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Abstract
The concept of a core collection, introduced by Frankel in 1984, aims to capture maximum genetic diversity within a minimum number of 

accessions. While many selection methods exist, the massive datasets generated by Next-Generation Sequencing (NGS) technologies have made 
some traditional approaches computationally prohibitive. In this study, we propose a new, efficient algorithm for selecting a core set of lines from 
large genotype datasets based on clustering algorithms. Our goal is to maximize genetic diversity for a user-defined collection size. The method 
integrates Multiple Correspondence Analysis (MCA) for refined cluster analysis and adapts the successful selection strategy of the Geno Core 
algorithm as a foundation.

We evaluate the performance of our proposed method against two established algorithms, Geno Core and Core Hunter 3, using four diverse 
Single Nucleotide Polymorphism (SNP) datasets ranging from 1.5K to 820K SNPs. Quality is assessed using five criteria: coverage rate, Shannon’s 
diversity index, mean modified Roger’s value, minimum modified Roger’s value, and computational efficiency (time). The experiment results 
demonstrate the superior performance of our method. While maintaining a high coverage rate (e.g., 99%), our algorithm consistently achieves a 
higher quality core collection than Geno Core and a higher coverage rate than Core Hunter 3. Critically, our approach successfully processes all four 
large datasets in a reasonable timeframe, addressing the bottleneck of NGS data analysis.

Keywords: Core collection; next-generation sequencing (NGS); multiple correspondence analysis; cluster analysis; single nucleotide polymorphism 
(SNP)

Introduction

The conservation of genetic resources for plant and agricul-
tural species is a crucial task, particularly in the face of rapid en-
vironmental changes. To address this need, numerous countries 
have established gene banks to collect and preserve germplasm, 
thereby safeguarding genetic diversity. However, as the volume and 
complexity of collected resources grow, more efficient methods for  

 

management, classification, and selection are essential. Optimiz-
ing the limited storage space requires selection strategies that re-
tain the maximum possible genetic diversity [1]. In response, the 
concept of the core collection was proposed [2]. He defined a core 
collection as a small set of accessions that represents the complete 
genetic diversity of a species, including its wild relatives, with mini-
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mal redundancy. Beyond its primary use in gene bank resource con-
servation, the core collection concept serves as a highly effective 
tool for researchers to select experimental materials and assess ge-
netic variation. This approach reduces the required sample size for 
analysis, leading to significant savings in time and resources. Since 
its inception, the selection of core collections has been extensively 
studied by numerous scholars [3-5].

These efforts have yielded a variety of selection methods, em-
ploying different criteria to achieve the goal of establishing a small-
sized core collection that captures the entire genetic diversity of 
the target germplasm. While there is no rigid limit on the size of a 
core collection, which can be adjusted based on its intended pur-
pose, published core collections generally comprise between 5% 
and 20% of the initial accessions [6]. Early core collection selection 
software, such as MSTRAT [3], Power Core [4], and Core Hunter [5], 
primarily relied on phenotypic data, often complemented by limit-
ed genotypic data, due to the less-developed sequencing technol-
ogies of the time. However, the rapid advancement of Next-Gener-
ation Sequencing (NGS) and microarray technologies has made it 
relatively easy for researchers to identify extensive sequence vari-
ation among individuals. Given the direct link between genotype 
and phenotype, current core collection selection is increasingly 
focused on large-scale genotype data. This shift has introduced a 
major challenge: the genotype data, often comprised of thousands 
or even hundreds of thousands of genetic markers (e.g., Single Nu-
cleotide Polymorphisms or SNPs), has become enormously vast. 
Consequently, many previously effective analysis methods are no 
longer computationally feasible or efficient for handling such mas-
sive datasets.

To address this computational bottleneck, the Geno Core algo-
rithm was first developed specifically for selecting core collections 
from large categorical datasets (i.e., genotypic data) [7]. Unlike 
some methods that focus on selecting rare alleles, Geno Core pri-
oritizes the selection of common alleles. The rationale behind this 
strategy is the authors’ view that most traits of current interest 
are complex traits, influenced by polygenic inheritance and envi-
ronmental interactions, rather than being controlled by single rare 
alleles. This selection strategy is designed to effectively increase 
the genetic coverage of the core collection, thus achieving the goal 
of high genetic diversity. In this study, we propose a new core col-
lection selection method for large genotype datasets by integrating 
the selection strategy of Geno Core with cluster analysis. This nov-
el approach is designed to rapidly and efficiently select accessions 
that are evenly distributed and genetically distant from one anoth-
er within the initial sample, and it can be implemented efficiently 
in R. We validate our method using four diverse Single Nucleotide 
Polymorphism (SNP) datasets: 14K SNP wheat data, 1.5K SNP and 
37K SNP rice data, and a high-density 820K SNP wheat dataset. The 
results are comprehensively compared against those obtained from 
the state-of-the-art methods, Geno Core [7] and Core Hunter 3 [8].

Materials and Methods
Introduction to the Datasets Used

This study utilizes four genotypic datasets, which can be cate-
gorized into four progressively larger sets based on data volume. 

