Workd fourne of
Agriculture &
Soil Science

ISSN: 2641-6379
World Journal of
Agriculture and Soil Science

Research Article

DOI: 10.33552/WJASS.2025.09.000722

Iris Publishers

Copyright © All rights are reserved by Chen-An Tsai

Clustering-based Method for Core Germplasm
Collection Constructing via Multiple Correspondence
Analysis

Nien-Lun Wu, and Chen-An Tsai*

*Department of Agronomy, National Taiwan University, Taiwan

Taiwan University, Taiwan

*Corresponding author: Chen-An Tsai, Department of Agronomy, National

Received Date: October 29, 2025
Published Date: November 06, 2025

Abstract

The concept of a core collection, introduced by Frankel in 1984, aims to capture maximum genetic diversity within a minimum number of

accessions. While many selection methods exist, the massive datasets generated by Next-Generation Sequencing (NGS) technologies have made
some traditional approaches computationally prohibitive. In this study, we propose a new, efficient algorithm for selecting a core set of lines from
large genotype datasets based on clustering algorithms. Our goal is to maximize genetic diversity for a user-defined collection size. The method
integrates Multiple Correspondence Analysis (MCA) for refined cluster analysis and adapts the successful selection strategy of the Geno Core
algorithm as a foundation.

We evaluate the performance of our proposed method against two established algorithms, Geno Core and Core Hunter 3, using four diverse
Single Nucleotide Polymorphism (SNP) datasets ranging from 1.5K to 820K SNPs. Quality is assessed using five criteria: coverage rate, Shannon’s
diversity index, mean modified Roger’s value, minimum modified Roger’s value, and computational efficiency (time). The experiment results
demonstrate the superior performance of our method. While maintaining a high coverage rate (e.g., 99%), our algorithm consistently achieves a
higher quality core collection than Geno Core and a higher coverage rate than Core Hunter 3. Critically, our approach successfully processes all four
large datasets in a reasonable timeframe, addressing the bottleneck of NGS data analysis.

Keywords: Core collection; next-generation sequencing (NGS); multiple correspondence analysis; cluster analysis; single nucleotide polymorphism
(SNP)

Introduction

The conservation of genetic resources for plant and agricul-
tural species is a crucial task, particularly in the face of rapid en-
vironmental changes. To address this need, numerous countries
have established gene banks to collect and preserve germplasm,
thereby safeguarding genetic diversity. However, as the volume and
complexity of collected resources grow, more efficient methods for

@ 1’;@ This work is licensed under Creative Commons Attribution 4.0 License |W]ASS.MS.ID.000722.

management, classification, and selection are essential. Optimiz-
ing the limited storage space requires selection strategies that re-
tain the maximum possible genetic diversity [1]. In response, the
concept of the core collection was proposed [2]. He defined a core
collection as a small set of accessions that represents the complete
genetic diversity of a species, including its wild relatives, with mini-
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mal redundancy. Beyond its primary use in gene bank resource con-
servation, the core collection concept serves as a highly effective
tool for researchers to select experimental materials and assess ge-
netic variation. This approach reduces the required sample size for
analysis, leading to significant savings in time and resources. Since
its inception, the selection of core collections has been extensively
studied by numerous scholars [3-5].

These efforts have yielded a variety of selection methods, em-
ploying different criteria to achieve the goal of establishing a small-
sized core collection that captures the entire genetic diversity of
the target germplasm. While there is no rigid limit on the size of a
core collection, which can be adjusted based on its intended pur-
pose, published core collections generally comprise between 5%
and 20% of the initial accessions [6]. Early core collection selection
software, such as MSTRAT [3], Power Core [4], and Core Hunter [5],
primarily relied on phenotypic data, often complemented by limit-
ed genotypic data, due to the less-developed sequencing technol-
ogies of the time. However, the rapid advancement of Next-Gener-
ation Sequencing (NGS) and microarray technologies has made it
relatively easy for researchers to identify extensive sequence vari-
ation among individuals. Given the direct link between genotype
and phenotype, current core collection selection is increasingly
focused on large-scale genotype data. This shift has introduced a
major challenge: the genotype data, often comprised of thousands
or even hundreds of thousands of genetic markers (e.g., Single Nu-
cleotide Polymorphisms or SNPs), has become enormously vast.
Consequently, many previously effective analysis methods are no
longer computationally feasible or efficient for handling such mas-
sive datasets.

To address this computational bottleneck, the Geno Core algo-
rithm was first developed specifically for selecting core collections
from large categorical datasets (i.e., genotypic data) [7]. Unlike
some methods that focus on selecting rare alleles, Geno Core pri-
oritizes the selection of common alleles. The rationale behind this
strategy is the authors’ view that most traits of current interest
are complex traits, influenced by polygenic inheritance and envi-
ronmental interactions, rather than being controlled by single rare
alleles. This selection strategy is designed to effectively increase
the genetic coverage of the core collection, thus achieving the goal
of high genetic diversity. In this study, we propose a new core col-
lection selection method for large genotype datasets by integrating
the selection strategy of Geno Core with cluster analysis. This nov-
el approach is designed to rapidly and efficiently select accessions
that are evenly distributed and genetically distant from one anoth-
er within the initial sample, and it can be implemented efficiently
in R. We validate our method using four diverse Single Nucleotide
Polymorphism (SNP) datasets: 14K SNP wheat data, 1.5K SNP and
37K SNP rice data, and a high-density 820K SNP wheat dataset. The
results are comprehensively compared against those obtained from
the state-of-the-art methods, Geno Core [7] and Core Hunter 3 [8].

