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Introduction

The prevalence of kidney diseases, including CKD, has 
significantly and concerningly increased in the last few years across 
the globe [1,2]. This increase is a growing public health emergency 
that highlights the critical need for early detection, precise 
diagnosis, and efficient treatment of kidney-related disorders. It is 
not just a statistical anomaly. Particularly CKD has become a silent 
epidemic, impacting millions of people globally and frequently  

 

going undiagnosed until the illness has reached a more advanced 
stage. Because CKD is a sneaky disease that causes kidney function 
to gradually decline over time, early diagnosis and treatment 
are vital [3,4]. The effects of CKD go well beyond the kidneys. 
A number of other major health issues, such as hypertension, 
anemia, cardiovascular disease, and problems with bone health, 
are strongly accelerated by this illness [5–7]. A multimodal 
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approach to healthcare is required due to the complex clinical 
landscape created by the interconnections between CKD and 
these comorbid conditions. Furthermore, end-stage renal disease 
(ESRD), a dangerous condition that requires dialysis or kidney 
transplantation for survival, can result from the progression of CKD 
[8,9]. The high rates of morbidity and death linked to CKD and its 
complications highlight how important it is to closely monitor and 
manage those who are at risk.

It is impossible to exaggerate the importance of CKD and its 
effects on world health [10]. Its capacity to lower life quality and 
the significant financial strain it places on global healthcare systems 
necessitate immediate and coordinated action to combat this illness. 
Not only can a timely and precise diagnosis of CKD save lives, but it 
can also drastically lower the medical expenses related to treating 
its complications. This makes the use of cutting-edge diagnostic 
techniques and tools essential, especially those that make use of 
ML capabilities. ML technologies present a promising avenue to 
mitigate the negative consequences of CKD and enhance the general 
health and well-being of impacted populations by improving the 
accuracy and efficiency of CKD diagnosis. The escalating prevalence 
of CKD poses a significant challenge to global health, underscoring 
the necessity for improved diagnostic and management strategies. 
The disease’s capacity to precipitate a range of secondary health 
issues further amplifies its threat, making the early detection and 
treatment of CKD paramount. As the medical community continues 
to navigate the complexities of CKD, the integration of advanced ML 
techniques in the diagnostic process represents a beacon of hope 
for countless individuals affected by this debilitating condition.

The foundation of AI, and ML has transformed many industries, 
including healthcare, by providing cutting-edge solutions for 
challenging issues. Its use in diagnosing diseases has become 
increasingly popular in recent years. Medical diagnostics has found 
ML algorithms to be invaluable due to their ability to analyze large 
datasets, identify patterns, and make highly accurate predictions. 
Early and accurate disease detection is made possible by these 
algorithms’ far greater efficiency in processing and interpreting 
genetic data, medical images, and patient data than is possible 
with conventional techniques. This technological advancement 
has significantly improved diagnostic processes, patient care, 
and treatment outcomes, highlighting the potential of ML in 
revolutionizing healthcare practices [11,12]. This technical 
development has greatly enhanced patient care, treatment 
results, and diagnostic procedures, underscoring the potential of 
machine learning to transform healthcare practices [11,13,14]. 
More specifically, ML has demonstrated incredible promise in the 
field of kidney disease diagnosis. CKD is a condition marked by a 
progressive loss of kidney function. Because of its intricate nature 
and the subtlety of its early-stage symptoms, diagnosing CKD can 
be difficult. These difficulties have been skillfully addressed by 
machine learning algorithms, which enable early detection and 
intervention. In order to identify CKD at a stage when patients are 
asymptomatic, ML models analyze clinical data, laboratory results, 
and patient histories. This allows for timely treatment, which 
significantly improves the prognosis. Moreover, these algorithms 

have the ability to forecast the course of the illness, which enables 
medical professionals to better customize treatment regimens.