As noted in the introduction, the information volume requiring 
processing has increased significantly with the development of 
next-generation sequencing technology. Both Geno Core and the 
method proposed in this study were developed in response to this 
situation. We use these four genotypic datasets to observe whether 
the core germplasm results obtained using the method proposed 
in this study maintain the expected screening quality despite the 
significant differences in the size of the original datasets, and 
whether the processing time remains within an acceptable range. 
Furthermore, we compare the results of different methods across 
these varying data sizes. In this section, we will list the data source, 
the number of SNP markers, and the number of accessions for each 
dataset

1.5K Rice SNP Data

This dataset is the smallest in terms of data volume used in this 
study. Its source is the Rice Diversity website (http://www.ricedi-
versity.org/index.cfm). It contains 1,536 markers and 395 acces-
sions, with no missing values.

14K Wheat SNP Data

This dataset is a sample dataset provided to users on the Geno 
Core GitHub repository (https://github.com/lovemun/GenoCore/
find/master). This sample was reduced from the 35K Axiom® Ar-
ray data available on Cereals DB (http://www.cerealsdb.uk.net/
cerealgenomics/CerealsDB/indexNEW.php). The original 35K data 
was generated by sequencing 35,143 SNPs across hexaploidy and 
tetraploid wheat accessions, but the specific criteria for this reduc-
tion are not detailed in the sample data. This dataset has 14,099 
markers and 556 accessions, with 3.34% missing values.

37K Rice SNP Data

The source of this dataset is the same as the 1.5K Rice SNP Data, 
specifically the 44K SNP set from Rice Diversity (http://www.rice-
diversity.org/index.cfm). This data is the result of a genome-wide 
association study (GWAS) that sequenced 44,100 SNPs in rice ac-
cessions collected from 82 countries. It contains 36,901 markers 
and 413 accessions, and is thus referred to as 37K Rice in this the-
sis, with 3.77% missing values.

820K Wheat SNP Data

This dataset originates from the 820K Axiom® Array data on 
Cereals DB (http://www.cerealsdb.uk.net/cerealgenomics/Cere-
alsDB/indexNEW.php). This data was generated from hexaploidy 
wheat accessions, diploid and tetraploid progenitors, and some 
closely related wheat species, and was originally used for identi-
fying and tracking introgression in hexaploidy wheat. It contains 
819,570 molecular markers and 475 accessions, with 1.59% miss-
ing values.

Proposed Core Germplasm Selection Algorithm

In the Methods section, we will describe the core germplasm 
selection algorithm used in this study, which is primarily divided 
into four sequential steps:

Step 1: Calculating Relative Coordinates of Accessions

The first step is to calculate the relative coordinates for each ac-
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cession based on its similarity to all other accessions. For this study, 
Multiple Correspondence Analysis (MCA) is selected as the method 
for calculating these coordinates. It transforms the multi-category 
genotypic data (where each SNP marker is a variable and each allele 
is a category) into a set of relative coordinates for each accession. 
These coordinates essentially capture the genetic relationships and 
structure within the germplasm. The resulting low-dimensional co-
ordinates are then used as the numerical input for subsequent clus-
tering methods (like Self-Organizing Map and K-means) to partition 
the accessions based on their genetic similarity.

Step 2: Determining the Optimal Number of Clusters

Using the accession coordinates obtained in Step 1, a distance 
matrix is calculated to establish the clustering criterion. The Aver-
age Silhouette score is then used to estimate the optimal number of 
clusters suitable for the data.

Step 3: Accession Clustering

The third step involves performing the actual clustering based 
on the results from Step 2. In this study, two distinct clustering 
methods are used for this step: Self-Organizing Map (SOM) and the 
K-means algorithm. The differences between the results generated 
by these two methods will be discussed.

Step 4: Core Germplasm Selection

The final step for selecting the core germplasm is adapted from 
the selection method used in Geno Core [7]. 

a)	 Initial Selection: First, from the clustered results obtained in 
Step 3, one accession with the lowest number of missing values 
is selected from each cluster and added to the core germplasm.

b)	 Subsequent Selection: Next, disregarding the clusters, the al-
gorithm iteratively selects the accession from the remaining 
set that has the greatest genetic dissimilarity to the accessions 
already present in the current core germplasm.

The detailed operational procedures for this methodology will 
be explained in the subsequent content.

Multiple Correspondence Analysis (MCA)

MCA is the categorical data equivalent of Principal Component 
Analysis (PCA) [9]. It transforms the categorical data into a set of 
coordinates in a low-dimensional space to allow for visualization 
and analysis of the underlying structure, particularly the associa-
tions between the different categories and the similarity between 
individuals (accessions). The SNP data is initially represented by 
the indicator matrix X, often called the Complete Disjunctive Table 
(CDT). Each element of X is a binary value (0 or 1) recording the 
presence of a specific accession within a given category. Each row 
represents the individual accessions (subjects) and each columns 
represents the categories (alleles/genotypes) of every variable 
(SNP marker). A value of 1 in a cell indicates that the accession pos-
sesses that specific category (e.g., a specific allele at a certain SNP) 
and 0 indicates it does not. If you have N accessions and M discrete 
variables (SNP markers), where the j-th variable has Kj categories 
(e.g., A/A, A/G, G/G for a tri-allelic SNP), the total number of col-
umns in the indicator matrix will be 1