Materials and Methods
Introduction to the Datasets Used

This study utilizes four genotypic datasets, which can be cate-
gorized into four progressively larger sets based on data volume.
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As noted in the introduction, the information volume requiring
processing has increased significantly with the development of
next-generation sequencing technology. Both Geno Core and the
method proposed in this study were developed in response to this
situation. We use these four genotypic datasets to observe whether
the core germplasm results obtained using the method proposed
in this study maintain the expected screening quality despite the
significant differences in the size of the original datasets, and
whether the processing time remains within an acceptable range.
Furthermore, we compare the results of different methods across
these varying data sizes. In this section, we will list the data source,
the number of SNP markers, and the number of accessions for each
dataset

1.5K Rice SNP Data

This dataset is the smallest in terms of data volume used in this
study. Its source is the Rice Diversity website (http://www.ricedi-
versity.org/index.cfm). It contains 1,536 markers and 395 acces-
sions, with no missing values.

14K Wheat SNP Data

This dataset is a sample dataset provided to users on the Geno
Core GitHub repository (https://github.com/lovemun/GenoCore/
find/master). This sample was reduced from the 35K Axiom® Ar-
ray data available on Cereals DB (http://www.cerealsdb.uk.net/
cerealgenomics/CerealsDB/indexNEW.php). The original 35K data
was generated by sequencing 35,143 SNPs across hexaploidy and
tetraploid wheat accessions, but the specific criteria for this reduc-
tion are not detailed in the sample data. This dataset has 14,099
markers and 556 accessions, with 3.34% missing values.

37K Rice SNP Data

The source of this dataset is the same as the 1.5K Rice SNP Data,
specifically the 44K SNP set from Rice Diversity (http://www.rice-
diversity.org/index.cfm). This data is the result of a genome-wide
association study (GWAS) that sequenced 44,100 SNPs in rice ac-
cessions collected from 82 countries. It contains 36,901 markers
and 413 accessions, and is thus referred to as 37K Rice in this the-
sis, with 3.77% missing values.

820K Wheat SNP Data

This dataset originates from the 820K Axiom® Array data on
Cereals DB (http://www.cerealsdb.uk.net/cerealgenomics/Cere-
alsDB/indexNEW.php). This data was generated from hexaploidy
wheat accessions, diploid and tetraploid progenitors, and some
closely related wheat species, and was originally used for identi-
fying and tracking introgression in hexaploidy wheat. It contains
819,570 molecular markers and 475 accessions, with 1.59% miss-
ing values.

Proposed Core Germplasm Selection Algorithm

In the Methods section, we will describe the core germplasm
selection algorithm used in this study, which is primarily divided
into four sequential steps:

Step 1: Calculating Relative Coordinates of Accessions

The first step is to calculate the relative coordinates for each ac-

Page 2 of 17


http://dx.doi.org/10.33552/WJASS.2025.09.000722

World Journal of Agriculture and Soil Science Volume 9-Issue 5

cession based on its similarity to all other accessions. For this study,
Multiple Correspondence Analysis (MCA) is selected as the method
for calculating these coordinates. It transforms the multi-category
genotypic data (where each SNP marker is a variable and each allele
is a category) into a set of relative coordinates for each accession.
These coordinates essentially capture the genetic relationships and
structure within the germplasm. The resulting low-dimensional co-
ordinates are then used as the numerical input for subsequent clus-
tering methods (like Self-Organizing Map and K-means) to partition
the accessions based on their genetic similarity.

Step 2: Determining the Optimal Number of Clusters

Using the accession coordinates obtained in Step 1, a distance
matrix is calculated to establish the clustering criterion. The Aver-
age Silhouette score is then used to estimate the optimal number of
clusters suitable for the data.

Step 3: Accession Clustering

The third step involves performing the actual clustering based
on the results from Step 2. In this study, two distinct clustering
methods are used for this step: Self-Organizing Map (SOM) and the
K-means algorithm. The differences between the results generated
by these two methods will be discussed.

Step 4: Core Germplasm Selection

The final step for selecting the core germplasm is adapted from
the selection method used in Geno Core [7].

a) Initial Selection: First, from the clustered results obtained in
Step 3, one accession with the lowest number of missing values
is selected from each cluster and added to the core germplasm.

b) Subsequent Selection: Next, disregarding the clusters, the al-
gorithm iteratively selects the accession from the remaining
set that has the greatest genetic dissimilarity to the accessions
already present in the current core germplasm.

The detailed operational procedures for this methodology will
be explained in the subsequent content.

