

ISSN: 2694-166X

Scientific Journal Biology & Life Sciences DOI: 10.33552/SJBLS.2025.04.000586

Review Article

Copyright © All rights are reserved by Nadia Arrousse

Polymers for Autonomous Repair in Corrosion-Resistant Coatings

Marwa Alsaleem¹, Soukaina Saddougui¹, Mohamed Ait Essbiaa¹ and Nadia Arrousse^{1*}

¹School of Science and Engineering, Al Akhawayn University in Ifrane, Hassan II avenue, 53000 Ifrane, Morocco

*Corresponding author: 1School of Science and Engineering, Al Akhawayn University in Ifrane, Hassan II avenue, 53000 Ifrane, Morocco

Received Date: October 08, 2025
Published Date: October 17, 2025

Introduction

The protection of metal surfaces from corrosion has always been a big challenge in multiple industries such as aerospace, automotive, marine, and construction industries. The effect of corrosion causes the structural failure of materials and results in huge economic losses annually. Traditional anti-corrosive coatings have mainly been focused on creating a strong barrier between metals and the surrounding environment. Although these passive coatings offer protection against physical damage, however, they actually often do not work as a long-term protective agent, especially in harsh and extreme environmental conditions where wear and mechanical damage can occur and are inevitable. In response to these limitations of traditional coatings, "smart selfhealing coatings" have emerged as a new innovative solution. These coatings offer a big ability to autonomously repair most damage on them, either through "extrinsic mechanisms"—such as the release of healing agents from embedded microcapsules or nanocontainers—or "intrinsic mechanisms" that use reversible chemical bonds to restore structural integrity and strength [1,2]. After these advancements, incorporating these self-healing properties, smart coatings not only will repair micro-cracks and surface imperfections but it will also extend the service life of metal structures that are coated with these new coatings, reducing the maintenance costs and improving overall durability.

The focus of this paper is an extensive analysis of the most recent progress in smart polymers applied to self-healing anti-

corrosion protection, discussing current trends and challenges for these purposes, as well as their potentialities concerning different sectors of industry. This review aims to identify relevant research progress by delineating key advancements in microcapsule and nanocontainer technologies, as well as stimuli-responsive systems and environmentally friendly coatings, thereby shedding light on the emerging significance of smart coatings against corrosion challenges encountered in contemporary industrial applications.

Latest Advancements and Common Trends

One of the main focuses of the field of self-healing corrosion-resistant coatings in current advancements includes the functionality, environmental compatibility, and effectiveness of smart polymeric materials. The science behind self-heating coatings has become important in improving and extending the durability of metal surfaces against corrosion in harsh environments.

Microcapsule and Nanocontainer Technologies

The use of microcapsules and nanocontainers is a significant trend in the field as they help enclose several healing agents. Special compounds are stored in these containers that are inserted into the polymer material. The containers will open and discharge their contents in response to environmental changes, such as a pH shift, physical damage, or temperature change. In reaction to those alterations, this strengthens or preserves the polymer by repairing or shielding it. This technology has been successful especially

when it comes to preventing localized corrosion and restoring the protective barrier. In addition to their healing properties, nano capsules also provide other properties such as anti-microbial, superhydrophobic, and anti-fouling properties. All in all, this

review highlights the growing developments in smart coatings that are solving problems of corrosion protection in modern industrial applications [3-5].

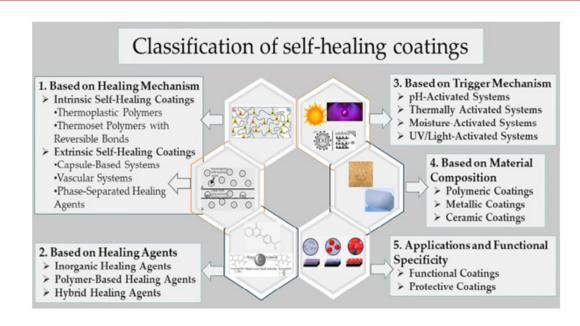


Figure 1: Classification of self-healing coatings [4].

Figure 2: Types of self-healing capsules [4].

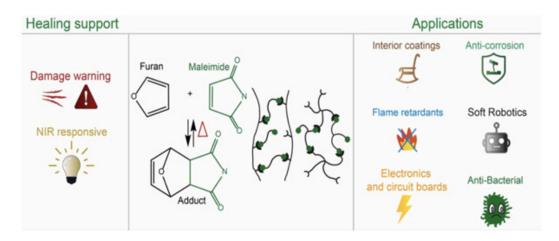


Figure 3: An overview of potential applications for which the DA reaction has been considered in recent literature. The reversible reaction of furan and maleimide towards adducts can form reversible crosslinks, as illustrated in the middle.