M
j jJ K== Σ . As noted, for large 

genotypic datasets (where the number of SNP markers is high), the 
indicator matrix X can become extremely large, making the direct 
application of Correspondence Analysis (CA) to X computationally 
intensive and time-consuming. To efficiently overcome the com-
putational burden of a large indicator matrix, the Burt matrix B is 
employed. The Burt matrix is derived as the cross-tabulation of the 
indicator matrix X with its categorical variables, often calculated as

. (1)tB X X=

This matrix summarizes the relationships between all pairs of 
SNP markers, dramatically reducing the size of the matrix used for 
the core MCA computation, thus saving significant time and compu-
tational resources. The core of MCA involves an Eigenvalue Decom-
position (EVD) of the standardized Burt matrix. The central Burt 
matrix is often defined for simplified computation as:

1/2 1/2 1 (2)E D BD− −= −

where D is the diagonal matrix of the column proportions of 
the k-th SNP. The Eigenvalue Decomposition (EVD) is applied to the 
transformed matrix E to find the principal axes.

, (3)tE U U= Λ

where Λ is a diagonal matrix containing the eigenvalues λi, for 
i=1,…,J, representing the inertia (variance) explained by each di-
mension; and U is a matrix whose columns contain the eigenvec-
tors vi for i=1,…,J. Finally, the principal coordinates G, which are the 
actual coordinates used for the graphical interpretation (the scatter 
plot), are obtained by scaling the eigenvectors by the square root of 
the non-trivial eigenvalues:

1/2 1/2. (4)G D U−= Λ

The Inertia (total variance) in the data is equal to the sum of all 
non-trivial eigenvalues. The proportion of inertia explained by the 
i-th dimension is:

1

, (5)i
i m

i i

f λ
λ=

=
Σ

where m is the total number of non-trivial dimensions. This 
value indicates the amount of variability captured by that dimen-
sion. A higher percentage of inertia for a dimension indicates that it 
represents a greater degree of the association (or underlying struc-
ture) among the SNP markers in the dataset. This helps researchers 
select the most important dimensions for interpretation and visu-
alization.

In our proposed algorithm, MCA serves two primary functions:

a)	 Coordinate Calculation: It transforms the multi-category ge-
notypic data (where each SNP marker is a variable and each 
allele is a category) into a set of relative coordinates for each 
accession. These coordinates essentially capture the genetic 
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relationships and structure within the germplasm.

b)	 Input for Clustering: The resulting low-dimensional coordi-
nates are then used as the numerical input for subsequent 
clustering methods (like Self-Organizing Map and K-means) to 
partition the accessions based on their genetic similarity.

Clustering Methods

Once the low-dimensional coordinates were obtained, the data 
was subjected to clustering using two common clustering algo-
rithms: k-means and Self-Organizing Map (SOM). Clustering meth-
ods are unsupervised learning techniques used to group data points 
into subsets (clusters) such that data points in the same cluster are 
more similar to each other than to those in other clusters. The goal 
is to discover inherent groupings and patterns in the data without 
prior knowledge of labels. K-means [10,11] is a popular, simple, and 
efficient partitioning clustering algorithm. Its goal is to partition N 
observations into a predefined number of K clusters, minimizing 
the within-cluster sum of squares (WCSS). The K-means cluster-
ing’s operational process is as follows:

a)	 Initialize K centroids randomly.

b)	 Assignment: Assign each data point to the cluster whose cen-
troid is nearest (usually based on Euclidean distance).

c)	 Update: Recalculate the new centroid for each cluster as the 
mean of all data points assigned to that cluster.

d)	 Repeat steps 2 and 3 until the centroids no longer move signifi-
cantly or a maximum number of iterations is reached.

The limitations of K-means clustering include that the number 
of clusters (K) must be specified beforehand, and the result can be 
sensitive to the initial random placement of the centroids and the 
presence of outliers.

A Self-Organizing Map (also known as a Kohonen map) [12,13] 
is an unsupervised neural network used primarily for clustering 
and dimensionality reduction. It maps high-dimensional data onto 
a low-dimensional space (typically a 2D grid of neurons) while pre-
serving the original data’s topological properties (i.e., data points 
that are close in the input space are mapped to neighbouring neu-
rons on the grid). The SOM’s operational process is as follows:

a)	 Initialize the weight vectors of all neurons (nodes) on the 2D 
grid.

b)	 Competition (Find BMU): For each input vector, find the neu-
ron whose weight vector is closest to it-this is the Best Match-
ing Unit (BMU).

c)	 Cooperation/Adaptation: Update the weight vector of the BMU 
and its neighbouring neurons on the grid to move closer to the 
input vector. The degree of update decreases with distance 
from the BMU and with time (epochs).

d)	 Repeat steps 2 and 3 until convergence.

SOMs are effective for visualization and can handle non-linear 
data relationships better than K-means, as the grid structure explic-
itly models the data’s topology. The neighbourhood update rule is 
the key difference from K-means (which only updates the winning 

centroid).