In a study [15], the EMPA-KIDNEY trial is mentioned, which 
thoroughly evaluated empagliflozin’s ability to impede the 
advancement of chronic kidney disease (CKD) in a large number of 
patients. This phase 3 trial, which involved 241 centers worldwide 
and 6609 CKD patients, randomly assigned them to receive 10 mg of 
empagliflozin or a placebo daily. The results showed that, regardless 
of the underlying cause, empagliflozin significantly slowed the 
progression of kidney disease. These results point to the potential 
of SGLT2 inhibitors as an element of standard care that reduces the 
risk of CKD progression. In a different study [16], they developed 
a novel hybrid approach that combined XGBoost, Random Forest, 
Logistic Regression, AdaBoost, and a Random Forest meta classifier 
to solve the difficulty of accurately diagnosing illnesses, especially 
in the prediction of chronic kidney failure. Through careful selection 
and combination of these models, we created a “hybrid” model that 
on the UCI Chronic Kidney Failure dataset achieved the highest 
accuracy of 95%, significantly outperforming individual model 
performances. This development not only represents a significant 
advance in AI-assisted medical diagnostics but also demonstrates 
the potential of hybrid models to improve accuracy and reduce 
overfitting in intricate health data analysis.

Researchers explore the potential of ANNs in two main areas: 
identifying common kidney diseases, such as polycystic kidney 
disease, kidney cysts, and kidney cancer, and approximating image 
recognition in healthy individuals. ANNs are used to simulate 
perception and motor control functions for fast and accurate 
computations by utilizing the intricate, nonlinear computational 
power resembling that of the human brain. Through the examination 
of various samples, the study seeks to apply machine learning 
algorithms for the diagnosis of kidney diseases, demonstrating the 
potential of ANNs in improving patient care and medical diagnostics 
[17]. Another study [18] highlights the importance of the decision 
tree classification algorithm (DTCA) as a key ML tool that can be 
used to solve challenging issues in a variety of fields, including 
medical diagnostics. To be more precise, computer-aided diagnosis 
systems use DTCA to identify CKD such as diabetes and cancer 
from healthcare data. Deep learning (DL), which further enhances 
the field of machine learning, uses neural networks to learn from 
unstructured or unlabeled data. It does this by using methods 
like deep-stacked auto-encoders and softmax classifiers for CKD 
analysis. For the purpose of early CKD diagnosis and detection, this 
study uses a variety of predictive models, such as Random Forest, 
SVM, C5.0, C4.5, ANN, neuro-fuzzy systems, and others, with R 
Studio and Python Colab. The goal of the systematic review was 
to assess how AI and ML are used in the diagnosis, treatment, and 
prognosis of CKD. Because of its single database source and language 
constraints, the review met the requirements of a “rapid review” 
because it painstakingly assembled data from English-language 
research that was obtained from PubMed. Notwithstanding these 
limitations, the subject’s critical nature reduced the possibility of 
missing important research. The review examined 16 variables 
from each study, including objectives, population demographics, 
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data sources, sample sizes, and performance metrics, among 
others, using the Preferred Reporting Items for Systematic Reviews 
(PRISMA) guidelines [19].

In a study [20], ML is used to address the challenge of high 
variability in chronic disorder prognosis, specifically for CKD, which 
has a significant impact on clinical support systems and contributes 
to global mortality. The accuracy of the traditional CKD diagnostic 
techniques, which mainly rely on different biological markers, is 
frequently compromised. A machine learning model was created 
to predict the occurrence of CKD using public datasets in an effort 
to address this problem. Several data preprocessing steps, such as 
feature scaling, data balancing using the SMOTE algorithm, and 
missing data imputation, were involved in the construction of 
the model. To choose a minimal yet highly correlated feature set, 
the chi-squared test was also used. Then, a variety of supervised 
learning strategies were used to build a strong machine-learning 
model. Numerous studies have been conducted on the use of ML 
in the detection and treatment of kidney diseases. Numerous ML 
techniques have been investigated in these studies, including 
Decision Trees, SVMs, LR, ANNs, and more. While each approach 
has advantages and uses, ANNs and LR are frequently cited for 
their superiority in processing non-linear data and producing 
probabilistic results, respectively. The increasing corpus of 
research highlights the viability and efficacy of machine learning 
in augmenting chronic kidney disease diagnosis and treatment, 
indicating a future in which AI-powered instruments are essential 
to nephrology and more general medicine. This pattern is indicative 
of a larger movement in medicine toward data-driven care, where 
ML algorithms are essential for raising diagnostic precision, 
refining therapeutic approaches, and ultimately improving patient 
outcomes.

