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Abstract 

Turtles are among the most threatened vertebrate groups, and conservation efforts to protect turtle populations commonly include the use 
of predator excluders to protect nests. There is a wide diversity of excluder designs and methodologies, and their potential effects on incubation 
conditions are little explored. Conservation efforts could benefit from analyses indicating which excluder design has the least effect on incubation 
conditions, and thus how to minimize effects on hatchling success, sex ratios and hatchling survivorship. We tested the effects of two commonly 
used predator excluder designs on Diamondback Terrapin (Malaclemys terrapin) nests in Jamaica Bay, New York. We measured nest temperatures 
throughout the incubation period and focused on the temperature sensitive period, when hatchling sex is determined. We found that the predator 
excluders had no effect on the temperature at which the nest were incubated or hatching success, and thus can be used with confidence. 
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Introduction

Turtles (order Testudines) are among the most endangered 
vertebrate groups; 10% of turtle species are critically endangered 
and many more are threatened [1,2]. Predation on turtle nests 
has had a detrimental effect on marine and freshwater turtle pop-
ulations globally, and in many cases is one of the most important 
detriments to conservation efforts. In particular, populations of hu-
man-subsided predators have increased in many locations in recent 
years due to human activity, through increases in food resources,  

 

habitat changes, and meso-predator release [3]. In North America, 
human-subsided predators such as raccoons (Procyon lotor) are 
often the most important predators of turtle nests [4], however a 
wide array of other species depredate turtle nests globally. Conser-
vation programs often include protecting turtle nests from preda-
tors via the use of predator excluders; these can reduce predation 
rates from 100% predation to near 0% [5,6]. Such excluders are 
sometimes used in situ, other times excluders are used to protect 
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relocated nests. Excluders are typically constructed from fencing 
material, but materials, designs, and placement methodology vary 
among conservation programs. Metal wire mesh excluders are 
common, and different types have been described [7-13].

Diamondback Terrapins (Malaclemys terrapin) are a common 
focus of conservation programs that use predator excluders at 
many sites throughout their range along the eastern and Gulf coast 
of the United States from Massachusetts to the Texas-Mexico bor-
der (Burke, pers. obs.). Diamondback Terrapins are listed as “Vul-
nerable” on the IUCN Red List of Threatened Species [14] and are 
protected by state regulations in all 16 states in their range [15]. 
Nest predation by a diverse suite of predators dramatically de-
creases terrapin nest survival [16-18]. The relationships between 
Diamondback Terrapins and nest depths, nest temperatures, and 
hatching success are complicated; deep nest are cooler and have 
higher hatching success in unusually warm, dry summers, while the 
reverse is true in cool, damp summers [19]. Diamondback Terra-
pins also have temperature sex determination Type IA, in which at 
high incubation temperatures produce female and low incubation 
temperatures produce male hatchlings [20]. The temperature sen-
sitive period (TSP) spans incubation days 28-35; this is the period 
during which sex is determined in the developing embryos [20]. 
We sought to test the generality of Riley and Litzgus [5]’s findings 
by testing predator excluders on a new turtle species (M. terrapin) 
at a lower latitude that is a more typical climate regime for most 
North American turtles. We tested a metal wire mesh excluder 
design as did Riley and Litzgus, and also a plastic mesh excluder 
design, which we hypothesized might have very different thermal 
characteristics than the wooden or metal designs they tested. We 
also focused on the possible effects on hatchling sex determination 
that excluders might have.

Methods

We conducted our experiment on Ruler’s Bar Hassock (RBH), 
the central island in Jamaica Bay, Queens, New York. Diamondback 
Terrapin nesting ecology has been studied at this site since 1998 
[16, 21-26]; 700-2000 Diamondback Terrapin nests were laid on 
RBH annually, and raccoons are the only important Diamondback 
Terrapin nest predators [16]. Approximately 67-98% of unprotect-
ed nests were predated by raccoons during 1999-2018 [16,26]. 
RBH had a density of 0.27 to 0.61 raccoons/ha [27]. Our experiment 
was conducted in open, sandy soil habitat in areas with high terra-
pin nesting density during 1 June-31 July 2016 during the normal 
Diamondback Terrapin nesting season at RBH. We located nesting 
Diamondback Terrapins by searching known nesting areas many 
times daily. As each Diamondback Terrapin completed nesting we 
marked the nest site and returned later the same day to excavate 
the nest, count and measure eggs, and measure nest depth. In some 
cases, we re-buried eggs in the original nest cavity, in other cases, 
we constructed new nest cavities because the original nests were 
deposited where they would be vulnerable to vehicular and pedes-
trian traffic. Moved nests were reconstructed within 24 hours of 

oviposition and within 3 meters of original nest sites, in substrates 
and areas commonly used by other nesting Diamondback Terra-
pins, and both the nest cavity shapes and depths were excavated so 
as to be similar to the original nests.