Prior to clustering, the optimal number of clusters is assessed 
using the Average Silhouette Method [14]. Data is first clustered 
using the cluster algorithms above, testing a user-defined range of 
cluster numbers (k). For each data point i, a silhouette value, s(i), is 
calculated using the following formula:

( ) ( )( ) , (6)
max{ ( ), ( )}

b i a is i
a i b i
−

=

where a(i) is the average distance between data point i and all 
other data points within its own cluster and b(i) is the average dis-
tance between data point i and all data points in the nearest neigh-
bouring cluster (the cluster to which i is not assigned but is closest). 
From the formula, the silhouette value s(i) ranges from -1 to +1. A 
value close to +1 indicates that the data point is well-clustered: it is 
close to other points in its own cluster and far from points in oth-
er clusters, representing an ideal state of high within-cluster simi-
larity and low cross-cluster similarity. Conversely, a value close to 
-1 indicates that the data point is poorly clustered: it is dissimilar 
to points in its own cluster and is closer to points in a neighbour-
ing cluster, suggesting a poor clustering outcome. To evaluate the 
overall quality of a clustering solution, the Average Silhouette Coef-
ficient is computed by taking the mean of the silhouette values for 
all data points:

1
1 ( ), (7)N

I s i
N =Σ

where N is the total number of data points. The process is re-
peated for each tested value of k. The value of k that yields the max-
imum Average Silhouette Coefficient is determined to be the esti-
mated optimal number of clusters for the dataset. In this study, the 
distance a(i) and b(i) are calculated using the Euclidean distance 
between the coordinates of the observation categories derived 
from the preceding Multiple Correspondence Analysis (MCA).

Method for Core Germplasm Selection

The method for selecting core germplasm in this study is adapt-
ed from the Geno Core approach [7]. The core germplasm selecting 
procedure is as follows:

Step 1: Initial Selection from Clusters. The clustering per-
formed in the preceding steps yields k groups of accessions 
with similar characteristics. Following the Geno Core approach, 
the accession with the fewest missing data (NA values) is ini-
tially selected from each of these k clusters. This results in an 
initial set of k selected accessions.

Step 2: Tie-breaking using Coverage Score (CS) If multiple ac-
cessions within a cluster have an equal (minimum) number of 
missing values, their coverage score (CS) is calculated to break 
the tie. This step introduces a modification to the original Geno 
Core method: instead of strictly minimizing CS, this study ex-
plores two distinct selection strategies for observation: Select-
ing the accession with the minimum CS or Selecting the acces-
sion with the maximum CS.
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Step 3: Tie-breaking using Diversity Score (DS) If a tie still ex-
ists after calculating the CS (i.e., multiple accessions have the 
same CS value), the diversity score (DS) is calculated. The ac-
cession with the minimum DS is selected. If duplicates still ex-
ist, random selection is performed. After this step, a total of k 
accessions is selected, where k is the number of clusters. The 
coverage score (Cj) and diversity score (Dj) are defined as fol-
lows:

; (8)
( )

j iji N ig
j

j

f
C

n N
∈Σ

=

2( )
, (9)

( )
j iji N ig j

j
j

f C
D

n N
∈Σ −

=

where f igij is the genotype frequency gij for the i-th marker and 
j-th accession, Nj is the set of non-missing genotype markers 
in the j-th accession, and n(Nj) is the number of elements in Nj.

Step 4: Greedy Selection Pool Initialization. All unselected ac-
cessions are aggregated into a single group. The marker types 
identical to those already present in the initial k core accessions 
are converted to missing values (NA) within this unselected 
pool. The accession from this pool with the minimum number 
of remaining missing values is selected. This process ensures 
that the next chosen accession contributes the maximum num-
ber of novel marker types to the core set.

Step 5: Iterative Core Set Expansion. This step repeats the logic 
from Step 3: the marker types of the newly selected accession are 
converted to NA values in the remaining unselected pool. The ac-
cession with the fewest NA values is then chosen. In the event of a 
tie, the selection proceeds in the order of CS and DS (as detailed in 
Step 3). This iterative expansion continues until the total genetic 
coverage of the core set reaches a predefined standard of 99%, at 
which point the loop is terminated.

Core Collection Evaluation Indices

Four performance metrics are used in this study to evaluate and 
distinguish the quality of the selected core germplasm. Following 
the approach of Geno Core, the following indices are calculated: 
Coverage, Shannon’s Diversity Index, Mean Modified Rogers Value, 
and Minimum Modified Rogers Value.

Coverage

Coverage assesses the percentage of distinct marker genotypes 
present in the original dataset that are successfully captured by the 
selected core collection. The formula is given by: 

1
( )1 , (10)
( )

m c
i

o

G iCV
m G i== Σ

where m is the total number of SNP markers, GC(i) is the num-
ber of distinct genotypes for the i-th marker in the core collection, 
and GO(i) is the number of distinct genotypes for the i-th marker in 

the original germplasm dataset. A higher coverage value indicates 
that the core collection encompasses a greater variety of genotypes, 
thus more completely preserving the genetic resources of the orig-
inal collection.