Materials and Methods
Support Vector Machines (SVM)

A group of supervised learning techniques called SVM are 
applied to regression, classification, and outlier identification. The 
primary goal of SVM is to identify the hyperplane in the feature 
space that best divides various classes. In order to maximize the 
margin between the closest points in each class referred to as 
support vectors this hyperplane was selected. When there are more 
dimensions than samples, SVMs perform especially well in high-
dimensional spaces. The use of kernel functions, which implicitly 
map input data into high-dimensional feature spaces, makes them 
adaptable to both linear and nonlinear data [21].

Logistic Regression (LR)

A statistical technique for examining a dataset in which one or 
more independent variables influence an outcome is called logistic 
regression (LR). A dichotomous variable is used to measure the 
result (where there are only two possible outcomes). It is widely 
used to predict the likelihood of a binary outcome in the domains 
of machine learning, social sciences, and medicine. Instead of 
providing a means for regression in the conventional sense, logistic 
regression models the probability that an outcome falls into one 

of two categories based on a logistic function, in contrast to linear 
regression which predicts a continuous outcome [22].

Artificial Neural Networks (ANNs)

Computer systems known as Artificial Neural Networks (ANNs) 
are loosely modeled after the biological neural networks found 
in animal brains. Artificial neurons, which resemble neurons in 
a biological brain somewhat, are a group of interconnected units 
or nodes that form the foundation of an ANN [23]. A signal can be 
sent from one artificial neuron to another through any connection 
between them. After processing the signal, the receiving neuron 
notifies neurons that are downstream of it. Through a process called 
training, ANNs can identify intricate patterns and relationships 
within data. This is accomplished by modifying the weights of 
connections. They are widely used in many different domains, 
including finance, engineering, medicine, and more, for a range of 
tasks like feature learning, regression, clustering, and classification.

Stacking

A machine learning ensemble technique called stacking, also 
known as stacked generalization, combines several prediction 
models to create a new model with the goal of increasing accuracy 
[24]. In contrast to conventional ensemble techniques such as 
bagging or boosting, stacking entails the training of a second-level 
model, also known as a meta-model, to combine the predictions of 
multiple base models in an optimal manner. These base models are 
trained on the same dataset and are usually diverse (e.g., different 
algorithms). To create a final prediction, the meta-model then 
learns how to integrate these predictions as best it can. The main 
thesis is that the meta-model can outperform any individual model 
in the ensemble by taking advantage of its strengths and making up 
for its shortcomings in the base models.

Hybrid Multi-Model Fusion (HMMF)

We combine the predictive powers of Support Vector Machines 
(SVM), Logistic Regression (LR), and Artificial Neural Networks 
(ANNs) to create a novel ensemble model that capitalizes on each 
model’s advantages in a cohesive way. In order to attain higher 
prediction accuracy, this model seeks to take advantage of the 
various features that these estimators have. The methodological 
approach consists of training each model separately, combining 
their predictions, and making a final decision through a soft 
voting mechanism. We describe the process both descriptively and 
itemized below, and then we show the algorithm in pseudo-code. We 
have created an ensemble model that leverages the unique benefits 
of ANNs, LR, and SVM. The capacity of ANNs to simulate intricate, 
nonlinear relationships in data is well known. Because it provides 
a probabilistic viewpoint, LR is a priceless tool for determining 
the likelihood of categorical outcomes. SVM works especially well 
in situations where there are distinct class boundaries because it 
is skilled at locating the best hyperplane to maximize the margin 
between classes. Using the same dataset, we first train each 
predictor separately according to this methodology. We use a soft 
voting strategy to aggregate the predictive probabilities from each 
model after training is finished. Because this method takes into 
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account the degree of confidence in each model’s predictions, it 
enables a more nuanced decision-making process. The class with 
the highest average probability is chosen as the result, and the final 

prediction is made by averaging the probabilities related to each 
class across all models (Figure 1).

