function. Under nutrient rich conditions, mTORC1 
phosphorylates transcription factors like MITF, Microphthalmia-
associated transcription factor, a master gene regulator for 
melanocytes, cell cycle progression, and differentiation. MITF 
then initiates timely cytosolic chaperone maintenance which 
inhibits autophagy misfolded protein clearance. In the absence of 
nutrients or under stress, autophagy inhibition is relaxed leading 
to lysosomal and autophagy gene induction [189,190]. Thus, the 
HSP are facilitators to misfolded protein degradation as well as to 
immune antibody reactions, protective and autoimmune [7].

Some of these protein antigens, however, are transported to 
the endoplasmic reticulum where they are loaded to the major 
histocompatibility complex, MHC, and transported to the cell 
membrane to present to the T cell as either foreign or endogenous 
which then leads to protective immune reaction [191,192]. 
However, in addition to the antigens triggering antibody reactions, 
some HSP proteins themselves trigger autoantibodies which can 
result in damage [7,193,194]. In rheumatoid arthritis patients, for 
example, cross reactive T cells have produced autoantibodies to self 
HSP as well as other antigens. This two-sided immune exuberance 
produces an inflammatory reaction, which may or may not be 
balanced by immunosuppressive activity of other HSP or yet other 
anti-inflammatory pathways [194,195-197]. Trauma, excess heat, 
chemical attacks, radiation, hypoxia and oxidative stress may incite 
or contribute to the HSP immune or inflammatory response. The 
plasticity of HSP-mediated immunity (i.e. priming T cells for various 
HSP mediated immunity, cytokine Th2, Th2 and Th 17, and/or T cell 
regulatory by itself) varies with the ability of HSPs to engage local 
antigen presenting cells, through cell surface receptors, thereby 
stimulating diverse costimulatory signals [194].

Wax and his group 20 years ago showed higher antibody levels 
against HSPs (alpha and alpha B crystallin, HSP27 and HSP60) in 
normotensive and high-pressure glaucoma groups than controls. 
Similar elevated autoantibodies to HSP in normotensive and high-
pressure glaucoma patients vs controls were made in U.S and 
Japanese populations [198-200].

In a rat model, intraperitoneal HSP immunization produced 
IOP related retinal ganglion cell density reduction after 28 days 
[201]. In later rat model studies, intravitreal HSP application also 
led to an IOP independent loss of retinal ganglion and amacrine 
cells after 21 days [202]. Others, [204,205] have demonstrated 
immunolocalization of HSP in normal and laser induced glaucoma 
monkey eyes as well as rat retinal ganglion and glial cells in rat 
glaucoma.

However, the exact role of HSP in glaucoma is unclear and 
may be situationally dependent [7]. As cytoplasmic chaperones, 
HSPs contribute to refolding of misfolded and denatured proteins. 
HSP27, HSP70 and the small heat shock proteins are known 
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regulators of apoptosis, [205,206] stress induced apoptosis, 
[207], bind pro-apoptotic protein activators, [208], oxidative 
stress neuro-protectors in RPE environment, [209], inhibit 
autoproteolytic maturation, caspase 3 activation, [210], and 
axonal degeneration [211]. On the flip side, because of their role in 
misfolded protein, degenerative protein aggregates, ubiquitination, 
antibody generating capacity as well as autoantibodies and pro-
inflammatory T cells and cytokines, HSP can cause inflammation 
and autoimmune degeneration [211-217].

POAG TM oxidative stress: (unable to sustain AH 
outflow); HSP, Juxtacanalicular resistance, ECM products and 
thickening; Endothelial cell/ mitochondrial energy demand, 
damage to mitochondria and ubiquitin pathway for damaged 
protein removal to proteasomes; greater oxidative stress and 
inflammation, apoptosis; progressive visual field changes with 
oxidative stress

Oxidative stress by heat shock (44 degrees C for 15 minutes 
or hydrogen peroxide, 200 micromole for 1 hour) to human and 
monkey fresh and cultured trabecular meshwork TM resulted 
in significant increase in alpha beta-crystallin HSP with a peak 
after four hours expressed predominantly in the cribriform area 
(juxtacanalicular, JCT, region near Schlemm’s Canal), the area of 
greatest resistance to aqueous humor AH outflow [218].

Over a longer time period due to imbalance between AH 
production and outflow [219-220] the main risk factor in POAG 
progression, the TM undergoes chronic inflammation and tissue 
remodelling [221,222]. Protracted oxidative stress produces 
TM and endothelial cell mitochondrial damage leading to neural 
degeneration and apoptosis [223,224]. The ECM develops increased 
collagen, fibronectin, and elastin with unusual myofibroblast 
development with thickening of trabecular sheets [221,225-229].