Multiple Correspondence Analysis (MCA)

MCA is the categorical data equivalent of Principal Component
Analysis (PCA) [9]. It transforms the categorical data into a set of
coordinates in a low-dimensional space to allow for visualization
and analysis of the underlying structure, particularly the associa-
tions between the different categories and the similarity between
individuals (accessions). The SNP data is initially represented by
the indicator matrix X, often called the Complete Disjunctive Table
(CDT). Each element of X is a binary value (0 or 1) recording the
presence of a specific accession within a given category. Each row
represents the individual accessions (subjects) and each columns
represents the categories (alleles/genotypes) of every variable
(SNP marker). A value of 1 in a cell indicates that the accession pos-
sesses that specific category (e.g., a specific allele at a certain SNP)
and 0 indicates it does not. If you have N accessions and M discrete
variables (SNP markers), where the j-th variable has K categories
(e.g., A/A, A/G, G/G for a tri-allelic SNP), the total number of col-

umns in the indicator matrix will be J = E%K}.. As noted, for large
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genotypic datasets (where the number of SNP markers is high), the
indicator matrix X can become extremely large, making the direct
application of Correspondence Analysis (CA) to X computationally
intensive and time-consuming. To efficiently overcome the com-
putational burden of a large indicator matrix, the Burt matrix B is
employed. The Burt matrix is derived as the cross-tabulation of the
indicator matrix X with its categorical variables, often calculated as

B=X'X. ()

This matrix summarizes the relationships between all pairs of
SNP markers, dramatically reducing the size of the matrix used for
the core MCA computation, thus saving significant time and compu-
tational resources. The core of MCA involves an Eigenvalue Decom-
position (EVD) of the standardized Burt matrix. The central Burt
matrix is often defined for simplified computation as:

E — D71/23D71/2 _1 (2)

where D is the diagonal matrix of the column proportions of
the k-th SNP. The Eigenvalue Decomposition (EVD) is applied to the
transformed matrix E to find the principal axes.

E=UAU', (3

where A is a diagonal matrix containing the eigenvalues A, for
i=1,....J, representing the inertia (variance) explained by each di-
mension; and U is a matrix whose columns contain the eigenvec-
tors v, for i=1,...,J. Finally, the principal coordinates G, which are the
actual coordinates used for the graphical interpretation (the scatter
plot), are obtained by scaling the eigenvectors by the square root of
the non-trivial eigenvalues:

G=D"UA". (4)

The Inertia (total variance) in the data is equal to the sum of all
non-trivial eigenvalues. The proportion of inertia explained by the
i-th dimension is:

A,

f=s A

©)

where m is the total number of non-trivial dimensions. This
value indicates the amount of variability captured by that dimen-
sion. A higher percentage of inertia for a dimension indicates that it
represents a greater degree of the association (or underlying struc-
ture) among the SNP markers in the dataset. This helps researchers
select the most important dimensions for interpretation and visu-
alization.

In our proposed algorithm, MCA serves two primary functions:

a) Coordinate Calculation: It transforms the multi-category ge-
notypic data (where each SNP marker is a variable and each
allele is a category) into a set of relative coordinates for each
accession. These coordinates essentially capture the genetic
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relationships and structure within the germplasm.

b) Input for Clustering: The resulting low-dimensional coordi-
nates are then used as the numerical input for subsequent
clustering methods (like Self-Organizing Map and K-means) to
partition the accessions based on their genetic similarity.

Clustering Methods

Once the low-dimensional coordinates were obtained, the data
was subjected to clustering using two common clustering algo-
rithms: k-means and Self-Organizing Map (SOM). Clustering meth-
ods are unsupervised learning techniques used to group data points
into subsets (clusters) such that data points in the same cluster are
more similar to each other than to those in other clusters. The goal
is to discover inherent groupings and patterns in the data without
prior knowledge of labels. K-means [10,11] is a popular, simple, and
efficient partitioning clustering algorithm. Its goal is to partition N
observations into a predefined number of K clusters, minimizing
the within-cluster sum of squares (WCSS). The K-means cluster-
ing’s operational process is as follows:

a) Initialize K centroids randomly.

b) Assignment: Assign each data point to the cluster whose cen-
troid is nearest (usually based on Euclidean distance).

c¢) Update: Recalculate the new centroid for each cluster as the
mean of all data points assigned to that cluster.

d) Repeatsteps 2 and 3 until the centroids no longer move signifi-
cantly or a maximum number of iterations is reached.

The limitations of K-means clustering include that the number
of clusters (K) must be specified beforehand, and the result can be
sensitive to the initial random placement of the centroids and the
presence of outliers.

A Self-Organizing Map (also known as a Kohonen map) [12,13]
is an unsupervised neural network used primarily for clustering
and dimensionality reduction. It maps high-dimensional data onto
alow-dimensional space (typically a 2D grid of neurons) while pre-
serving the original data’s topological properties (i.e., data points
that are close in the input space are mapped to neighbouring neu-
rons on the grid). The SOM’s operational process is as follows:

a) Initialize the weight vectors of all neurons (nodes) on the 2D
grid.

b) Competition (Find BMU): For each input vector, find the neu-
ron whose weight vector is closest to it-this is the Best Match-
ing Unit (BMU).

c¢) Cooperation/Adaptation: Update the weight vector of the BMU
and its neighbouring neurons on the grid to move closer to the
input vector. The degree of update decreases with distance
from the BMU and with time (epochs).

d) Repeatsteps 2 and 3 until convergence.

SOMs are effective for visualization and can handle non-linear
data relationships better than K-means, as the grid structure explic-
itly models the data’s topology. The neighbourhood update rule is
the key difference from K-means (which only updates the winning
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centroid).

