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Abstract
Colorectal cancer (CRC) remains a lethal malignancy in the world. Unfortunately, there is no unique signature biomarker available for CRC. 

Therefore, we aimed to critically analyze miRNAs associated with CRC with a specific emphasis on biological pathways and gene networks. A 
comprehensive literature search in PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases of miRNAs in CRC was performed. Gene 
targets for miRNAs were computationally predicted using established miRNA target-prediction programs: MicroInspector, miRanda, PicTar, RNA22, 
DIANA, RNAhybrid and TargetScan. To detect the potential pathway of miRNA target genes, we also performed the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. Molecular targets for each miRNAs were retrieved and the validated miRNA-target interaction 
network was obtained from the CyTargetLinker plugin in the Cytoscape environment. Of 94 human miRNAs found to be associated with CRC, we 
identified 35 upregulated and 59 downregulated. Gene target prediction analysis of miRNAs resulted from Venn diagram revealed 5309 genes for 
downregulated and 5070 genes for upregulated miRNAs; with 1155 genes for common miRNAs. We also found significant pathways associated 
with target predictions of upregulated miRNAs [TFG-B signaling (p-value 9.34E-12), FoxO signaling (p-value 3.31E-06), Hippo signaling (p-value 
2.6E-04)]. Furthermore, MAPK (p-value 2.79E-08), ERbB signaling (p-value 6.69E-08), PI3K-AKT (p-value 2.87E-06) pathways were associated 
with genes of downregulated miRNAs. Interestingly, unique signature miRNAs associated with CRC were identified; miRNA-184 for total miRNAs, 
miRNAs 135b-3p and 191-3p for upregulated miRNAs, while miRNAs 296b-3p and 198-3p for downregulated. We performed interaction gene 
networks and target predictions for each miRNA identified. Our study reveals a selected number of miRNA signatures are associated with CRC 
by targeting biological pathways. This miRNA signatures may not only provide candidate biomarkers but also demonstrate likely and plausible 
mechanisms toward CRC.
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Introduction
Colorectal cancer (CRC) is one of the leading causes of cancer-

related deaths worldwide and the third most common malignancy 
in the world [1]. Several factors contribute to the high mortality 
rate, including the absence of obvious symptoms in the early 
stages of CRC as well as the lack of cancer prevention strategies  

 
in developing countries, which causes a significant economic and 
psychological burden for people throughout the world [2, 3]. The 
incidence of non-hereditary CRC has been shown to be increased 
in patients with obesity, diabetes, high alcohol consumption and 
smoking history [2, 4]. CRC has been linked to diets consisting of 
low consumption of fruits, vegetables, fiber, fish, vitamin C, dairy 
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products, and with high consumption of foods containing red and 
processed meat [5]. Considering the high mortality and morbidity 
associated with CRC, a clear understanding of the pathophysiologic 
mechanisms that lead to CRC development as well as novel 
diagnostic and therapeutic methods is critically necessary. 

Many biological molecules have been identified to play a 
significant role in the pathogenesis of CRC including miRNAs, 
small RNA molecules composed of 18–24 nucleotides that regulate 
the translation and stability of specific target mRNAs [6, 7]. CRC 
tumors often exhibit dysregulation of miRNAs when compared to 
normal tissue. MicroRNAs play an important role in CRC initiation, 
progression, and development through manipulation of cell 
stemness, angiogenesis, apoptosis, and the epithelial–mesenchymal 
transition (EMT) of tumor cells [7]. Researchers have used stool 
and serum levels of miRNAs to distinguish CRC patients from 
healthy controls, indicating that they have diagnostic significance 
in CRC [7, 8]. According to several studies, miRNA expression or 
polymorphisms associated with miRNA are associated with CRC 
diagnosis or prognosis [9-12]. Furthermore, miRNAs have been 
shown to be associated with molecular pathways such as PI3K /
Akt, ErbB, MAPK, Hippo and Wnt, which have been identified to 
play a significant role in CRC pathogenesis [13-17]. In addition to 
potential diagnostic and prognostic roles in CRC, miRNAs have also 

been identified as potential candidates in therapy. Several studies 
have identified miRNAs mimics and inhibitors to have anti-CRC 
functional effects based on the molecular pathways which they 
target [10, 12, 18, 19]. 

Given the identified involvement of miRNAs on all fronts of 
CRC including pathogenesis, diagnosis, prognosis, and potential 
therapy, it is imperative to fully understand their role within this 
deadly disease. Consequently, there is an urgent need for novel 
diagnostic and prognostic biomarkers for the early diagnosis of 
CRC. In this review, we aim to critically review and analyze miRNAs 
which have been associated with CRC, with a specific emphasis 
on the biological pathways which they affect to assess the clinical 
utility of miRNA panels as diagnostic biomarkers for CRC.