We set Model DS1922T, iButton temperature loggers to record 
temperature hourly for approximately 80 days and buried them in 
the middle of each clutch when it was reburied. We waterproofed 
loggers using black Plasti Dip; Roznik and Alford [28] showed that 
this treatment does not affect the ability of iButtons to accurate-
ly record temperature data. As each set of three terrapin nests 
became available, we randomly assigned one nest to a metal nest 
protector treatment, then we randomly assigned one nest to plastic 
nest protector treatment, and the remaining nest was assigned to 
a screened control treatment (see below). We protected each nest 
with one of two predator excluder designs. One design was met-
al wire mesh (1.27 cm square-holed hardware cloth, cube-shaped 
excluder 30.5 cm sides and height, Figure 1); this is the primary 
excluder design that has been used on RBH projects for the last de-
cade, has been generally successful at excluding raccoon predation, 
and is similar to the above-ground design used by Riley and Litzgus 
[5]. As has been done previously at RBH, we implanted the sides 
of the metal excluders 10–15 cm into the ground and implanted 
4–6 metal stakes in the ground through the screening distributed 
around each excluder to anchor the excluder and discourage preda-
tors from digging underneath.

The other predator excluder design was made with black 1.27 
cm square-holed Tenax PVC Hardware Net (Figure 2). This design 
has been used in a Diamondback Terrapin conservation project 
conducted by the Wetlands Institute (Stone Harbor, NJ) in cooper-
ation with the Richard Stockton College (Galloway, NJ) since 1989. 
These excluders were cylindrical, open at one end, 24.5 cm high 
and 20.23 cm in diameter, and secured in shape with zip ties. We 
secured a square piece of the same plastic material over the top of 
the cylinder with zip ties. We employed these excluders by burying 
the sides 5 cm deep. We used garden stakes to anchor each plastic 
excluder by pushing the stakes into the ground through the plastic 
mesh and into the ground; we distributed the stakes around each 
excluder. We paired excluder-nest combinations in arrays with two 
types of controls to simulate conditions without excluders. We de-
signed one set of controls (screen controls) to account for the un-
known but potentially relevant amount of metabolic heat given off 
by Diamondback Terrapin eggs as they incubate. For each of these 
controls we constructed a Diamondback Terrapin nest near (within 
2 meters) of an excluder-nest combination; each of these control 
nests had a full nest (as originally laid) of Diamondback Terrapin 
eggs and a temperature logger as described above. Instead of an 
above-ground excluder, we covered these controls with a flat hori-
zontal metal screen to dissuade predation (constructed of 1.27 cm 
square-holed hardware cloth, square-shaped, 30.5cm sides, an-
chored at each corner with a metal stake) and covered with local 
substrate to eliminate solar exposure.
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Figure 1: Metal wire mesh predator excluder.

Figure 2: Plastic (Tenax PVC Hardware Net) predator excluder.

Our second control type (screenless control) was designed to 
account for the normal temperature underground at each nest site 
and ignoring the potential for significant amounts of metabolic heat. 
We constructed these just as the screen controls above, except with 
no screen and no eggs. As a result, each array consisted of one nest 
with a metal predator excluder, one nest with a plastic predator ex-
cluder, one screen control with a clutch of eggs, and one no-screen 
control with no eggs. We removed the flat metal screens (screen 
controls) August 12, 2016 in anticipation of hatchling emergence 
and placed plastic rings around each nest site to restrain emerging 
hatchlings. Burlap fabric was placed over each ring to prevent new-

ly emerged hatchlings from desiccating. We checked nests daily for 
hatchling emergence. After emergence, we counted the number of 
hatchlings that emerged from each clutch and recovered tempera-
ture loggers. We calculated hatching success as the percentage of 
eggs in each nest that hatched. After normality tests, we conduct-
ed one-way ANOVAs to test whether the different excluder types 
affected incubation durations (number of days from oviposition to 
first emergence), mean carapace lengths, mean temperatures over 
the incubation period (all hourly readings from oviposition to first 
emergence), mean temperatures during the TSP (incubation days 
28-35, Burke and Calichio [20]), and the degree hours above devel-
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opmental zero (14oC, calculated from data from Burke and Calichio 
[20]). Hatchling success (% of eggs that hatched and emerged) was 
non-normally distributed; we analyzed this using a Kruskal–Wallis 
test.