Stimuli-Responsive Coatings

Another trend that has emerged in smart polymers for self-healing coatings is the development of stimuli-responsive coatings. It reacts to any kind of environmental changes like a change in temperature or pH, and even the presence of corrosive ions. This type of coating incorporates pH-sensitive microcapsules which release corrosion inhibitors to prevent further damage when a change of pH occurs at the corrosion site. These coatings increase the longevity of materials by autonomously fixing small flaws without the need for human assistance. Because they stop further corrosion, they thereby contribute to the lifespan extension of infrastructure like bridges and pipelines. This idea improves safety in vital infrastructure while simultaneously lowering maintenance expenses [6].

Intrinsic Self-Healing Polymers

Another advancement in this field is the development of intrinsic self-healing polymers which utilize special chemical bonds that are able to break and re-form on their own. Unlike microcapsules and stimuli-responsive coatings, these materials don't need added chemicals or capsules to repair themselves. Instead, they use something called dynamic cross-linking which is a process that uses reversible chemical bonds that break when the material is damaged, then reconnect under specific conditions like heat, pressure, or time, allowing the material to self-repair and regain its original structure. Applications where continuous external stimuli or treatments are impracticable benefit from this kind of self-healing [7].

Environmental Considerations and Legislation

One of the factors that led to the development of such self-healing polymers is the need to follow environmental regulations, especially after the ban on hexavalent chromium. Due to its toxic and

cancer-inducing effects, hexavalent chromium was commonly used as a corrosion inhibitor in protective coatings for metals. However, its harmful impact on human health and the environment prompted stricter regulations. This has to the search for safer alternatives like self-healing polymers that can offer similar protection without the risks, which have been dominating current research [8].

Applications Across Industries

Self-healing coatings have been applied in a number of industries, including but not limited to the automotive, marine, and aerospace sectors. These coatings, for instance, are essential in the aerospace industry for preserving the integrity of aircraft metal surfaces that are subjected to severe conditions and mechanical pressures. The automobile industry uses this kind of coating to prolong the life of car bodies by preventing rust and other problems. Lastly, self-healing coatings are utilized in the marine sector to counteract seawater corrosion and biofouling, greatly extending the life of ships and offshore structures. All in all, the latest advancements in smart polymers for self-healing corrosionresistant coatings show a trend toward multifunctionality and environmental sustainability in repair mechanisms. The use of nanotechnology, stimuli-responsive systems, and intrinsic healing mechanisms is paving the way for the next generation of coatings that not only protect metal surfaces but also actively prolong their service life [9].

Discussion

The current advancements in smart polymers for self-healing corrosion-resistant coatings are a big leap in material science when it comes to functionality, sustainability, and industrial applications. In this section, we will explore 3 topics; the implications of these technologies, the challenges these technologies face, and finally future development.

Microcapsule and Nanocontainer Systems Effectiveness

An attention-grabbing feature of extrinsically self-healing systems is the application of microcapsules/nanocontainers to embed healing agents and deploy making in a triggered way (learning from environmental stimuli). Such systems have extreme effectiveness in corrosion protection, especially during challenging environmental conditions. In these coatings, the healing agents are encapsulated in a programmed polymer matrix that allows the coating to self-repair microcracks and micro-pores, stopping corrosion propagation under the surface. However, the issue with this approach is a matter of supply and demand — those healing agents inside the capsules have a very limited shelf-life. The coating becomes incapable of self-healing right after the active substances is consumed, and that leads to a decrease in long-term performance. We can solve this by designing multi-stimuli-responsive systems, where the coating reacts when exposed to a different trigger and therefore sustains on play a longer-lived response.

Intrinsic Healing and Reversible Chemistry

The intrinsic self-healing polymers rely on reversible chemical bonds which are novel types of polymers that have the processability of thermoplastics along with high performances like those of thermosets and thermoplastics. (N. Jarach, D. Golani, Hanna Dodiuk, N. Naveh, S. Kenig, 2022), offer a sustainable solution, since they allow for continuous self-repair without the depletion of healing agent. These polymers can be able to heal mechanical damage through mechanisms such as reversible cross-linking which uses chemical crosslinkers of defined lengths to measure distances between nucleotides in cellular RNA (Ryan Van Damme, Kongpan Li, Minjie Zhang, Jianhui Bai, Wilson H. Lee, Joseph D. Yesselman, Zhipeng Lu & Willem A. Velema, 2022) and dynamic bond exchange which are an emerging class of polymers that have gained much attention as self-healing and recyclable materials(Junrou Huang Nabil Ramlawi Grant S. Sheridan Chen Chen Randy H. Ewoldt Paul V. Braun Christopher M. Evans, 2023). The key advantage of intrinsic systems is their potential for long-term durability since they don't only rely on a limited reservoir of healing agents. However, their application is currently limited by the complexity of designing materials that can consistently re-form bonds under varying environmental conditions. Balancing healing efficiency with the desired quality of cement-based materials after cracks form is an ongoing challenge. When materials regain functionality and align closely with their original form, it's considered successful healing. However, intrinsic healing systems, while effective, can sometimes weaken mechanical strength or reduce chemical resistance, which affects the material's performance. Current research is focused on refining these systems so that the self-repair mechanisms don't compromise the coating's main protective properties.