Methods
Data collection

We searched PubMed and the Cochrane Database of Systematic 
Reviews (CDSR) through Wiley from 2016 to 2022 for keywords 
“miRNA”,” micro-RNA”, “colon cancer”, “colorectal cancer”, “CRC”. 
Through this search, we were able to identify 94 unique miRNAs 
[[10,11,14–18, 20–117]]. We also identified upregulated and 
downregulated miRNAs out of the total miRNAs. The experimental 
design is illustrated in Figure 1.

Figure 1: Schematic diagram illustrating the steps and tools used for the study.
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Functional Annotation and miRNA Target Prediction:
Gene targets predication for differentially expressed miRNAs 

were initially computationally predicted using established miRNA 
target-prediction programs: Micro Inspector, miRanda, PicTar, 
RNA22, DIANA, RNA hybrid and Target Scan. The predicted genes 
of individual miRNA were uploaded to the online DAVID program 
(http://david.abcc.ncifcrf.gov/), DIANA program (http://diana.
imis.athena-innovation.gr/DianaTools/index.php),gprofiler 
(https://biit.cs.ut.ee/gprofiler/gost) for their functional annotation 
and clustering analysis. To gain insights into the biological functions 
of these miRNA target genes, we performed the Gene Ontology (GO) 
classification. To detect the potential pathway of miRNA target 
genes, we also performed the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis.

Constructing Regulatory Network
Molecular targets for each miRNAs were retrieved and the 

validated miRNA-target interaction network was obtained from 
the CyTarget Linker plugin in the Cytoscape environment (15). 
CyTargetLinker, a Cytoscape apparatus, provides an extensible 
framework to integrate different regulatory interactions from 
databases including MicroCosm, Target Scan, miRTarBase, 
and ENCODE. The network containing interactions between 
differentially expressed (DE) Demi RNA and putative targets was 
constructed and visualized using Cytoscape (http://cytoscape.
org) (16). Gene targets for all upregulated and all downregulated 
miRNAs were imported into the Venn Diagram to identify the 
unique set of genes of upregulated, downregulated, as well common 
gene prediction.  

Results
Total miRNAs identified in CRC

We identified 94 unique human miRNAs from our study of 105 
articles/publications related to colorectal cancer (Table 1).

Table 1:  List of miRNAs identified in colorectal cancer pathogenesis.

hsa-mir-17-92 hsa-miR-452 hsa-miR-210 hsa-miR-296 hsa-miR-27b hsa-miR-186-5p hsa-miR-141-3p

hsa-hsa-mir-20 hsa-miR-494 hsa-miR-221 hsa-miR-22 hsa-miR-218 hsa-miR-181a-5p hsa-miR-1271

hsa-mir-21 hsa-miR-501-3p hsa-miR-107 hsa-miR-217 hsa-miR-206 hsa-miR-16-5p hsa-miR-1258

hsa-mir-135 hsa-miR-590-3p hsa-miR-223 hsa-miR-198 hsa-miR-126 hsa-miR-148a hsa-miR-125

hsa-mir-144 hsa-miR-6803-5p hsa-miR-4260 hsa-miR-184 hsa-miR-1249 hsa-miR-139-5p

hsa-mir-92a hsa-miR-92a-3p hsa-mir-29a hsa-miR-502 hsa-miR-1 hsa-miR-873-5p

hsa-mir-106a hsa-miR-942 hsa-mir-224 hsa-miR-30d hsa-miR-708 hsa-miR-760

hsa-mir-106b hsa-miR-191 hsa-mir-143 hsa-miR-30a hsa-miR-520e hsa-miR-548c-5p

hsa-miR-135b hsa-miR-32-5p hsa-mir-145 hsa-miR-216a hsa-miR-519b-3p hsa-miR-500a-5p

hsa-mir-10b hsa-miR-338-5p hsa-mir-4478 hsa-miR-214 hsa-miR-330 hsa-miR-323a

hsa-miR-135a hsa-miR-590-5p hsa-mir-1295b-3p hsa-miR-20a hsa-miR-324-5p hsa-miR-4319

hsa-miR-203a-3p hsa-miR-6716-5p hsa-mir-495 hsa-miR-885-3p hsa-miR-302a hsa-miR-362

hsa-miR-301a-3p hsa-miR-1229 hsa-miR-433 hsa-miR-6868-5p hsa-miR-28-5p hsa-miR-200b-3p