The AH of 14 patients with POAG, and not in controls, expressed 
elevated protein levels of ELAM, (endothelial leukocyte cell 
adhesion molecule expressed only on endothelial cells activated 
by cytokines, involved in inflammation), apolipoprotein B and E 
(for cholesterol delivery to cells.), three heat shock proteins, five 
muscle related proteins, a ubiquitin (for removal of stress damaged 
proteins), and three signal transduction proteins. These proteins 
may play a role as biomarkers for POAG [230] and form the core of 
protein mechanics in evolving glaucoma.

In later work, to better understand the TM ECM metabolism, 
fibrosis, and angiogenesis in 40 glaucoma patients, these 
investigators examined digital spectrophotometry/chip-based 
array AH protein profile expression vs controls. The inflammatory 
cytokines, particularly IL10, 6, 5, and 7 were all over tenfold 
increased. TNF alpha (a pro-inflammatory cytokine) was 2.48-
fold increased; TNFR was increased over four-fold. MMP2 (matrix 

metallopeptidase 2, produced in cells throughout the body and 
becomes part of the extracellular matrix, which is an intricate 
lattice of proteins and other molecules that forms in the spaces 
between cells) was 3.18 increased; VCAM1, (vascular adhesion 
protein- a cell adhesion molecule), MIP (macrophage inflammatory 
protein), 1delta, and MIP1alpha were all increased greater than 
fivefold. Thus, the large anti-inflammatory response levels and the 
moderately elevated metalloproteinase level suggest steady pro-
fibrosis increment under the umbrella of heavy anti-inflammatory 
cover. The POAG ECM change over time may be excessive and/or 
aberrant and necessitate an anti-inflammatory arsenal of a large 
magnitude to maintain a consistent aqueous outflow, in the face of 
incremental resistance [231].

In 202 Japanese NTG and POAG patients, blood analysis was 
performed for oxidative stress levels and compared to controls. 
Lipid peroxides, ferric reducing activity and thiol antioxidant 
activity were measured using a free radical analyzer and statistically 
compared with mean deviation of visual field. Univariate and 
multivariate analysis suggested a positive correlation between 
mean visual field deviation and biologic antioxidant potential. Use 
of more medication for glaucoma and POAG (vs NTG) were also 
associated with worse visual field progression [232].

TM, JCT, ECM in normal, glaucoma, glucocorticoids

In normal human eyes, using specific antibody immune 
electron microscopic determination, basement membrane like 
material in the JCT was identified as mostly collagen type IV, 
laminin and fibronectin. Elastin, however, was found in the central 
area of sheath related plaques. Fibronectin, fibrillin-1, MAGP-1, 
(microfibril associated glycoprotein), decorin (a collagen protein 
found in human skin) and type VI collagen were seen in clusters of 
the banded material in the sheath surrounding the core. Myocilin 
associated mainly with sheath material such as fibronectin and 
fibrillin [233-237].

In patients with POAG, excessive abnormal accumulation 
of sheath derived plaques has been shown on EM, immune and 
histologic studies. Of particular interest is the association of 
myocilin with microfibrils, which may have a role in the evolution 
of sheath density, plaque development and aqueous outflow 
reduction, (see figure 5 in ref 233 paper) [233].

However, glaucomatous TM characteristically show increased 
rigidity and stiffness with the formation of cross-linked actin 
networks with greater aqueous outflow resistance.

An increase in fibrillar content in JCT ECM is prominent in POAG 
and steroid induced glaucoma [238]. Other studies have detected 
increased calcification of the TM, which may increase TM stiffness 
and increase outflow resistance in glaucomatous tissue [239].
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Nitrous Oxide Donating Moieties for TM increased AH 
outflow

Therapeutic approaches to lowering IOP include: (1) reduction 
of aqueous production, (beta blockers, carbonic anhydrase 
inhibitors, and alpha agonists); (2) increasing uveoscleral outflow, 
(extracellular matrix remodeling, prostaglandin agonists); (3) 
contracting the ciliary muscle, (opening spaces in the TM), 
pilocarpine); (4), increasing trabecular outflow, nitric oxide, (NO 
donating moiety).