Results

We constructed 30 arrays (30 Terrapin nests with metal exclud-
ers, 30 Terrapin nests with plastic excluders, 30 screen controls 
with Terrapin clutches, and 30 screenless controls with no eggs). 
Many arrays were disturbed by raccoons, construction and main-
tenance workers, and park visitors such that we either failed to 
recover temperature loggers, failed to collect data from hatchlings, 
or both. As a result, we recovered 81 (67.5% overall) of the 120 
temperature loggers: 14 (46.7%) from metal excluders, 16 (53.3%) 
from plastic excluders, 29 (96.7%) from screen controls and 22 
(73.3%) from screenless controls. We collected hatchling data from 
52 (57.8% overall) of the 90 nests with eggs: 12 (40.0%) from met-
al excluders, 14 (46.7%) from plastic excluders, and 26 (86.7%) 
from screen controls. All data except hatching success were nor-
mally distributed (e.g., Levene’s tests indicated equal variances, 
residual plots and Q-Q plots indicated no irregularities). ANOVAs 
indicated that there were no differences among plastic predator ex-
cluders (x̄ = 60.14 days, std dev = 5.77, min = 52, max =71), metal 
predator excluders (x̄ = 59.71 days, std dev = 7.51, min = 48, max 
=72), or screen controls (x̄ = 59.93 days, std dev = 6.06, min = 53, 
max =73) for mean incubation duration (F(2,53)=0.02, P=0.98), 
mean carapace length (plastic predator excluders x̄ = 25.36 mm, std 
dev = 1.72, min =21.00 , max = 28.50, metal predator excluders x̄ 
= 25.36 mm, std dev = 1.35, min = 22.67, max =27.58), or screen 
controls x̄ = 25.38 mm, std dev = 1.00, min = 23.30, max =26.65, 
F(2,47)=0.03, P=0.97), or mean nest temperature during the en-
tire incubation period (plastic predator excluders x̄ = 28.18oC, std 
dev = 0.71, min = 26.71, max = 29.12, metal predator excluders x̄ = 
28.07oC, std dev = 0.67, min = 26.86, max =29.51), screen controls 
x̄ = 28.53oC, std dev = 0.93, min = 26.78, max = 29.75, or screen-
less controls x̄ = 28.64oC, std dev = 1.08, min = 26.55, max =30.88, 
F(2,47)=1.61, P=0.21). ANOVAs also indicated that there were no 
differences in mean temperature during the TSP among plastic 
predator excluders (x̄ = 28.07oC, std dev = 1.25, min = 26.46, max 
= 30.51, metal predator excluders (x̄ = 28.87oC, std dev 1.06, min = 
26.59, max =30.72), screen controls (x̄ = 28.75oC, std dev 1.08, min 
= 27.39, max =31.06) or screenless controls (x̄ = 28.95oC, std dev 
= 1.35, min = 26.61, max =32.04)(F(3,77)=1.66, P=0.18), or mean 
degree hours above developmental zero (plastic predator excluders 
x̄ = 2706.20 hours, std dev = 249.74, min = 2393.5, max = 3171.1, 
metal predator excluders x̄ = 2890.91 hours, std dev = 246.69, min 
= 2418.4, max = 3487.4), screen controls x̄ = 2830.74 hours, std dev 
= 215.78, min = 2451.8, max = 3275.2, or screenless controls x̄ = 
2931.08 hours, std dev = 335.15, min = 2421.1, max = 3859.5, (F(3, 
77)=2.41, P=0.07). The Kruskal–Wallis test indicated that there 
were no significant differences among plastic predator excluders 
(median = 72.86, ICR = 32.5), metal predator excluders (median = 
80.00, ICR = 28.0), or screen controls for hatching success (median 
= 90.00, ICR = 28.17, H=5.02, P=0.081).

Discussion

Predator excluders may harm incubating turtles if the excluders 
alter incubation conditions, which they might do either by shading 
nests (cooling) or by trapping heat near the nest (greenhouse ef-
fect). Nest temperature is important because incubation tempera-
ture affects many characteristics of turtle eggs and resulting hatch-
lings, such as hatching success rates, incubation duration, body 
size, yolk reserve, and locomotor performance [29-33]. Incubation 
temperature can also influence hatchling sex in many turtle species 
[34]. Furthermore, excluders could alter hydric conditions in nests 
by deflecting rainfall, by altering temperature that determines dry-
ing rates, or by functioning as a solar still, condensing and returning 
evaporated substrate moisture. Nest substrate moisture can affect 
hatchling size, hatching success, incubation duration, and hatchling 
size [35-37]. Nest temperature and moisture can have synergistic 
effects because moisture can lower nest temperatures enough to 
alter hatchling sex ratios [38-40].