hsa-miR-31-5p hsa-miR-25-3p hsa-miR-422a hsa-miR-622 hsa-miR-204 hsa-miR-185

hsa-miR-410 hsa-miR-125b hsa-miR-338-3p hsa-miR-375 hsa-miR-200 hsa-miR-143-3p

We used several computational databases for the target 
predictions of 94 miRNAs and identified 16,604 individual genes. 
To evaluate the biological role of the differentially expressed miRNA 
target genes, we performed a Gene Ontology (GO) classification 
enrichment analysis. Genes that showed a significance level p<0.01 
were selected and tested against the background set of all genes 
with GO annotation using established computational algorithms. 
GO including cellular component, CC, (Figure 2a), biological process, 
BP, (Figure 2b), molecular function, MF, (Figure 2c), KEGG (Figure 
2d) were identified. Among the cellular components (CC), the 
intracellular anatomical structure (p= 7.19E-62) and intracellular 
organelle (p= 9.91E-53) had the highest fold changes. For the 

biological processes, the regulation of transcription by RNA (p= 
3.19E-50) and regulation of cellular processes (p= 5.75E-50) had 
similar fold changes and p-value, while in the molecular function, 
protein binding (p= 7.59E-37) and transcription regulator activity 
(p= 1.12E-32) had the highest fold change with significant p-value. 
Interestingly, we found in the KEGG pathway that proteoglycans 
in cancer (p= 5.01E-08) and signaling pathways of stem cells (p= 
9.10E-08) had the highest significance and fold changes.

Gene ontology and KEGG pathways for total miRNAs identified 
in CRC. Panel (a) is cellular component, Panel (b) is biological 
processes, panel (c) is molecular functions, and panel (d) is KEGG.
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Upregulated miRNAs in CRC
Next, we identified 35 unique upregulated miRNAs associated 

with CRC as shown in Table 2. 

Out of the 35 upregulated miRNAs, we performed GO as 
mentioned above for the total miRNAs and we found the following: 
CC (Figure 3a) revealed that nuclear body (p=1.17E-49) and cell 
projection (p=3.90E-10) had the highest significance and fold 

change; BP (Figure 3b) showed that regulation of cellular processes 
(p=2.26E-47) and regulation of primary metabolism (p=1.21E-45) 
had the highest fold changes and significance; within MF (Figure 
3c) , protein binding (p=2.19E-36) and ion binding  (p=8.68E-35) 
had the highest significance and fold changes while KEGG (Figure 
3d) revealed pathways in cancer  (p=4.64E-07) had substantial fold 
change and significance (Figure 3a-d) respectively.

Figure 2: Gene ontology and KEGG pathways for total miRNAs identified in CRC. Panel (a) is cellular component, Panel (b) is biological 
processes, panel (c) is molecular functions, and panel (d) is KEGG.
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Figure 3: Gene ontology and KEGG of upregulated miRNAs in CRC. Panel (a) is cellular component, panel (b) is biological processes, panel (c) 
molecular functions, and panel (d) is KEGG.
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Table 2: List of upregulated miRNAs identified in CRC pathogenesis.

hsa-mir-17-92 hsa-miR-135a hsa-miR-92a-3p hsa-miR-210

hsa-mir-20 hsa-miR-203a-3p hsa-miR-942 hsa-miR-221

hsa-mir-21 hsa-miR-301a-3p hsa-miR-191 hsa-miR-107

hsa-mir-135 hsa-miR-31-5p hsa-miR-32-5p hsa-miR-223

hsa-mir-144 hsa-miR-410 hsa-miR-338-5p hsa-miR-4260

hsa-mir-92a hsa-miR-452 hsa-miR-590-5p  

hsa-mir-106a hsa-miR-494 hsa-miR-6716-5p  

hsa-mir-106b hsa-miR-501-3p hsa-miR-1229  

hsa-miR-135b hsa-miR-590-3p hsa-miR-25-3p  

hsa-mir-10b hsa-miR-6803-5p hsa-miR-125b  

Table 3 shows a list of the biological pathways identified 
from upregulated miRNAs target genes. We also highlighted the 
relevant pathways which are associated with cancer including: 
TGF-B signaling pathway (p=9.34E-12), fatty acid metabolism 

(p=8.36E-06), FoxO signaling pathway (p=3.31E-05), and Hippo 
signaling pathway (p=0.000263). Furthermore, we identified gene 
networks related to each of these selected pathways as shown in 
Figure 4 (A-D), respectively. 

Figure 4: Gene network depiction of interactions between gene target predictions of upregulated miRNAs derived from TGF-B pathway (A), 
Fatty Acid metabolism (B), FoxO signaling pathway (C), HIPPO signaling pathway (D). 

Table 3: List of the biological pathways identified from predicted target genes of upregulated miRNAs.