Shannon’s Diversity Index (SH)

Shannon’s Diversity Index (SH), also known as the Shan-
non-Wiener Index, is used to estimate the level of genetic diversity 
within the collection. In this study, each genotype under a molecu-
lar marker is considered a distinct “species” or type. The formula 
is applied for each marker and then averaged across all markers:

( )

1 1
ln( ), (11)

CG im

ij ij
i j

SH p p
= =

= Σ Σ

where GC (i) is the number of distinct genotypes for the i-th 
marker in the core collection and pij is the frequency of the j-th gen-
otype under the i-th marker. The index considers both the number 
of types and their relative frequencies (evenness). A larger index 
indicates higher estimated genetic diversity. The SH value reaches 
it’s maximum when all genotype frequencies within the population 
are equal, representing the most stable and diverse state.

Mean Modified Rogers Value (MR)

The Modified Rogers Distance dxy is a measure of genetic dis-
tance between two accessions, x and y, based on genotypic data. 
The formula is:

2
1

1 ( ) , (12)
2

m
xy i xi yid p p

m == Σ −

where pxi and pyi are the frequencies of the i-th marker for ac-
cession x and accession y, respectively. The Mean Modified Rogers 
Value (MR) for the core collection is the average of the pair-wise 
Modified Rogers Distances calculated among all accessions within 
the core collection.

( ), (13)xyMR Average d=

for all pairs i, j in the core collection. A larger MR value 
indicates that the selected accessions in the core collection are, 
on average, more dissimilar from one another, suggesting a more 
efficient representation of the overall genetic variation.

Minimum Modified Rogers Value (Min.MR)

The Minimum Modified Rogers Value uses the same distance 
measure as the MR but focuses on the smallest distance found be-
tween any pair of accessions within the core collection.

. ( ), (14)xyMin MR Min d=

for all pairs i, j in the core collection. A larger Min.MR value 
guarantees that the accessions are at least separated by a minimum 
distance. This metric is crucial because it guards against a scenar-
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io where the MR is high due to a few widely dispersed accessions, 
while the minimum distance remains near zero (meaning some ac-
cessions are nearly identical), a situation that may be hidden when 
observing only the average (MR).

Results and Discussion

In this section, a comparative analysis of different selection 
methods will be performed across the four datasets utilized in this 
study, namely: Rice with 1.5K SNPs, Wheat with 14K SNPs, Rice 
with 37K SNPs, and Wheat with 820K SNPs. The comparison pro-
ceeds sequentially from the smallest to the largest dataset. Follow-
ing the methodological steps outlined in the previous section, the 
results for each dataset will be presented as follows:

a)	 Multiple Correspondence Analysis (MCA): The results of the 
MCA, which transforms the data into two-dimensional coordi-
nates for clustering, will be displayed in a 2D scatter plot.

b)	 Optimal Cluster Number: The optimal number of clusters, as 
determined by the Average Silhouette Method, will be report-
ed.

c)	 Clustering Results: The results of the clustering using two dif-
ferent clustering approaches will be presented.

d)	 Core Collection Selection: The resulting core accessions ob-
tained from the selection procedure applied to the two differ-
ent clustering results will be listed.

After describing the selection outcomes for this study’s meth-
od, the results will be compared against two established methods 
from the literature: Geno Core and Core Hunter 3. For this com-
parison, the operational settings for the established methods are 
as follows: 1. Geno Core is configured to stop selection when 99% 

coverage is achieved. 2. Core Hunter 3 is configured to select the 
same number of accessions as determined by the Geno Core run, 
with all other parameters set to the program’s default values. The 
comparison will be based on the four-performance metrics: Cover-
age, Shannon’s Diversity Index (SH), Mean Modified Rogers Value 
(MR), and Minimum Modified Rogers Value (Min.MR). Further-
more, a key objective of the proposed method is to handle large-
scale genotyping data efficiently. Therefore, for each method and 
dataset, the computational time and the final number of accessions 
selected for the core collection will also be recorded and compared. 
These additional factors are crucial for assessing the practical ap-
plicability and efficiency of the method when dealing with modern, 
voluminous genomic data.

1.5K SNP Rice Data

Following the Multiple Correspondence Analysis (MCA) proce-
dure, the resulting dimensional coordinates were used. Next, the 
Average Silhouette Method was applied, utilizing the coordinates 
from the top five dimensions (based on proportion of inertia) to 
find the optimal number of clusters. The Silhouette Coefficient 
reaches its maximum value at K=9 clusters, with the coefficient 
exceeding 0.5, suggesting an acceptable clustering quality. There-
fore, subsequent calculations for this rice dataset used nine clus-
ters. With K=9 established, the accessions were subjected to both 
SOM and K-means clustering. The visualization of the clustering 
results is achieved by projecting the cluster accessions onto the 
2D scatter plot using the first two principal dimensions from MCA 
and colouring the points according to their cluster membership, as 
shown in (Figures 1&2). The results show notable differences, with 
the K-means clustering exhibiting a higher degree of intermixing of 
accessions from different assigned clusters within the same spatial 
region compared to the SOM clustering.

Figure 1: Final clustering results for 1.5K Rice dataset based on the SOM algorithm.
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Figure 2: Final clustering results for 1.5K Rice dataset based on the k-means algorithm.