Prior to clustering, the optimal number of clusters is assessed
using the Average Silhouette Method [14]. Data is first clustered
using the cluster algorithms above, testing a user-defined range of
cluster numbers (k). For each data point i, a silhouette value, s(i), is
calculated using the following formula:

() = b(i)—a(i)
 max{a(i),b(i)}”

(6)

where a(i) is the average distance between data point i and all
other data points within its own cluster and b(i) is the average dis-
tance between data point i and all data points in the nearest neigh-
bouring cluster (the cluster to which i is not assigned but is closest).
From the formula, the silhouette value s(i) ranges from -1 to +1. A
value close to +1 indicates that the data point is well-clustered: it is
close to other points in its own cluster and far from points in oth-
er clusters, representing an ideal state of high within-cluster simi-
larity and low cross-cluster similarity. Conversely, a value close to
-1 indicates that the data point is poorly clustered: it is dissimilar
to points in its own cluster and is closer to points in a neighbour-
ing cluster, suggesting a poor clustering outcome. To evaluate the
overall quality of a clustering solution, the Average Silhouette Coef-
ficient is computed by taking the mean of the silhouette values for
all data points:

s, ()

where N is the total number of data points. The process is re-
peated for each tested value of k. The value of k that yields the max-
imum Average Silhouette Coefficient is determined to be the esti-
mated optimal number of clusters for the dataset. In this study, the
distance a(i) and b(i) are calculated using the Euclidean distance
between the coordinates of the observation categories derived
from the preceding Multiple Correspondence Analysis (MCA).

Method for Core Germplasm Selection

The method for selecting core germplasm in this study is adapt-
ed from the Geno Core approach [7]. The core germplasm selecting
procedure is as follows:

Step 1: Initial Selection from Clusters. The clustering per-
formed in the preceding steps yields k groups of accessions
with similar characteristics. Following the Geno Core approach,
the accession with the fewest missing data (NA values) is ini-
tially selected from each of these k clusters. This results in an
initial set of k selected accessions.

Step 2: Tie-breaking using Coverage Score (CS) If multiple ac-
cessions within a cluster have an equal (minimum) number of
missing values, their coverage score (CS) is calculated to break
the tie. This step introduces a modification to the original Geno
Core method: instead of strictly minimizing CS, this study ex-
plores two distinct selection strategies for observation: Select-
ing the accession with the minimum CS or Selecting the acces-
sion with the maximum CS.
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Step 3: Tie-breaking using Diversity Score (DS) If a tie still ex-
ists after calculating the CS (i.e., multiple accessions have the
same CS value), the diversity score (DS) is calculated. The ac-
cession with the minimum DS is selected. If duplicates still ex-
ist, random selection is performed. After this step, a total of k
accessions is selected, where k is the number of clusters. The
coverage score [Cj) and diversity score (D’.) are defined as fol-
lows:

j= —n(]jvj)y ;o ®
) - —C.)
D = leN/-(f; i ]) ’ (9)
/ n(N,)

where figij is the genotype frequency 9; for the i-th marker and
J-th accession, N, is the set of non-missing genotype markers
in the j-th accession, and n(Nj) is the number of elements in N,

Step 4: Greedy Selection Pool Initialization. All unselected ac-
cessions are aggregated into a single group. The marker types
identical to those already present in the initial k core accessions
are converted to missing values (NA) within this unselected
pool. The accession from this pool with the minimum number
of remaining missing values is selected. This process ensures
that the next chosen accession contributes the maximum num-
ber of novel marker types to the core set.

Step 5: Iterative Core Set Expansion. This step repeats the logic
from Step 3: the marker types of the newly selected accession are
converted to NA values in the remaining unselected pool. The ac-
cession with the fewest NA values is then chosen. In the event of a
tie, the selection proceeds in the order of CS and DS (as detailed in
Step 3). This iterative expansion continues until the total genetic
coverage of the core set reaches a predefined standard of 99%, at
which point the loop is terminated.

Core Collection Evaluation Indices

Four performance metrics are used in this study to evaluate and
distinguish the quality of the selected core germplasm. Following
the approach of Geno Core, the following indices are calculated:
Coverage, Shannon’s Diversity Index, Mean Modified Rogers Value,
and Minimum Modified Rogers Value.

Coverage

Coverage assesses the percentage of distinct marker genotypes
present in the original dataset that are successfully captured by the
selected core collection. The formula is given by:

Ly GO

CV= ,
m G, (i)

(10)

where m is the total number of SNP markers, G (i) is the num-
ber of distinct genotypes for the i-th marker in the core collection,
and G (i) is the number of distinct genotypes for the i-th marker in
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the original germplasm dataset. A higher coverage value indicates
that the core collection encompasses a greater variety of genotypes,
thus more completely preserving the genetic resources of the orig-
inal collection.