Pathway p-value # gene #miRNAs

TGF-beta signaling pathway 9.34E-12 54 25

Fatty acid metabolism 8.36E-06 24 19

FoxO signaling pathway 3.31E-05 76 22

Hippo signaling pathway 0.000263 83 26

N-Glycan biosynthesis 0.001197 24 18

Axon guidance 0.001464 68 24
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We further investigated the highlighted pathways (bold) from 
Table 3 for the top 20 significant target genes associated with 
each pathway as shown in Table 4. Interestingly we found unique 

miRNAs associated with these pathways. Namely, hsa-mir-135b-3p 
and hsa-mir-191-3p were identified, suggesting that these miRNAs 
may play an important role in those pathways. 

Table 4:  List of biological pathways of interest (derived from Table 3) affected by upregulated miRNAs with corresponding genes and miRNAs in-
volved.

TGF-B signaling pathway Fatty acid metabolism FoxO signaling pathway HIPPO signaling pathway

Genes miRNA Genes miRNA Genes miRNA Genes miRNA

FST hsa-miR-203a-3p FASN hsa-miR-92a-3p IRS2 hsa-miR-590-3p ACTB hsa-miR-203a-3p

TGFBR1 hsa-miR-494-3p ACADSB hsa-miR-25-3p BRAF hsa-miR-21-3p GSK3B hsa-miR-4260

ROCK1 hsa-miR-590-3p ACSL3 hsa-miR-6803-5p RBL2 hsa-miR-223-3p DVL3 hsa-miR-301a-3p

INHBC hsa-miR-223-3p PTPLB hsa-miR-4260 STAT3 hsa-miR-501-3p WNT16 hsa-miR-590-3p

SMAD2 hsa-miR-135b-3p SCD5 hsa-miR-144-3p RAG1 hsa-miR-25-3p TGFBR1 hsa-miR-92a-3p

SMAD6 hsa-miR-92a-3p ACOX1 hsa-miR-135a-3p TGFBR1 hsa-miR-494-3p YWHAH hsa-miR-32-5p

INHBB hsa-miR-32-5p PECR hsa-miR-106a-3p FBXO32 hsa-miR-301a-3p PARD6G hsa-miR-590-5p

SMAD9 hsa-miR-107 HADH hsa-miR-107 CCNB1 hsa-miR-144-3p WNT7A hsa-miR-25-3p

THBS1 hsa-miR-338-5p FADS1 hsa-miR-494-3p SOS2 hsa-miR-92a-3p SMAD2 hsa-miR-494-3p

PPP2CA hsa-miR-301a-3p CPT1A hsa-miR-203a-3p SMAD2 hsa-miR-32-5p YWHAE hsa-miR-106a-3p

SMURF2 hsa-miR-144-3p PPT1 hsa-miR-32-5p BNIP3 hsa-miR-135a-3p BTRC hsa-miR-223-3p

BMPR1B hsa-miR-6716-5p ELOVL5 hsa-miR-338-5p PRKAA2 hsa-miR-590-5p APC hsa-miR-6716-5p

BMP5 hsa-miR-31-5p PPT2 hsa-miR-223-3p GABARAPL2 hsa-miR-338-5p PPP2R2C hsa-miR-338-5p

PITX2 hsa-miR-21-3p ELOVL2 hsa-miR-221-3p SIRT1 hsa-miR-6716-5p PRKCI hsa-miR-144-3p

SMAD3 hsa-miR-106a-3p ACSL4 hsa-miR-31-5p PIK3CB hsa-miR-452-3p PPP2CA hsa-miR-107

CHRD hsa-miR-6803-5p ACSL1 hsa-miR-21-3p SETD7 hsa-miR-1229-3p TCF7L2 hsa-miR-221-3p

CUL1 hsa-miR-452-3p ELOVL6 hsa-miR-452-3p KLF2 hsa-miR-107 NF2 hsa-miR-31-5p

INHBA hsa-miR-501-3p HSD17B12 hsa-miR-301a-3p PIK3R2 hsa-miR-106a-3p BMP5 hsa-miR-191-3p

Figure 5: Gene ontology and KEGG of downregulated miRNAs in CRC. Panel (a) shows cellular component, panel (b) shows biological 
processes, panel (c) shows molecular functions, and panel (d) shows KEGG.
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To gain a better understanding of the molecular mechanisms 
potentially involved in colorectal cancer, we explored the regulatory 
information networks (RIN) associated CRC using publicly 
available data warehouses to predict the potential targets using 
CyTargetLinker plugin in Cytoscape. Each regulatory interaction 
in the subnetworks consists of two nodes, a regulatory component 

(miRNAs) and a transcription factor (target gene) connected by one 
edge. The RIN for hsa-miR-135b-3p and has-miR-191-3p showed 
multiple gene targets as demonstrated in Figure 5.