Nitrous oxide plays many roles in the body. It has anti-platelet 
function in type 2 diabetics, assists smooth muscle relaxation 
(through vasodilation) in cardiovascular, urogenital, gastrointestinal 
and respiratory settings, as well as pro/anti-inflammatory and pro/
anti-microbial roles in high/ low NO venues. 

iNOS isoforms of NO (from inducible NO genes) is the 
predominant form in TM and eNOS (endothelial) is the major 
isoform expressed by SC cells [240-248]. NCX434, a NO donating 
triamcinolone acetate has been used to improve retinal vascular 
blood flow and improve optic nerve oxygenation in the cynomolgus 
monkey model of glaucoma [249,250].

Latanoprostene bunod, latanoprost combined with a NO 
donating moiety has been effective in lowering IOP even in the early 
morning hours when the IOP spike is common and affects the TM 
and SC to achieve additional IOP reduction vs. latanoprost alone, 
and was more effective by 1-2 mm Hg than both latanoprost and 
timolol over a 52-week period [251-253].

By inhibiting Rho kinase, a protein kinase which helps modify 
cell shape, size and adhesion by altering actin cytoskeleton, TM 
cells allow increased outflow of AH.

Netarsudil, the active compound in Rhopressa, FDA approved 
in 2017, uses rho kinase inhibitor which increases aqueous outflow 
and a norepinephrine transport inhibitor which by constriction of 
vessels to the eye reduces blood flow to the ciliary processes and 
aqueous production as well [254].

Signal Pathways in Glaucoma, TM: TGF beta, Rho 
Kinase, ECM contractile morphology, rigidity, MAP 
Kinase, E3ubiquitin ligase protein clearance; BDNF 
neuroprotection Signal Pathways in Glaucoma

In a normal setting, if threats of oxidative stress, hypoxia, 
trauma, mechanical forces result in inflammation and immune 
reaction, then transcription factors, (powerful nuclear genes) and 
histone modification of other protective genes establish defense 
plans, that are responsible for an efficient measured response. In 
glaucoma, the overactive TGF-beta signal pathway, which is usually 
helpful in healing, produces excess extracellular matrix protein 
deposition in the TM and blocks outflow of AH. Treatment of 
human TM cells with TGF-beta 2 upregulates Plasminogen activator 
inhibitor and secretion of fibronectin which increases extracellular 
matrix production. [7,256] TGF-beta2 induced ECM deposition 
and reduced outflow facility of aqueous humor by 27% in cultured 

human anterior segments [257].

TGF-beta2 is responsible for signaling differentiation, 
proliferation, chemotaxis and fibrosis. In healthy eyes TGF-beta2 
helps corneal healing. In glaucoma TGF-beta2 causes increased 
extracellular matrix proteins in the TM cells resulting in fibrosis 
and blocked outflow of AH. Glaucoma patients have increased levels 
of TGF-beta2 in AH compared with normal [258,259].

TGF-beta increases ECM through the traditional Smad pathway 
(which conveys cell surface signals to intracellular mediators 
known as Smads, serine/threonine kinase receptors, causing their 
transfer from the cytoplasm to the nucleus, where they function to 
control gene expression), as well as the Mitogen-Activated Protein 
(MAP) kinase and Rho kinase pathways [7]. MAP kinase pathway 
leads to MAP ERK kinase resulting in increased ECM production 
in TM cells [255,258] and proinflammatory cytokine Interleukin 6 
and Secreted Protein Acidic Rich in cysteine, SPARC, in TM cells. The 
latter binds to ECM proteins and regulate matrix metalloproteinase 
expression. In addition, p38 MAP kinase is activated when TFG-
beta binds to its I and II receptors, which initiates an E3 ubiquitin 
ligase (a commanding officer for protein pick up and removal). 
This accounts for inflammation, ubiquitination, and ECM TM cell 
balancing and re-balancing in AH dynamics [251-261].

Rho Kinase, (which is involved in cell migration, proliferation), 
is involved in actin cytoskeleton changes. CLAN, cross-linked actin 
network, has been observed in TM cells of eyes with glaucoma.
[264] While the exact method of CLAN “tightening” the activity of 
TM cells is unclear, the TM cells express elevated levels of: laminin, 
alpha-smooth muscle actin, matrix assembly, actin stress fibers 
and myosin light-chain phosphorylation all of which are associated 
with ECM [7,264]. The latter TM factors were linked to increased 
contractile morphology. Rho Kinase inhibitors decrease fibronectin 
and alpha-smooth muscle actin [265]. Moreover, the Rho Kinase 
inhibitors reduce cell rigidity and increase aqueous outflow and 
reduce IOP by 30% after 3 hours in rabbit eyes [265].