Riley and Litzgus [5] tested the effects (nest temperatures, 
hatching success, frequency of hatchling deformities, morpholo-
gy and locomotor performance) of wooden-sided, above ground 
and below ground wire predator excluders on the nests of Paint-
ed Turtles (Chrysemys picta) and Snapping Turtles (Chelydra ser-
pentina) near their northern range limits. They found that the ex-
cluder designs they tested only affected hatchling body condition 
(mass/carapace length), and not nest temperatures, frequency or 
morphology of hatchling deformities, or locomotor performance. 
We found that two predator excluder designs, one made of metal 
and one of plastic, both of which have been effective at reducing 
raccoon predation on Diamondback Terrapin nests, also had no 
detectable effect on incubation temperature, hatching success, or 
hatchling carapace length. We further suggest that these designs 
had no effect on hatchling sex ratios, based on their lack of effect 
on our indirect measures of sex determination (mean temperatures 
during the temperature sensitive period, mean degree hours above 
developmental zero, incubation duration). Thus, our results concur 
generally with those of Riley and Litzgus [5], indicating that com-
mon predator excluder designs do not appear to adversely affect 
nest incubation conditions.

We note that hatching success rates we measured for metal 
screened nests were highly variable and that some of our p values 
for ANOVAs were low, and being aware of critiques of application 
of absolute alpha levels [41], we calculated minimum sample siz-
es necessary to detect significant differences using our data as a 
pilot study using Ristl (2021) [6]. We found that 3997 replicates/
treatment would be necessary to detect significant differences 
among mean incubation duration, 75,964 replicates/treatment to 
detect significant differences among mean carapace lengths, but 
only 42 replicates/treatment for mean temperature during the 
entire incubation period, 36 replicates/treatment for mean tem-
perature during the TSP, 32 replicates/treatment for mean degree 
hours above developmental zero, and 43 replicates/treatment for 
hatching success (calculated by adding 15% to parametric results, 
as recommended by Lehmann [42]). Given these results, we strong-
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ly suggest that other researchers/conservationists conduct simi-
lar studies to confirm the results for the species in which they are 
studying, especially if the species is larger in size, lays bigger clutch-
es, is in a different climate zone, uses different nesting substrate, or 
if they use different excluder designs or materials.

Some variations in excluder materials and design are probably 
due to different nest sizes, substrate types, cost, and availability of 
available construction materials, but we suspect many aspects of 
predator excluder designs are determined mostly by local tradition, 
and effectiveness at thwarting predation is rarely evaluated. Bougie 
et al. [43] found that excluders varied in efficacy during incubation 
and between years. Campbell et al. [44] developed and tested a rel-
atively rapid methodology to assess the effectiveness of turtle nest 
protector programs. Nordberg et al. [45] found that the effective-
ness of sea turtle nest protectors varied by predator species. For 
example, Lamarre-DeJesus and Griffin [46] found that applications 
of habanero pepper (Capsicum chinense) on freshly oviposited log-
gerhead sea turtle (Caretta caretta) nests where coyotes (Canis la-
trans) were the main nest predators had 2.5 times higher survival 
than did control nests, whereas similar applications on Diamond-
back Terrapin nests did not reduce predation by raccoons [24]. Bu-
zuleciu et al. [47] reported three novel excluder designs, one using 
galvanized steel ducting, one using plastic mesh, and another using 
metal wire mesh. Quinn et al. [48] described the use of a nest box 
with electrified wiring and covering an artificially constructed nest 
mound that dramatically reduced predation rates.

We found that both metal and plastic mesh materials were 
equally effective in deterring raccoon predation, and the excluders 
made from plastic mesh were easier, less expensive, and safer to 
make. Volunteers were able to produce plastic excluders in about 
half the time required to make metal excluders. However, plastic 
excluders may be less effective at deterring larger or more per-
sistent predators than raccoons and may not be as effective at other 
sites. Bougie et al. [43] recommended that turtle nest protectors be 
tested in different areas with different suites of predators, because 
their efficacy may vary regionally, and we concur. The protocols 
we used here could easily be replicated in turtle conservation pro-
grams elsewhere. 
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