Downregulated miRNAs in CRC
Next, we identified 59 unique downregulated miRNAs 

associated with CRC as shown in Table 5.

Table 5: List of downregulated miRNAs identified in CRC pathogenesis.

hsa-miR-296 hsa-miR-20a hsa-miR-1 hsa-miR-186-5p hsa-miR-4319

hsa-miR-22 hsa-miR-885-3p hsa-miR-708 hsa-miR-181a-5p hsa-miR-362

hsa-miR-217 hsa-miR-6868-5p hsa-miR-520e hsa-miR-16-5p hsa-miR-200b-3p

hsa-miR-198 hsa-miR-622 hsa-miR-519b-3p hsa-miR-148a hsa-miR-185

hsa-miR-184 hsa-miR-375 hsa-miR-330 hsa-miR-139-5p hsa-miR-143-3p

hsa-miR-502 hsa-miR-27b hsa-miR-324-5p hsa-miR-873-5p hsa-miR-141-3p

hsa-miR-30d hsa-miR-218 hsa-miR-302a hsa-miR-760 hsa-miR-1271

hsa-miR-30a hsa-miR-206 hsa-miR-28-5p hsa-miR-548c-5p hsa-miR-1258

hsa-miR-216a hsa-miR-126 hsa-miR-204 hsa-miR-500a-5p hsa-miR-125

hsa-miR-214 hsa-miR-1249 hsa-miR-200 hsa-miR-323a

Out of the 59 downregulated miRNAs, we performed GO as 
mentioned above for the miRNAs and we found the following: CC 
(Figure 6a) revealed that intracellular organelle (p=2.85E-91) had 
the highest significance and fold change; BP (Figure 6b) showed 
that regulation of cellular processes (p=3.99E-51) and regulation 
of transcription (p=1.23E-50) had the highest fold changes and 

significance; within MF (Figure 6c), protein binding and ion 
binding (p=1.00E-83, 2.32E-34) had the highest significance and 
fold changes while KEGG (Figure 6d) revealed pathways in cancer 
(p=1.16E-12) and MAPK signaling (p=5.35E-11) had substantial 
fold changes and significance (Figure 6a-d) respectively.

Figure 6: Gene ontology and KEGG of downregulated miRNAs in CRC. Panel (a) shows cellular component, panel (b) shows biological 
processes, panel (c) shows molecular functions, and panel (d) shows KEGG. 



World Journal of Genetics & Molecular Biology                                                                                                                Volume 1-Issue  2                         

Citation: Ahamed A Khalyfa, Navkiran Randhawa and Abdelnaby Khalyfa*. Potential Candidates of Mirna Biomarkers and Their 
Biological Function in Colorectal Cancer. World J Genet and Mol Biol. 1(2): 2024. WJGMB.MS.ID.000508.

Page 8 of 16

Table 6 shows a list of the biological pathways identified from 
downregulated miRNAs target genes. We also highlighted the 
relevant pathways which are associated with cancer including: 
MAPK signaling pathway (p=2.79E-08), ErbB signaling pathway 

(p=6.69E-08), PI3K-Akt signaling pathway (p=2.87E-06). 
Furthermore, we identified gene networks related to each of these 
selected pathways as shown in Figure 7 (A-D), respectively.  

Figure 7: Gene network depiction of interactions between gene target predictions of downregulated miRNAs derived from MAPK signaling 
pathway (A), ErbB signaling (B), PI3K-Akt signaling pathway (C). 

We further investigated the highlighted pathways from Table 6 
for the top 20 significant target genes associated with each pathway 
as shown in Table 7. Interestingly we found unique miRNAs 

associated with these pathways. Namely, hsa-mir-296b-3p and 
hsa-mir-198-3p were identified, suggesting that these miRNAs may 
play an important role in those pathways.

Table 6: List of the biological pathways identified from predicted target genes of downregulated miRNAs.

Pathway p-value # gene # miRNAs

MAPK signaling pathway 2.79E-08 158 26

ErbB signaling pathway 6.69E-08 60 25

PI3K-Akt signaling pathway 2.87E-06 197 28

Table 7: List of biological pathways of interest affected by downregulated miRNAs with corresponding genes and miRNAs involved.