Shannon’s Diversity Index (SH)

Shannon’s Diversity Index (SH), also known as the Shan-
non-Wiener Index, is used to estimate the level of genetic diversity
within the collection. In this study, each genotype under a molecu-
lar marker is considered a distinct “species” or type. The formula
is applied for each marker and then averaged across all markers:

m G (i)

SH =% % p;In(p,),

i=1 j=1

(1

where G, (i) is the number of distinct genotypes for the i-th
marker in the core collection and p;is the frequency of the j-th gen-
otype under the i-th marker. The index considers both the number
of types and their relative frequencies (evenness). A larger index
indicates higher estimated genetic diversity. The SH value reaches
it's maximum when all genotype frequencies within the population
are equal, representing the most stable and diverse state.

Mean Modified Rogers Value (MR)

The Modified Rogers Distance dxy is a measure of genetic dis-
tance between two accessions, x and y, based on genotypic data.
The formula is:

[
de - E\/zzﬁl (P _pyi)z’ (12)

where p  and p, are the frequencies of the i-th marker for ac-
cession x and accession y, respectively. The Mean Modified Rogers
Value (MR) for the core collection is the average of the pair-wise
Modified Rogers Distances calculated among all accessions within
the core collection.

MR = Average(d.,), 13)

for all pairs i, j in the core collection. A larger MR value
indicates that the selected accessions in the core collection are,
on average, more dissimilar from one another, suggesting a more
efficient representation of the overall genetic variation.

Minimum Modified Rogers Value (Min.MR)

The Minimum Modified Rogers Value uses the same distance
measure as the MR but focuses on the smallest distance found be-
tween any pair of accessions within the core collection.

MinMR=Min(d,),  (14)

for all pairs i, j in the core collection. A larger Min.MR value
guarantees that the accessions are at least separated by a minimum
distance. This metric is crucial because it guards against a scenar-
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io where the MR is high due to a few widely dispersed accessions,
while the minimum distance remains near zero (meaning some ac-
cessions are nearly identical), a situation that may be hidden when
observing only the average (MR).

Results and Discussion

In this section, a comparative analysis of different selection
methods will be performed across the four datasets utilized in this
study, namely: Rice with 1.5K SNPs, Wheat with 14K SNPs, Rice
with 37K SNPs, and Wheat with 820K SNPs. The comparison pro-
ceeds sequentially from the smallest to the largest dataset. Follow-
ing the methodological steps outlined in the previous section, the
results for each dataset will be presented as follows:

a) Multiple Correspondence Analysis (MCA): The results of the
MCA, which transforms the data into two-dimensional coordi-
nates for clustering, will be displayed in a 2D scatter plot.

b) Optimal Cluster Number: The optimal number of clusters, as
determined by the Average Silhouette Method, will be report-
ed.

c) Clustering Results: The results of the clustering using two dif-
ferent clustering approaches will be presented.

d) Core Collection Selection: The resulting core accessions ob-
tained from the selection procedure applied to the two differ-
ent clustering results will be listed.

After describing the selection outcomes for this study’s meth-
od, the results will be compared against two established methods
from the literature: Geno Core and Core Hunter 3. For this com-
parison, the operational settings for the established methods are
as follows: 1. Geno Core is configured to stop selection when 99%

coverage is achieved. 2. Core Hunter 3 is configured to select the
same number of accessions as determined by the Geno Core run,
with all other parameters set to the program’s default values. The
comparison will be based on the four-performance metrics: Cover-
age, Shannon’s Diversity Index (SH), Mean Modified Rogers Value
(MR), and Minimum Modified Rogers Value (Min.MR). Further-
more, a key objective of the proposed method is to handle large-
scale genotyping data efficiently. Therefore, for each method and
dataset, the computational time and the final number of accessions
selected for the core collection will also be recorded and compared.
These additional factors are crucial for assessing the practical ap-
plicability and efficiency of the method when dealing with modern,
voluminous genomic data.

1.5K SNP Rice Data

Following the Multiple Correspondence Analysis (MCA) proce-
dure, the resulting dimensional coordinates were used. Next, the
Average Silhouette Method was applied, utilizing the coordinates
from the top five dimensions (based on proportion of inertia) to
find the optimal number of clusters. The Silhouette Coefficient
reaches its maximum value at K=9 clusters, with the coefficient
exceeding 0.5, suggesting an acceptable clustering quality. There-
fore, subsequent calculations for this rice dataset used nine clus-
ters. With K=9 established, the accessions were subjected to both
SOM and K-means clustering. The visualization of the clustering
results is achieved by projecting the cluster accessions onto the
2D scatter plot using the first two principal dimensions from MCA
and colouring the points according to their cluster membership, as
shown in (Figures 1&2). The results show notable differences, with
the K-means clustering exhibiting a higher degree of intermixing of
accessions from different assigned clusters within the same spatial
region compared to the SOM clustering.

e N
rice 1.5k som cluster
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Figure 1: Final clustering results for 1.5K Rice dataset based on the SOM algorithm.
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Figure 2: Final clustering results for 1.5K Rice dataset based on the k-means algorithm.
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The SOM topology was set to a rectangular shape; testing
showed that using a rectangular versus a hexagonal topology had
no significant impact on the final core germplasm selection results
for this study. The core germplasm selection method proposed in
this study was applied to the resulting clusters. (Table 1) summariz-
es the results, comparing our method against Geno Core and Core
Hunter 3. It is observed that our method, when compared to Geno
Core (which stopped at 99% coverage), generally selects between

1 and 5 more accessions than Geno Core. Specifically, the K-means-
based selection yielded 60 accessions, while the SOM-based selec-
tions yielded 63 and 64 accessions. The remaining performance
metrics are comparable across our method and Geno Core. Core
Hunter 3, constrained to select the same number of accessions (59),
performed slightly worse than our proposed method only on the
Minimum Modified Rogers Value (Min.MR).