Looking at the RGC/optic nerve side of glaucoma, several 
factors: (1) BDNF, brain derived neurotrophic factor and (2) JNK, 
(jun n terminal kinase), both neuroprotectant and pro-apoptotic, 
(3) phosphoinositide -3 kinase, (PI-3 kinase), a neuroprotectant, 
(4) PTEN, phosphatase and tensin homologue, linked to axon 
degeneration, (5) Bcl-2, an anti-apoptotic, (6) caspases, pre-
apoptotic, and (7) calcium calpain pathway an apoptotic inducer, 
interact with one another and yet other proteins in an attempt to 
balance and re-balance cellular stress factors like elevated IOP 
with neuroprotective elements vs apoptotic neurodegenerative 
responses [267-281].

For example, BDNF is produced in retina and brain and is 
essential for RGC survival [260]. In glaucoma with increased IOP, 
reduced BDNF transport to the optic nerve results in caspase 
activation and apoptosis. However, intravitreal injection of 
neurotrophic factor in rats after optic nerve injury was neuro 
protective [275,276] Table 3.
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Table 3: Short List: Neuro Protective/Stabilizing vs Neuro Degenerative Elements in Glaucoma.

Neuro Protective/stabilizing Neuro Degenerative

Statins Elevated cholesterol, lipids, glycoprotein products; [8,185,217]

Thioredoxin: regulator of mitochondrial metabolism; ref.186
Oxidative stress, misfolded protein, caspases, mitochondrial/lysosome axis 

dysfunction; [184]

MTORC 1: regulates lysosomal function for timely misfolded protein 
removal; [182,186,189,190,191]

Oxidative stress slows, stops autophagy, misfolded protein clearance, 
provokes HSP, inflammation, immune and auto-immune; [212,213,192,193] 

>IOP, RGC damage

HSPs: helps misfolded protein clearance Causes inflammation and autoimmune reaction RGC; [3,184,187,190,195]

ECM in balance, Matrix metalloproteinases ECM with misfolded myocilin, fibrosis and excess deposits; > IOP; [222-229]

Nitrous Oxide; > TM outflow Pro/anti-inflammatory roles; [233-241]

Rho Kinase regulates Matrix metalloproteinase, its inhibition decreases 
fibronectin and results in > TM outflow; [239,233-237] Uninhibited it increases fibronectin and results in < TM outflow and >IOP

TGF beta, pleotropic, activates MAP kinase and initiates E 3 Ligase: > 
ubiquitination and misfolded protein clearance, [257, 258] May increase cell inflammation and IOP; ref [255-260,269-271,273]

BDNF: anti-apoptotic, anti-autophagy, and anti- oxidative stress; [283]
Anti-autophagy may increase back pileup of misfolded proteins and increase 

inflammation

After cellular stress, such as uv radiation, heat shock, withdrawal 
of neurotrophic factors, or optic nerve transection, Jun N-Terminal 
Kinases, JNKs, pro-apoptotic pathway is activated. It is unclear if 
this pathway is purely apoptotic. Some studies have shown c- Jun 
activation may help RGC survival [277,278].

Epigenetics and Glaucoma

Hypoxia, oxidative stress and inflammation in the eye result 
in activation of protective transcription factors such as hypoxia 
inducible factor 1-alpha, Nrf2, (the major antioxidant transcription 
factor), and NFKB, (the major anti-inflammatory, immune 
transcription factor) which recruit enzymes that either open up 
protective gene activity, such as histone acetylase, or repress gene 
activity (histone deacetylase or histone methylation modifiers) 
by acting on the histones which enshroud the genes. The histones 
affect the expression of the genes without mutations, by inducing 
amongst other signal devices, noncoding RNA, MicroRNAs and long 
noncoding RNAs. These signals promote certain rescue pathways 
or in some cases, with over stressed systems lead to greater disease 
susceptibility by blocking helpful pathways. For example, the 
introduction of MicroRNA-483-3p to stressed human trabecular 
meshwork cells decreased ECM production and reduced fibrosis 
and enhanced aqueous outflow facility [286]. However in another 
gene signaling, MicroRNA 204 by decreasing FOXC1 as well as its 
target genes Clock, Plekshg5, ITG beta 1, Meis2 may cause Axenfeld 
Rieger Syndrome, (a childhood glaucoma with iridocorneal 
adhesions, ectropion uvea, atrophic iris holes, with possible 
systemic associations, thought to result from abnormal neural crest 
cell migration [6].