PI3K-Akt signaling pathway ErbB signaling pathway MAPK signaling pathway

Genes miRNA Genes miRNA Genes miRNA
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FZD7 hsa-miR-4260 CAMK2D hsa-miR-186-5p TAOK3 hsa-miR-520e

PPP1CA hsa-miR-501-3p BRAF hsa-miR-200b-3p BRAF hsa-miR-519b-3p

ACTB hsa-miR-590-3p GSK3B hsa-miR-134-3p DUSP4 hsa-miR-186-5p

GSK3B hsa-miR-494-3p HBEGF hsa-miR-216a-3p HSPA2 hsa-miR-181a-5p

DVL3 hsa-miR-942-3p PRKCA hsa-miR-27b-3p FGF12 hsa-miR-16-5p

WNT16 hsa-miR-452-3p ERBB2 hsa-miR-1-3p FOS hsa-miR-548c-5p

FZD5 hsa-miR-25-3p SOS2 hsa-miR-495-3p NTRK2 hsa-miR-200b-3p

TGFBR1 hsa-miR-92a-3p STAT5A hsa-miR-214-3p PRKCA hsa-miR-224-3p

YWHAH hsa-miR-32-5p CBL hsa-miR-500a-5p NTF3 hsa-miR-495-3p

ID2 hsa-miR-203a-3p CAMK2G hsa-miR-22-3p CACNG8 hsa-miR-502-3p

PARD6G hsa-miR-338-5p NRAS hsa-miR-302a-3p PDGFRA hsa-miR-30d-3p

WNT7A hsa-miR-144-3p CRKL hsa-miR-198-3p CACNA1A hsa-miR-30a-3p

YAP1 hsa-miR-135b-3p NRG4 hsa-miR-218-1-3p TGFBR1 hsa-miR-362-3p

SMAD2 hsa-miR-1229-3p CRK hsa-miR-362-3p CACNA2D3 hsa-miR-185-3p

YWHAE hsa-miR-590-5p PIK3CB hsa-miR-338-3p FGF19 hsa-miR-141-3p

BTRC hsa-miR-223-3p PAK2 hsa-miR-6868-5p NFKB1 hsa-miR-433-3p

APC hsa-miR-301a-3p MAP2K7 hsa-miR-141-3p CACNA1G hsa-miR-216a-3p

PPP2R2C hsa-miR-6716-5p TGFA hsa-miR-224-3p GNA12 hsa-miR-27b-3p

PRKCI hsa-miR-221-3p PAK7 hsa-miR-323a-3p IL1R1 hsa-miR-330-3p

WNT10B hsa-miR-6803-5p AREG hsa-miR-296b-3p SOS2 hsa-miR-200a-3p

Similar to upregulated miRNAs, we explored the regulatory 
information networks (RIN) associated CRC for uniquely identified 
downregulated miRNAs using publicly available data warehouses 
to predict the potential targets using CyTargetLinker plugin in 

Cytoscape. The RIN for hsa-miR-198-3p and has-miR-296b-3p 
showed multiple gene targets as demonstrated in Figure 8 however 
also showed a strong interaction with target gene UBC.

Figure 8 : Interaction gene networks and target predictions for uniquely expressed hsa-mir-198 and hsa-mir-296-3p. Multiple gene targets 
were common between the two miRNAs, however, UBC target gene was the strongest gene target amongst the two miRNAs.
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Figure 9: Venn diagram analysis of genes from upregulated and downregulated miRNAs. Of these, 1155 genes were found to be unique to 
upregulated miRNAs, 5309 were found to be unique to downregulated miRNAs, and 5070 were found to be unique to both. 

Similar to upregulated miRNAs, we explored the regulatory 
information networks (RIN) associated CRC for uniquely identified 
downregulated miRNAs using publicly available data warehouses 
to predict the potential targets using CyTargetLinker plugin in 
Cytoscape. The RIN for hsa-miR-198-3p and has-miR-296b-3p 
showed multiple gene targets as demonstrated in Figure 8 however 
also showed a strong interaction with target gene UBC.

Discussion
In this study, we aimed to critically review the current literature 

on miRNA involvement in CRC. A total of 94 unique miRNAs 
were identified, of which 35 were found to be upregulated and 
59 were found to be downregulated. We also identified unique 
biological pathways from the predicted target genes of the up 
and downregulated miRNAs. The miRNAs 135b-3p and mir-191-
3p were unique identifiers for the upregulated miRNAs and the 
miRNAs 296b-3p and mir-198-3p were unique identifiers for the 
downregulated miRNAs.

Colorectal cancer represents the third most common cancer 
diagnosis and the second most lethal malignancy for both men 
and women [2]. There has been a steady decline in the incidence 
of new cases and mortality over the past few years, except for 
individuals under the age of 50, which is perhaps due to an increase 
in the frequency of cancer screenings and better treatment options 
[118]. Colon cancer development is explained by clonal mutations 
that give cells a survival advantage and allow for the development 
of mutations that can lead to other characteristics associated with 
cancer, such as proliferation, invasion, and metastasis [119]. To treat 
CRC, it is essential to identify the molecular mechanisms involved 
in the progression of the disease. MicroRNAs (miRNAs) are a class 
of small noncoding RNAs that bind to target mRNA and inhibit 
translation, cleave, or degrade mRNA, ultimately downregulating 
the level of a target protein [120]. A miRNA can function as either 

a tumor suppressor or tumor promoter, depending on the cell 
environment in which it is expressed, and plays an important role 
in several biological functions [120]. There is evidence that miRNAs 
play a role in proliferation, metastasis, angiogenesis, autophagy, 
apoptosis, and chemoradiotherapy in colorectal cancer [121].