Table 1: Core Germplasm Selection Results of Different Methods for the 1.5K Rice Dataset.

Method size MR Min.MR SH cv D
(sec)

Geno Core 59 0.2363 0.1192 7.9910 99.0147 35.5429
corehunter3 59 0.2395 0.1464 7.9791 97.0125 48.0344
K means 60 0.2411 0.1154 7.9911 99.0338 28.5933
K means(max) 60 0.2303 0.1271 7.9965 99.0148 29.1795
Som 63 0.2429 0.0859 7.9837 99.0211 32.7130
Som (max) 64 0.2493 0.0866 7.9866 99,0338 33.4937

This difference is expected, as Core Hunter 3 explicitly uses the
Min.MR as a primary optimization criterion, whereas our method
primarily focuses on maximizing coverage. Computation time for
this small dataset was negligible for all methods (in the order of
seconds), and the minor differences in speed are likely within the
margin of error, making them practically indistinguishable (Fig-
ure 3). [llustrates the coverage growth efficiency for each method,
showing the accumulated coverage as accessions are sequentially
added to the core set. While the growth efficiency of our method

Citation: Nien-Lun Wu, and Chen-An Tsai*. Clustering-based Method for Core Germplasm Collection Constructing via Multiple
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is slightly lower than that of Geno Core, it remains stable and rap-
id, eventually achieving near 100% coverage. Core Hunter 3 shows
the slowest growth curve and the lowest final coverage among the
three. Although the figure plots all four variants of our method
(K-means/SOM x max/min CS), only the max CS curves for K-means
and SOM are distinctly visible. This is because the corresponding
min CS curves are virtually overlaid, demonstrating that the choice
between maximizing or minimizing CS has a small impact on cover-
age growth efficiency.
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Figure 3: Coverage values versus the number of selected samples for each software in the 1.5K Rice dataset.

The difference in initial clustering method (K-means vs. SOM)
likely has a greater influence on the initial core accessions select-
ed. The Venn Diagram quantifies the overlap in selected accessions
(Figure 4). For simplicity and given the minimal observed differ-

The diagram confirms that Core Hunter 3 has the most distinct se-
lection, contributing 18 unique accessions. In contrast, our method
and Geno Core share over 86% of their core accessions, with each
having only a small number (3-6) of unique accessions.

ence, only the max CS selection variant of our method is included.
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Figure 3: Coverage values versus the number of selected samples for each software in the 1.5K Rice dataset.

Citation: Nien-Lun Wu, and Chen-An Tsai*. Clustering-based Method for Core Germplasm Collection Constructing via Multiple
Correspondence Analysis. World ] Agri & Soil Sci. 9(5): 2025. WJASS.MS.ID.000722. DOI: 10.33552/WJASS.2025.09.000722.

Page 8 of 17


http://dx.doi.org/10.33552/WJASS.2025.09.000722

World Journal of Agriculture and Soil Science Volume 9-Issue 5

14K SNP Wheat Data

The second dataset analysed is the 14K SNP Wheat data, which
represents a significantly larger volume of information compared
to the previous 1.5K SNP data. Following the established procedure,
MCA was first performed to obtain the dimensional coordinates for
each accession. The optimal number of clusters, k=5, maximizes the
average silhouette score, and the 556 accessions were then parti-
tioned into five clusters. Clustering was subsequently performed
using both SOM and K-means (Figures 5&6). Similar to the 1.5K

Rice results, K-means clustering showed a greater degree of inter-
mixing among different cluster assignments (Table 2). Shows that
Geno Core selected 89 core accessions. Our method selected slight-
ly more: the SOM (max CS) variant selected 92 accessions, while the
others, K-means and SOM (min CS), selected 91 accessions. Regard-
ing the evaluation metrics, the K-means (max CS) variant demon-
strated superior performance over Geno Core across all metrics.
However, our method’s Min.MR and SH values were slightly lower
than those achieved by Core Hunter 3.

Table 2: Core Germplasm Selection Results of Different Methods for the 14K Wheat Dataset.

_ Time
Method size MR Min.MR SH Ccv
(min)

Geno Core 89 0.1830 0.0774 9.5460 99.0082 7.8771
corehunter3 89 0.1837 0.1367 9.7994 86.5428 0.6921
kmO0065ans 91 0.1822 0.0776 9.5421 99.0106 13.6298

K means(max) 91 0.1847 0.0777 9.5575 99.0153 12.6858
Som 91 0.1819 0.0772 9.5370 99.0047 13.4388
Som (max) 92 0.1843 0.0773 9.5502 99.0129 12.8916
( N
LEE corehunter
ECTHCONS waykmeans
!
1
I
|
|
/
/’“
Figure 4: Venn diagram for the 1.5K Rice dataset.
N J
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Figure 5: Final clustering results for 14K Wheat dataset based on the SOM algorithm.
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Figure 6: Final clustering results for 14K Wheat dataset based on the k-means algorithm.