The SOM topology was set to a rectangular shape; testing 
showed that using a rectangular versus a hexagonal topology had 
no significant impact on the final core germplasm selection results 
for this study. The core germplasm selection method proposed in 
this study was applied to the resulting clusters. (Table 1) summariz-
es the results, comparing our method against Geno Core and Core 
Hunter 3. It is observed that our method, when compared to Geno 
Core (which stopped at 99% coverage), generally selects between 

1 and 5 more accessions than Geno Core. Specifically, the K-means-
based selection yielded 60 accessions, while the SOM-based selec-
tions yielded 63 and 64 accessions. The remaining performance 
metrics are comparable across our method and Geno Core. Core 
Hunter 3, constrained to select the same number of accessions (59), 
performed slightly worse than our proposed method only on the 
Minimum Modified Rogers Value (Min.MR).

Table 1: Core Germplasm Selection Results of Different Methods for the 1.5K Rice Dataset.

Method size MR Min.MR SH CV
Time

(sec)

Geno Core 59 0.2363 0.1192 7.9910 99.0147 35.5429

corehunter3 59 0.2395 0.1464 7.9791 97.0125 48.0344

K means 60 0.2411 0.1154 7.9911 99.0338 28.5933

K means(max) 60 0.2303 0.1271 7.9965 99.0148 29.1795

Som 63 0.2429 0.0859 7.9837 99.0211 32.7130

Som (max) 64 0.2493 0.0866 7.9866 99.0338 33.4937

This difference is expected, as Core Hunter 3 explicitly uses the 
Min.MR as a primary optimization criterion, whereas our method 
primarily focuses on maximizing coverage. Computation time for 
this small dataset was negligible for all methods (in the order of 
seconds), and the minor differences in speed are likely within the 
margin of error, making them practically indistinguishable (Fig-
ure 3). Illustrates the coverage growth efficiency for each method, 
showing the accumulated coverage as accessions are sequentially 
added to the core set. While the growth efficiency of our method 

is slightly lower than that of Geno Core, it remains stable and rap-
id, eventually achieving near 100% coverage. Core Hunter 3 shows 
the slowest growth curve and the lowest final coverage among the 
three. Although the figure plots all four variants of our method 
(K-means/SOM × max/min CS), only the max CS curves for K-means 
and SOM are distinctly visible. This is because the corresponding 
min CS curves are virtually overlaid, demonstrating that the choice 
between maximizing or minimizing CS has a small impact on cover-
age growth efficiency.
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Figure 3: Coverage values versus the number of selected samples for each software in the 1.5K Rice dataset.

The difference in initial clustering method (K-means vs. SOM) 
likely has a greater influence on the initial core accessions select-
ed. The Venn Diagram quantifies the overlap in selected accessions 
(Figure 4). For simplicity and given the minimal observed differ-
ence, only the max CS selection variant of our method is included. 

The diagram confirms that Core Hunter 3 has the most distinct se-
lection, contributing 18 unique accessions. In contrast, our method 
and Geno Core share over 86% of their core accessions, with each 
having only a small number (3-6) of unique accessions.

Figure 3: Coverage values versus the number of selected samples for each software in the 1.5K Rice dataset.
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14K SNP Wheat Data

The second dataset analysed is the 14K SNP Wheat data, which 
represents a significantly larger volume of information compared 
to the previous 1.5K SNP data. Following the established procedure, 
MCA was first performed to obtain the dimensional coordinates for 
each accession. The optimal number of clusters, k=5, maximizes the 
average silhouette score, and the 556 accessions were then parti-
tioned into five clusters. Clustering was subsequently performed 
using both SOM and K-means (Figures 5&6). Similar to the 1.5K 

Rice results, K-means clustering showed a greater degree of inter-
mixing among different cluster assignments (Table 2). Shows that 
Geno Core selected 89 core accessions. Our method selected slight-
ly more: the SOM (max CS) variant selected 92 accessions, while the 
others, K-means and SOM (min CS), selected 91 accessions. Regard-
ing the evaluation metrics, the K-means (max CS) variant demon-
strated superior performance over Geno Core across all metrics. 
However, our method’s Min.MR and SH values were slightly lower 
than those achieved by Core Hunter 3.

Table 2: Core Germplasm Selection Results of Different Methods for the 14K Wheat Dataset.

Method size MR Min.MR SH CV
Time

(min)

Geno Core 89 0.1830 0.0774 9.5460 99.0082 7.8771

corehunter3 89 0.1837 0.1367 9.7994 86.5428 0.6921

km0065ans 91 0.1822 0.0776 9.5421 99.0106 13.6298

K means(max) 91 0.1847 0.0777 9.5575 99.0153 12.6858

Som 91 0.1819 0.0772 9.5370 99.0047 13.4388

Som (max) 92 0.1843 0.0773 9.5502 99.0129 12.8916

Figure 4: Venn diagram for the 1.5K Rice dataset.
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Figure 6: Final clustering results for 14K Wheat dataset based on the k-means algorithm.

Figure 5: Final clustering results for 14K Wheat dataset based on the SOM algorithm.