Figure 1: Pseudocode for your Novel Hybrid Multi-Model Fusion (HMMF) method.

Training Phase

a) Train the ANN on the dataset.

b) Independently, train the LR model on the same dataset.

c) Similarly, train the SVM model on the dataset.

Prediction Aggregation

a) For a given input, generate predictions (class probabilities) 
from each of the trained models (ANN, LR, SVM).

b) Aggregate these predictions by calculating the average 
probability for each class across all three models. 

Decision Making

a) Apply stacking mechanism where the final class 
prediction is the one with the highest average probability across 
the predictions from the ANN, LR, and SVM models.

Model Evaluation

Machine learning models, like ANNs and LR, are evaluated 
using a variety of metrics, each of which offers a unique perspective 
on the model’s performance. The performance metrics that were 
mentioned have their mathematical formulations and explanations 
provided below:

A Confusion Matrix is a tool that helps to visualize the 
performance of a classification model. It is a table with two 
dimensions (“Actual” and “Predicted”) and allows us to measure 
directly the number of true positives, false positives, true negatives, 

and false negatives. The matrix is structured as follows:

a) True Positives (TP): Instances correctly predicted as positive.

b) True Negatives (TN): Instances correctly predicted as negative.

c) False Positives (FP): Instances incorrectly predicted as positive 
(Type I error).

d) False Negatives (FN): Instances incorrectly predicted as 
negative (Type II error).

The following formula is used to determine accuracy, which is a 
measure of the model’s overall correctness:

It represents the ratio of correctly predicted observations (both 
positive and negative) to the total observations.

Sensitivity measures the proportion of actual positive cases 
that are correctly identified by the model:

It indicates how good the model is at detecting positive 
instances.

http://dx.doi.org/10.33552/SJBLS.2024.03.000563
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Specificity measures the proportion of actual negative cases 
that are correctly identified by the model:

It indicates how good the model is at avoiding false alarms.

The Area Under the Receiver Operating Characteristic (ROC) 
Curve (AUC-ROC) is a performance measurement for classification 
problems at various threshold settings. The ROC curve plots the 
true positive rate (sensitivity) against the false positive rate (1 - 
specificity) at different threshold levels.

Results and Discussion

In order to slow down the progression of CKD and lessen 

its related health complications, early diagnosis is essential. 
Kidney function gradually declines over time as a result of CKD. 
Early detection allows for the implementation of interventions 
like medication and lifestyle changes that can greatly slow the 
progression of the disease, enhance the quality of life, and lower 
the risk of serious side effects like ESRD, cardiovascular disease, 
and higher mortality (Figure 2). Because they offer the possibility 
of preventive medical strategies and improved patient outcomes, 
accurate diagnostic tool development and implementation are 
crucial throughout the healthcare continuum. Prior to conducting 
a comparative analysis of the classification models, we started our 
investigation with a thorough preprocessing step on the dataset 
that came from the 153 patients at the Erbil Teaching Hospital. We 
carried out a comprehensive feature importance evaluation and 
painstakingly filled in any missing values (Figure 3) because we 
understood how important high-quality data was.

Figure 2: Bar chart showing the count of diagnoses of Kidney Disease.