Biological pathways of upregulated miRNAs
As previously mentioned, pathways of interesting clinical 

relevance identified from predicted target genes of upregulated 
miRNAs were TGF-B signaling pathway, fatty acid metabolism 
pathway, FOX-O signaling and HIPPO signaling pathway. Here, 
we will explore the clinical relevance of each pathway in CRC 
including same major biological pathways such as TGF-B, Fatty acid 
metabolism, FOX-O signaling, and HIPPO signaling pathway. First, 
TGF-B, several biological processes are regulated by the TGF-B 
signaling pathway, including cell proliferation, differentiation, 
migration, and apoptosis [122]. In the setting of CRC, the signaling 
effects of TGF-B on colon epithelial cells are reported to reduce 
proliferation and promote apoptosis and differentiation [123]. 
The TGF-B signaling pathway targets several key cell-cycle 
checkpoint genes, including CDKN1A (p21), CDKN1B (p27) and 
CDKN2B (p15) [124]. Hence, TGF-β acts as a tumor suppressor 
in the normal intestinal epithelium. Furthermore, many CRCs 
lose tumor suppressor proteins during the initial and subsequent 
stages of cancer. Interestingly, evidence has suggested TGF-β as a 
multifunctional cytokine that acts as a tumor promoter or tumor 
suppressor in a cell- and context-dependent manner [125]. As a 
consequence of TGF-B signaling’ s pleiotropic nature, it contributes 
to drug resistance, tumor escape, and diminished response to 
therapy [125].

Second, Fatty acid metabolism, there is growing evidence that 
dysregulation of fatty acid (FA) metabolism plays an important role 
in cancer development and progression [126–128]. In the cell, FAs 
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are used for numerous purposes, including signaling molecules, 
membrane synthesis components, and, perhaps most importantly, 
as sources of direct energy [127]. There has been previous evidence 
that fatty acid synthase upregulation contributes to the growth and 
progression of primary CRCs [127]. Through the chemical inhibition 
of fatty acid synthase through a novel fatty acid synthase inhibitor 
TVB-3664, there has been significant progress in the treatment 
of CRC in vitro by reducing CRC proliferation through a decrease 
in cellular respiration [129].  A previous study demonstrated that 
CD36, a transporter of fatty acids, promotes the growth of colorectal 
cancer tumors [129].  When studying the role of CD36 in colorectal 
cancer, it was found that it promotes invasion of colorectal cancer 
in vitro and metastasis in vivo, as well as upregulating expression of 
the matrix metalloproteinase 28 [129]. 

Third, FOX-O signaling, the FOXO gene subfamily controls 
genetic pathways such as tumor suppression in cancer. In CRC, 
the EGFR signaling pathway, which is mediated by activated AKT, 
induces proliferation in the normal and transformed colonic 
epithelium via the suppression of FOXO3 [130, 131].  FOXO4, on 
the other hand, has a tumor-suppressive role which inhibits EMT, 
migration, and in vivo metastases in colorectal cancer by regulating 
the APC2/B-catenin axis, which illustrates the function and 
mechanism of FOXO4 in CRC and provides a potential therapeutic 
strategy for patients with the disease [132]. 

Fourth, HIPPO signaling pathway, The Hippo signaling pathway 
is involved in stem cell proliferation, morphology, survival, 
migration, self-renewal, migration, tissue homeostasis, as well as 
the regulation of organ size [133]. It has been reported that Hippo 
signaling is one of the most significant signaling pathways in tumor 
development, as it inhibits the development of tumors through 
multiple components of this pathway, including fat storage-
inducing transmembrane protein, large tumor suppressor kinase 
(LATS), macrophage stimulating factors (MST), taffazin (TAZ), 
Yes-associated protein 1 (YAP1), and transcriptional enhancer 
associated domain (TEAD) [134]. One recent study found that 
cucurbitacin B, a natural herb with anticancer properties, inhibits 
the Hippo-YAP Signaling pathway and exerts anticancer activity in 
colorectal cancer cells [135]. Given this interesting paradigm, it is 
imperative to focus on the study of upregulated miRNAs which we 
identified which may play a role in HIPPO signaling.