Furthermore, Core Hunter 3 was the fastest method, requiring 
only 0.69 minutes, compared to Geno Core’s 7.88 minutes and our 
method’s 12–13 minutes. This difference in performance and speed 

stems from the distinction in optimization criteria: Core Hunter 3 
uses the Min.MR as a major selection standard, while our method 
and Geno Core prioritize maximizing Coverage. The time discrep-
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ancy is likely due to Core Hunter 3’s use of a stochastic (random-
ized) selection process, which is more flexible and unstable in its 
stopping time (Figure 7). Illustrates the coverage growth efficien-
cy. Similar to the 1.5K Rice data, our method and Geno Core show 
comparable, rapid, and stable growth curves, whereas Core Hunter 
3 exhibits a noticeably slower rate of coverage accumulation. Ad-
ditionally, the selection curves for the same clustering method are 

almost perfectly overlapped, further confirming that the choice be-
tween maximizing or minimizing the CS value has little effect on 
the final coverage efficiency. The Venn Diagram (Figure 8) shows 
that Core Hunter 3 again has the largest difference, with 69 unique 
accessions. The other two methods (Geno Core and our method) 
show high agreement, sharing over 80% of the accessions, with 
only 7-8 unique accessions each.

Figure 7: Coverage values versus the number of selected samples for each software in the 14K Wheat dataset.

Figure 8: Venn diagram for the 14K Wheat dataset.
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37K SNP Rice Data

The 37K SNP Rice data contains more than twice the amount of 
information compared to the previous Wheat dataset. Calculating 
the optimal number of clusters via the average Silhouette method 
showed that the Silhouette coefficient reached its maximum value 
at K=7, with a value exceeding 0.6, which is deemed acceptable for 
clustering. Following this result, the 413 accessions were parti-
tioned into seven clusters using both SOM and K-means (Figures 
9&10). As shown in the Figures, the distribution of the 413 acces-

sions generated from the MCA coordinates exhibits a triangular dis-
tribution, but the tendency for accessions to aggregate at the three 
corner vertices appears even more pronounced than the 1.5K SNP 
Rice data. Similar to the 1.5K Rice data, one spatial region shows 
particularly high diversity, leading to more complex cluster bound-
aries. After clustering, core germplasm was selected, and the quali-
ty of the resulting core sets from all methods was compared (Table 
3). Geno Core selected 96 accessions and our method selected one 
more accession across all variants, resulting in 97 accessions.

Table 3: Core Germplasm Selection Results of Different Methods for the 37K Rice Dataset.

Method size MR Min.MR SH CV
Time

(min)

Geno Core 96 0.1572 0.0157 10.5323 99.0068 22.7655

corehunter3 96 0.1697 0.0906 10.6179 94.5026 18.5933

K means 97 0.1571 0.0158 10.5386 99.0136 34.0492

K means(max) 97 0.1573 0.0158 10.5419 99.0104 39.1785

Som 97 0.1572 0.0158 10.5421 99.0113 38.4628

Som (max) 97 0.1572 0.0158 10.5427 99.0109 38.7124

Figure 9: Final clustering results for 37K Rice dataset based on the SOM algorithm.
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Figure 11: Coverage values versus the number of selected samples for each software in the 37K Rice dataset.

Figure 10: Final clustering results for 37K Rice dataset based on the k-means algorithm.
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Regarding the other metrics, the results demonstrate that our 
method generally outperforms Geno Core. However, as the data 
volume increases, the computational time for our method also 
increases, requiring 12 to 17 minutes more than Geno Core. Core 
Hunter 3, despite being the fastest (only 18 minutes, 4 minutes less 
than Geno Core), clearly shows superior performance in all metrics 
except Coverage. As discussed with the 14K SNP Wheat data, Core 
Hunter 3’s stopping criterion is likely the cause of its low coverage. 
In this dataset, surprisingly, despite the SNP count being more than 
double the Wheat data, Core Hunter 3’s coverage deficit is smaller 
(94.5% coverage compared to 86.5% for the Wheat data, while the 
others reached 99%). This may be related to the more concentrated 
distribution of accessions in the MCA plot compared to the other 
two datasets. Since most data points are located near the three ver-
tices, it might have been easier for Core Hunter 3, with its stochastic 
selection process, to randomly find accessions that achieve a cer-

tain level of coverage more quickly (Figure 11). Shows the Coverage 
Growth Efficiency, which yields similar results to the previous two 
datasets: our method and Geno Core show comparable, fast, and 
stable growth, while Core Hunter 3’s growth is notably slower.

This phenomenon is likely due to the specific optimization cri-
teria of Core Hunter 3 used in this simulation, which focuses on 
both the minimum distance between core accessions and the dis-
tance between unselected accessions and the core set. This may 
lead it to Favor accessions located at a certain optimal intermediate 
distance from others, rather than those at the extreme edges, which 
is visually supported by a slight tendency to avoid peripheral ac-
cessions. The Venn Diagram (Figure 12), reinforces these findings: 
Core Hunter 3 selected 54 accessions that were unique to its core 
set. The other two methods (Geno Core and our method) showed a 
high degree of overlap, sharing over 95.8% of their accessions, with 
only a 2 or 3 accession difference.