Furthermore, Core Hunter 3 was the fastest method, requiring stems from the distinction in optimization criteria: Core Hunter 3
only 0.69 minutes, compared to Geno Core’s 7.88 minutes and our uses the Min.MR as a major selection standard, while our method
method’s 12-13 minutes. This difference in performance and speed and Geno Core prioritize maximizing Coverage. The time discrep-
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ancy is likely due to Core Hunter 3’s use of a stochastic (random-
ized) selection process, which is more flexible and unstable in its
stopping time (Figure 7). Illustrates the coverage growth efficien-
cy. Similar to the 1.5K Rice data, our method and Geno Core show
comparable, rapid, and stable growth curves, whereas Core Hunter
3 exhibits a noticeably slower rate of coverage accumulation. Ad-
ditionally, the selection curves for the same clustering method are

almost perfectly overlapped, further confirming that the choice be-
tween maximizing or minimizing the CS value has little effect on
the final coverage efficiency. The Venn Diagram (Figure 8) shows
that Core Hunter 3 again has the largest difference, with 69 unique
accessions. The other two methods (Geno Core and our method)
show high agreement, sharing over 80% of the accessions, with
only 7-8 unique accessions each.

e ™
Coverage increasing
8 R
2 -
2 -
L]
-
E 4
2 - 8 Genocors
= kmeans
= kmeans{max)
® 50M
=3 = SO M)
= corehunterd
T T T T T
0 20 40 60 80
sample number
Figure 7: Coverage values versus the number of selected samples for each software in the 14K Wheat dataset.
WAV corchunler
waykmeans
Figure 8: Venn diagram for the 14K Wheat dataset.
N J
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37K SNP Rice Data

The 37K SNP Rice data contains more than twice the amount of
information compared to the previous Wheat dataset. Calculating
the optimal number of clusters via the average Silhouette method
showed that the Silhouette coefficient reached its maximum value
at K=7, with a value exceeding 0.6, which is deemed acceptable for
clustering. Following this result, the 413 accessions were parti-
tioned into seven clusters using both SOM and K-means (Figures
9&10). As shown in the Figures, the distribution of the 413 acces-

sions generated from the MCA coordinates exhibits a triangular dis-
tribution, but the tendency for accessions to aggregate at the three
corner vertices appears even more pronounced than the 1.5K SNP
Rice data. Similar to the 1.5K Rice data, one spatial region shows
particularly high diversity, leading to more complex cluster bound-
aries. After clustering, core germplasm was selected, and the quali-
ty of the resulting core sets from all methods was compared (Table
3). Geno Core selected 96 accessions and our method selected one
more accession across all variants, resulting in 97 accessions.

Table 3: Core Germplasm Selection Results of Different Methods for the 37K Rice Dataset.

_ Time
Method size MR Min.MR SH cv
(min)
Geno Core 926 0.1572 0.0157 10.5323 99.0068 22.7655
corehunter3 96 0.1697 0.0906 10.6179 94.5026 18.5933
K means 97 0.1571 0.0158 10.5386 99.0136 34.0492
K means(max) 97 0.1573 0.0158 10.5419 99.0104 39.1785
Som 97 0.1572 0.0158 10.5421 99.0113 38.4628
Som (max) 97 0.1572 0.0158 10.5427 99.0109 38.7124
( )
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Figure 9: Final clustering results for 37K Rice dataset based on the SOM algorithm.
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Figure 10: Final clustering results for 37K Rice dataset based on the k-means algorithm.
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Figure 11: Coverage values versus the number of selected samples for each software in the 37K Rice dataset.
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Regarding the other metrics, the results demonstrate that our
method generally outperforms Geno Core. However, as the data
volume increases, the computational time for our method also
increases, requiring 12 to 17 minutes more than Geno Core. Core
Hunter 3, despite being the fastest (only 18 minutes, 4 minutes less
than Geno Core), clearly shows superior performance in all metrics
except Coverage. As discussed with the 14K SNP Wheat data, Core
Hunter 3’s stopping criterion is likely the cause of its low coverage.
In this dataset, surprisingly, despite the SNP count being more than
double the Wheat data, Core Hunter 3’s coverage deficit is smaller
(94.5% coverage compared to 86.5% for the Wheat data, while the
others reached 99%). This may be related to the more concentrated
distribution of accessions in the MCA plot compared to the other
two datasets. Since most data points are located near the three ver-
tices, it might have been easier for Core Hunter 3, with its stochastic
selection process, to randomly find accessions that achieve a cer-

tain level of coverage more quickly (Figure 11). Shows the Coverage
Growth Efficiency, which yields similar results to the previous two
datasets: our method and Geno Core show comparable, fast, and
stable growth, while Core Hunter 3’s growth is notably slower.