Comparing HSP70 expression levels in human lens capsule 
of pseudoexfoliaiton syndrome, PXS, with those who had 
pseudoexfoliaiton glaucoma, investigators recently demonstrated 
that HSP70 levels were significantly reduced in the PXS vs 
PXG compared to controls. Bisulfite sequencing of the of the 
transcription pre-coding and coding sites showed hypermethylation 
of the precoding sites only in the PXS individuals. There was also a 

reduced corresponding increase in DNA methyltransferase 3A only 
in the PXS individuals [293]. This implied a timely methylation at 
the PXS stage of the disease. In contrast, peripheral blood of PXS 
and PXG patients showed hypermethylation in the transcription 
coding region when compared to non-PXS controls. This would 
suggest a local tissue specific effect of the HSP70 chaperone [293].

Further analysis of the DNA spanning the precoding and coding 
region illustrated that there was decreased gene expression in 
the methylated vs the un-methylated reported gene vectors. DNA 
methyltransferase inhibitor used to treat the human lens epithelial 
cells restored the expression of HSP70 which correlated with 
methylation reduction at the precoding sites [293].

These findings not only increase our knowledge of HSP70 
reduction in conjunction with hypermethylation, an established 
epigenetic mechanism for reduced genetic expression, but 
may also provide a platform for regulating the early phase of 
pseudoexfoliaiton glaucoma.

Discussion
One can infer from the multitude of neuro-degenerative vs 

neuro-protective factors that a rather complex series of checks and 
balances may be operational in the RGCs, the optic nerve and the 
TM over the course of time. That said, while IOP control and the 
dynamics of TM outflow and the flexibility of the ECM to deposits 
and contractile mechanics are major factors in current glaucoma 
therapeutics, RGC, optic nerve and brain [287] homeostasis, its 
mitochondrial energy producing and sustaining capabilities, 
the ability to clear misfolded protein, and exert antioxidant, 
anti-inflammatory, anti-autoimmune, and anti-apoptotis signal 
pathways also constitute a major neuro-protective defense arsenal 
that will probably guide the glaucoma therapeutics of the future.

Thus far, targeting the complexity and numbers of 
neuroprotective agents seems to be a daunting task. Over 100 
neuro-protective drug candidates have failed to demonstrate 
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patient benefit. For example, Memantine, a N-methyl-D-aspartate, 
NMDA subtype of glutamate receptor antagonist already in use for 
Alzheimer’s disease, while convincing in animal models, five years 
and $100 million dollars later, failed to halt progression of visual 
field loss in glaucoma patients [287].

Also, animal studies which rely on histopathologic endpoints 
to examine the effectiveness of treatment are not practical in 
humans for ethical reasons. Perhaps newer methods of following 
RGC damage and demise such as: detecting apoptosing retinal 
ganglion cell technique, DARC, in vivo or methods of measuring 
mitochondrial depolarization, excessive glutamate receptor 
activation resulting in excess PTP, mitochondrial permeability 
transition pore, and excess of cytochrome c formation, (a pre-
apoptotic), or overactivation of NMDA and non-NMDA glutamate 
receptors with resulting excess NO, refined VEP, visual evoked 
potential and PERG, pattern electroretinogram will serve as better 
guides in developing neuroprotectants [287].

Early data in CoQ10, (a component of mitochondrial respiratory 
chain by which ATP is produced) may be promising. Because of 
its role in protecting lipids and DNA from oxidative stress, it may 
inhibit mitochondrial pore formation and cytochrome release 
leading to apoptosis [288,289].

Citicoline, a neuro protectant used in Alzheimer’s Disease 
possibly interfering with the deposition of neurotoxic proteins such 
as beta amyloid [290] (and associated with improvement of rigidity, 
bradykinesia and tremor in Parkinson’s), has shown antiapoptotic 
effects in RGC mitochondria-dependent cell death [291]. Rats after 
nerve crush injury had a citicoline anti-apoptotic effect as well as 
an expression of Bcl-2, which is one of the main anti-apoptotic 
proteins [292].

Conclusion
Genomic, proteomic, epigenetic and molecular signaling 

pathways in the development of glaucoma represent the 
language of the next frontier to be conquered in human disease. 
Understanding the fine details of these pathways will provide a way 
to differentiate phenotypic/genotypic variances as well as better 
lines of therapeutic intervention.

Insights into the balancing and re-balancing of: (1) oxidative 
stress, (2) misfolded proteins, (3) heat shock proteins (including 
their immune-autoimmune/inflammatory and microglial effects), 
(4) key transcription factors, signal transducers, and chromatin 
gene modifiers, (5) mitochondrial/ lysosome protein misfolded 
clearance pathway, immune and proteolytic, and (6) the control of 
the caspases to prevent apoptosis may open directives for treatment 
of the non IOP part of glaucoma and neurodegenerative disease.
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