820K SNP Wheat Data

Finally, we analyse the high-density 820K SNP Wheat dataset. 
Based on the comparative results from the previous three datasets, 
only the relatively best-performing variant of our method, K-means 
(max CS), is used as the representative for this analysis. Due to the 
sheer size of this dataset, the Multiple Correspondence Analysis 
(MCA) procedure was slightly modified: the calculation of dimen-
sional coordinates employed the Burt Matrix method instead of the 
indicator matrix. While both methods yield similar relative posi-

tions, the coordinate values calculated using the Burt Matrix meth-
od have a smaller numerical range. Although the optimal number of 
clusters was found to be K=2 using the average Silhouette method, 
K=3, which yielded the second-highest silhouette value, was also 
included for analysis. The K-means algorithm was applied to parti-
tion the data into K=2 and K=3 clusters (Figure 13). The three-clus-
ter result separates the accessions on the right into an additional 
distinct group (Table 4). Shows the performance metrics for core 
germplasm selection results.

Figure 12: Venn diagram for the 37K Rice dataset.
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Figure 13: Final clustering results for 820K Wheat dataset based on the k-means algorithm. The left panel corresponds to the clusters of 2, 
the right panel to the clusters of 3.

Table 4: Core Germplasm Selection Results of Different Methods for the 820K Wheat Dataset. 

Method size MR Min. MR SH CV
Time

(hr)

Geno Core 39 0.1458 0.0495 13.1281 99.0185 6.5517

corehunter3 39 0.1523 0.0539 13.3315 97.0793 0.0689

K means(max) 

2 clusters
39 0.1457 0.0493 13.1233 99.0109 4.4917

K means(max) 

3 clusters
40 0.1435 0.0492 13.1317 99.0223 4.5067

For this dataset, Core Hunter 3 again outperformed Geno Core 
and our method on all metrics except Coverage. Intriguingly, Core 
Hunter 3’s coverage reached 97.07%, a performance that is atyp-
ically high compared to its previous results. As with the 37K Rice 
data, this phenomenon is likely due to the concentrated distribu-
tion of accessions and the low inherent diversity of the markers. A 
detailed examination of the 819,570 SNP markers showed a high 
frequency of markers with few genotype categories: 144,824 mark-
ers had only one category, 513,709 had only two, and only 161,037 
had three categories. This implies that, excluding missing values, 
selecting a single accession instantly achieves 55.56% coverage, 
compared to only 38.11% for the 14K Wheat data. This suggests 
that achieving a high level of coverage is relatively easy in this 
dataset. The underlying cause of this marker distribution is likely 
high-density SNP analysis, where a strong Linkage Disequilibrium 
(LD) exists between tightly linked SNPs, meaning little or no recom-

bination has occurred.

In addition, the results of our method with K=3 clusters showed 
an increase in both Shannon’s Diversity Index and Coverage. In 
terms of Computational Time, the results here differ from the previ-
ous two datasets. For the 14K Wheat and 37K Rice data, our method 
was slower than Geno Core. However, using the Burt Matrix for MCA 
significantly reduced the time required for this 820K dataset, mak-
ing our method approximately two hours faster than Geno Core. 
Core Hunter 3 was remarkably fast, requiring only 4.134 minutes, 
suggesting that algorithms incorporating stochastic selection may 
hold a decisive advantage when dealing with very large datasets ex-
hibiting low marker diversity. The Coverage Growth Efficiency plot 
is omitted as it did not show significant differences from previous 
results. The Venn Diagram (Figure 14) shows that Core Hunter 3 
selected 23 unique accessions, while the other two methods shared 
over 84.6% of their core accessions.
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Figure 14: Venn diagram for the 820K Wheat dataset.

Conclusion

The results obtained across the four datasets demonstrate 
that while the differences between the selection methods were not 
especially significant for the smallest 1.5K SNP Rice data, the dis-
tinctions became more pronounced as the data volume increased. 
Overall, our proposed method consistently improves upon Geno 
Core’s performance on three key metrics, Shannon’s Diversity In-
dex, Mean Modified Rogers Value, and Minimum Modified Rogers 
Value, while maintaining the standard of 99% coverage. However, 
our method typically requires slightly more computational time 
than Geno Core, increasing by approximately 0.5 times depending 
on the dataset size. For the current researches, the total execution 
time remains within an acceptable range. Notably, when the Burt 
Matrix method is used for coordinate calculation (as with the mas-
sive 820K SNP Wheat data), the computational burden is signifi-
cantly reduced, resulting in a processing time approximately two 
hours faster than Geno Core.

The primary selection criterion of our proposed method is 
maximizing Coverage. Consequently, it generally does not match 
the performance of Core Hunter 3 on the other three diversity and 
distance metrics. Core Hunter 3 explicitly optimizes for these met-
rics by considering the distance between core accessions and the 
distance between unselected and core accessions. However, in the 
fundamental goal of core collection creation-that is, capturing the 
maximum amount of genetic information from the original popula-
tion-our proposed method significantly outperforms Core Hunter 

3, which frequently failed to reach the 99% coverage standard due 
to its stochastic selection process and stopping criteria. Future im-
provements will focus on incorporating more precise cluster anal-
ysis and refining selection standards by considering measures of 
inter-accession distance to further maximize the genetic distance 
within the core collection.
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