This phenomenon is likely due to the specific optimization cri-
teria of Core Hunter 3 used in this simulation, which focuses on
both the minimum distance between core accessions and the dis-
tance between unselected accessions and the core set. This may
lead it to Favor accessions located at a certain optimal intermediate
distance from others, rather than those at the extreme edges, which
is visually supported by a slight tendency to avoid peripheral ac-
cessions. The Venn Diagram (Figure 12), reinforces these findings:
Core Hunter 3 selected 54 accessions that were unique to its core
set. The other two methods (Geno Core and our method) showed a
high degree of overlap, sharing over 95.8% of their accessions, with
only a 2 or 3 accession difference.
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Figure 12: VVenn diagram for the 37K Rice dataset.
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820K SNP Wheat Data tions, the coordinate values calculated using the Burt Matrix meth-

Finally, we analyse the high-density 820K SNP Wheat dataset.
Based on the comparative results from the previous three datasets,
only the relatively best-performing variant of our method, K-means
(max CS), is used as the representative for this analysis. Due to the
sheer size of this dataset, the Multiple Correspondence Analysis
(MCA) procedure was slightly modified: the calculation of dimen-
sional coordinates employed the Burt Matrix method instead of the
indicator matrix. While both methods yield similar relative posi-
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od have a smaller numerical range. Although the optimal number of
clusters was found to be K=2 using the average Silhouette method,
K=3, which yielded the second-highest silhouette value, was also
included for analysis. The K-means algorithm was applied to parti-
tion the data into K=2 and K=3 clusters (Figure 13). The three-clus-
ter result separates the accessions on the right into an additional
distinct group (Table 4). Shows the performance metrics for core
germplasm selection results.
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Figure 13: Final clustering results for 820K Wheat dataset based on the k-means algorithm. The left panel corresponds to the clusters of 2,
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Table 4: Core Germplasm Selection Results of Different Methods for the 820K Wheat Dataset.
_ Time
Method size MR Min. MR SH Ccv
(hr)
Geno Core 39 0.1458 0.0495 13.1281 99.0185 6.5517
corehunter3 39 0.1523 0.0539 13.3315 97.0793 0.0689
K means(max)
39 0.1457 0.0493 13.1233 99.0109 4.4917
2 clusters
_ Kmeans(max)
40 0.1435 0.0492 13.1317 99.0223 4.5067
3 clusters

For this dataset, Core Hunter 3 again outperformed Geno Core
and our method on all metrics except Coverage. Intriguingly, Core
Hunter 3’s coverage reached 97.07%, a performance that is atyp-
ically high compared to its previous results. As with the 37K Rice
data, this phenomenon is likely due to the concentrated distribu-
tion of accessions and the low inherent diversity of the markers. A
detailed examination of the 819,570 SNP markers showed a high
frequency of markers with few genotype categories: 144,824 mark-
ers had only one category, 513,709 had only two, and only 161,037
had three categories. This implies that, excluding missing values,
selecting a single accession instantly achieves 55.56% coverage,
compared to only 38.11% for the 14K Wheat data. This suggests
that achieving a high level of coverage is relatively easy in this
dataset. The underlying cause of this marker distribution is likely
high-density SNP analysis, where a strong Linkage Disequilibrium
(LD) exists between tightly linked SNPs, meaning little or no recom-
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bination has occurred.

In addition, the results of our method with K=3 clusters showed
an increase in both Shannon’s Diversity Index and Coverage. In
terms of Computational Time, the results here differ from the previ-
ous two datasets. For the 14K Wheat and 37K Rice data, our method
was slower than Geno Core. However, using the Burt Matrix for MCA
significantly reduced the time required for this 820K dataset, mak-
ing our method approximately two hours faster than Geno Core.
Core Hunter 3 was remarkably fast, requiring only 4.134 minutes,
suggesting that algorithms incorporating stochastic selection may
hold a decisive advantage when dealing with very large datasets ex-
hibiting low marker diversity. The Coverage Growth Efficiency plot
is omitted as it did not show significant differences from previous
results. The Venn Diagram (Figure 14) shows that Core Hunter 3
selected 23 unique accessions, while the other two methods shared
over 84.6% of their core accessions.
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Conclusion 3, which frequently failed to reach the 99% coverage standard due

The results obtained across the four datasets demonstrate
that while the differences between the selection methods were not
especially significant for the smallest 1.5K SNP Rice data, the dis-
tinctions became more pronounced as the data volume increased.
Overall, our proposed method consistently improves upon Geno
Core’s performance on three key metrics, Shannon'’s Diversity In-
dex, Mean Modified Rogers Value, and Minimum Modified Rogers
Value, while maintaining the standard of 99% coverage. However,
our method typically requires slightly more computational time
than Geno Core, increasing by approximately 0.5 times depending
on the dataset size. For the current researches, the total execution
time remains within an acceptable range. Notably, when the Burt
Matrix method is used for coordinate calculation (as with the mas-
sive 820K SNP Wheat data), the computational burden is signifi-
cantly reduced, resulting in a processing time approximately two
hours faster than Geno Core.

The primary selection criterion of our proposed method is
maximizing Coverage. Consequently, it generally does not match
the performance of Core Hunter 3 on the other three diversity and
distance metrics. Core Hunter 3 explicitly optimizes for these met-
rics by considering the distance between core accessions and the
distance between unselected and core accessions. However, in the
fundamental goal of core collection creation-that is, capturing the
maximum amount of genetic information from the original popula-
tion-our proposed method significantly outperforms Core Hunter

to its stochastic selection process and stopping criteria. Future im-
provements will focus on incorporating more precise cluster anal-
ysis and refining selection standards by considering measures of
inter-accession distance to further maximize the genetic distance
within the core collection.
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