Environmental and Regulatory Pressures

The demand for eco-friendly coatings could not be higher at present, particularly with well-known toxicants such as hexavalent chromium making way for solutions that are better for the planet. By banning these toxic materials, attention has been indirectly

placed on non-toxic substances that are commonly amenable to e.g. REACH regulations. Safe and sustainable alternatives such as water-based, biocompatible, eco-friendly coatings are attracting attention. But the change to green coatings is not easy. Most of these new materials are still being developed, and meeting the same performance standards as chromate-based coatings is challenging. Another focus of current research is on the fabrication of non-toxic nanoscaled containers that can safely transport therapeutic agents to the environment.

Industrial Applications and Future Directions

Self-healing coatings are being used in a variety of industries, such as aerospace, automotive, marine, and construction. In aerospace, these coatings help repair damage from UV radiation, temperature change, and also mechanical wear, which are essential for maintaining structural integrity. In the maritime industry, these coatings are used to extend the lifespan of metal structures that are exposed to saltwater and biofouling which are common causes of corrosion. Moving forward, one of the most promising directions for future research is the integration of "multifunctional properties" into self-healing coatings. Coatings that combine "corrosion protection" with "self-cleaning" "anti-microbial" or "superhydrophobic properties" will further enhance their utility across various sectors. Additionally, the development of "costeffective, scalable manufacturing techniques" for smart coatings is still a priority, because the current high costs of advanced nanomaterials limit their adoption.

Conclusion

"Smart polymers" showcases great development for the "Self-healing corrosion-resistant coatings", which are a major leap in material science, handling to resolve an issue with traditional materials. With the help of microcapsules, nanocontainers, and reversible chemical bonds, these next-generation coatings deliver active self-healing capabilities not previously observed before, literally doubling the service life of metal surfaces across various industries. They are also highly relevant for a range of applications when integrated with "stimuli-responsive" systems and need to be developed as "environment-friendly" alternatives. The research will continue to be focused on the further development of these technologies including cost efficiency in the market, sustainability, and process/ production, making it applicable for broader industrialization.

An overview of potential applications for which the DA reaction has been considered in recent literature. The reversible reaction of furan and maleimide towards adducts can form reversible crosslinks, as illustrated in the middle.

References

- Montemor MF (2014) Functional and smart coatings for corrosion protection: A review of recent advances. Surface & Coatings Technology 258: 17-37.
- Stankiewicz A, Barker MB (2015) Development of self-healing coatings for corrosion protection. School of Engineering & the Built Environment, Edinburgh Napier University.

- 3. Ghosh SK (2009) Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA.
- Kartsonakis IA, Kontiza A, Kanellopoulou IA (2024) Advanced Micro/ Nanocapsules for Self-Healing Coatings. Applied Sciences 14(18): 8396.
- Paladugu SRM, Sreekanth PSR, Sahu SK, K Naresh, S Arun Karthick, et al. (2022) A comprehensive review of self-healing polymer, metal, and ceramic matrix composites and their modeling aspects for aerospace applications. Materials 15(23): 8521.
- Sanyal S, Park S, Chelliah R, Su Jung Yeon, Kaliyan Barathikannan, et al. (2024) Emerging trends in smart self-healing coatings: A focus on micro/nanocontainer technologies for enhanced corrosion protection. Coatings 14(3): 324.
- W Feng, SH Patel, MY Young, JL Zunino III, M Xanthos (2007) Smart polymeric coatings—Recent advances. Advances in Polymer Technology 26(1): 1–13.
- 8. Wenyan Li, Paul Hintze, Luz M Calle, Jerry Buhrow, Jerry Curran (2012) Smart coating for corrosion indication and prevention: Recent progress. Corrosion Technology Laboratory, NASA Kennedy Space Center.
- Srivatsan Ramesh, Saad Khan, Yaewon Park, Ericka Ford, Stefano Menegatti, et al. (2022) Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Materials Today 54: 90-109.