Biological pathways downregulated miRNAs
Similar to the predicted target genes of upregulated miRNAs, we 

identified clinically significant pathways regarding predicted target 
genes of downregulated miRNA which included: MAPK signaling 
pathway, ErbB signaling pathway, and PI3K-Akt signaling pathway. 
First, MAPK signaling pathway, the mitogen-activated protein 
kinases (MAPKs), which function as a major cell proliferation 
signaling pathway from the cell surface to the nucleus, belong to 
a large family of serine-threonine kinases [136]. It is becoming 
increasingly apparent that activation of the ERK MAPK pathway is 
involved in the pathogenesis, progression, and oncogenic behavior 
of human colorectal cancer [136]. Ras, Raf, MEK, and ERK are 
thought to play a role in the induction of vascular endothelial 
growth factor (which is involved in the regulation of angiogenesis) 
when human colorectal cancer is present [137]. These pathways 

may provide opportunities for the development of new anticancer 
drugs to target specific targets and to be less toxic than traditional 
chemotherapeutic agents [137]. Interestingly, some evidence has 
suggested a direct role of miRNA regulation on MAPK signaling 
pathway in CRC, however, further studies are necessary to elucidate 
their role as potential biomarkers [138].

Second, ErbB signaling pathway, the ErbB family of receptors 
comprises four subtypes, namely ErbB1 (EGFR), ErbB2 (HER2), 
ErbB3 (HER3) and ErbB4 (HER4)[139]. The EGFR receptor triggers 
a molecular cascade that activates MAPK and PI3K pathways, 
promoting proliferation, apoptosis inhibition, dedifferentiation, 
and angiogenesis in CRC [140]. ErbB2 activation has been shown 
to play an important role in the differentiation, proliferation, 
and apoptosis of CRC cells. Among patients with CRC, one study 
reported a 69.7% ErBb3 response rate and lymph vascular invasion 
[139]. Moreover, ErbB4 has been shown to activate the PI3K and 
Shc pathways to promote cell proliferation and metastasis but 
inhibit differentiation. The ErbB signaling pathway has also been 
recently shown to be modulated by miR-323a in CRC, specifically by 
blocking gefitinib resistance acquisition [141].

Third, PI3K-Akt signaling pathway, PI3K is a receptor tyrosine 
kinase activated by several receptors such as EGFR, human EGFR 
2 (HER2), insulin growth factor (IGF-1R), and platelet derived 
growth factor (PDGF) [142]. It is involved in the regulation of 
many different cellular functions, such as proliferation, survival, 
apoptosis, migration, and metabolism. The presence of PIK3CA, a 
subunit of PI3K, has been reported in 10-20% of CRC cases, with 
over 80% of mutations found in two hot spots in exon 9 and exon 20 
[143]. PIK3CA mutations have been associated with poorer clinical 
outcomes and with a negative prediction of clinical response to 
anti-EGFR monoclonal antibodies in RAS wild-type mice with CRC 
[144]. One study reported an improved survival of CRC patients 
using regular aspirin in tumors harboring a PIK3CA mutation [145]. 
Given the intricate involvement of PI3K-AKT on CRC development 
and its potential role in therapy it is thus paramount to better 
understand the biological roles of the identified miRNAs which 
affect this pathway.

We believe this review entails an updated review of total, 
upregulated and downregulated miRNAs in CRC with an analysis 
(Gene Ontology, KEGG, gene network, target gene prediction) which 
provides insight into the molecular pathways and genes involved 
with these miRNAs. The work identified biological processes and 
gene targets related to miRNAs in CRC that could be studied in more 
detail in the future. Furthermore, the highly significant up-regulated 
miRNAs can be used as screening tools for CRC and the down-
regulated can also be used as a negative for CRC. The limitations 
of this study, include not able to distinguish which miRNAs can be 
used for early detection, however, as global these miRNAs can be 
used as negative and positive markers for CRC. The role of miRNAs 
in colorectal cancer has been reported [9,146,147], however, 
larger patient cohorts are warranted to confirm their potential 
to be used as CRC diagnostic biomarkers [148–151] . Large-scale 
validation studies in asymptomatic screening participants should 
be conducted to validate those miRNAs. Future research will 
have to specifically address the potential role for miRNA-based 
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classifiers and therapeutics in medicine. While there is still much to 
be done, we remain optimistic that microRNA related diagnostics 
and therapeutics have substantial potential for the prevention and 
treatment of CRC. 

 Conclusion
CRC is a very devastating disease which requires identification 

of biological biomarkers for diagnostic and prognostic function. 
Our study identified a total of 94 miRNAs from over 100 studies 
in the literature. Thus, we are e able to narrow down uniquely 
upregulated and downregulated miRNAs as well as their respective 
biological functions in cancer pathways. We believe those miRNAs 
identified may potentially serve a role as candidates for screening 
and therapeutic targets for CRC in the future.4.
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