Figure 3: Missing Values Bar Chart.
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By ensuring that the dataset was free of missing values, this 
preprocessing step reduced the possibility of biases and increased 
the validity of our conclusions. To help with a more informed 
feature selection process for the following modeling phase, we also 
carefully examined the dataset to comprehend the distribution 
and significance of different features in relation to the presence or 
absence of CKD. The distribution of age in the database has shown 
in Figure 4. The LR model’s evaluation of the training dataset 
yielded the following results: 89.81% accuracy, 81.40% sensitivity, 

95.38% specificity, and 39.81% disease prevalence. The LR model’s 
ability to accurately classify CKD presence or absence, with 
notable precision in identifying negative cases, is demonstrated by 
this performance. On the other hand, the ANN model showed an 
unmatched 100% accuracy on the training dataset, demonstrating 
its superior ability to perform error-free classification tasks. This 
flawlessness demonstrates the ANNs model’s promise for use in 
CKD detection and other medical diagnostics.

Figure 4: Histogram for ‘age’ column.

The LR model yielded accuracy of 82.22%, sensitivity of 
84.21%, and specificity of 80.77% for the testing dataset. With 
an accuracy of 84.44%, sensitivity of 84.21%, and specificity of 
84.61%, the ANNs model demonstrated a marginal improvement 
in comparison. According to these findings, ANNs show a slight 
advantage in generalization to previously unseen data, even though 
both models perform admirably. We presented a novel method 
called Hybrid Multi-Model Fusion (HMMF) to further improve 
model performance. By using a deliberate fusion mechanism, this 
approach combines the predictive capabilities of both LR and ANNs 
models in an effort to maximize the distinct benefits of each model. 
Using the same dataset, the HMMF approach was evaluated with 
the goal of enhancing overall disease prevalence detection as well 
as classification accuracy, sensitivity, and specificity.

The application of the HMMF approach produced outstanding 
outcomes that outperformed the LR and ANNs models separately. 

In particular, the HMMF model produced results with an accurate 
disease prevalence rate of 42.22%, sensitivity of 86.71%, specificity 
of 88.50%, and accuracy of 87.67%. These findings demonstrate 
how well the HMMF approach works to improve diagnostic 
accuracy and consistency.

Our results show that while individual models such as ANNs and 
LR have good predictive power, combining these models using the 
HMMF technique improves performance metrics dramatically. The 
HMMF approach creates a more reliable and accurate classification 
model for CKD diagnosis by combining the benefits of LR and ANNs 
while also mitigating their individual shortcomings. Employing the 
SVM model allowed us to explore its effectiveness in handling high-
dimensional data, resulting in an 83.33% accuracy on the testing 
dataset. This showcases SVM’s robustness in classifying CKD 
presence accurately the result has shown in Table 1.

Table 1: Comparative Performance Table.

Metric Logistic Regression Artificial Neural Networks Support Vector Machines Hybrid Multi-Model Fusion (HMMF)

Accuracy (%) 82.22 84.44 83.33 87.67

Sensitivity (%) 84.21 84.21 83.11 86.71

Specificity (%) 80.77 84.61 82.42 88.50

(AUC)ROC 82.49 84.41 82.1 86.00

The results of this study support the use of hybrid models in 
medical diagnostics and provide a promising avenue for further 

research into improving predictive analytics in the healthcare 
industry.
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Conclusion

The present investigation highlights the crucial function 
of sophisticated ML algorithms in augmenting the diagnostic 
precision of CKD, a condition that bears noteworthy ramifications 
for worldwide health. We have illustrated the superior predictive 
capabilities of the HMMF approach by comparing it with ANNs, SVM, 
LR, and other methods. Our results show that although SVM and 
ANNs offer strong frameworks for diagnosing CKD, integrating these 
models with HMMF greatly improves diagnostic accuracy, yielding 
87.67% accuracy, 86.71% sensitivity, and 88.50% specificity. The 
study also emphasizes the significance of urea and creatinine levels 
as critical CKD predictors, providing insightful information about 
the course and prognosis of the condition. This information not 
only advances medicine by enabling prompt and precise diagnosis 
of CKD, but it also highlights the promise of machine learning to 
transform healthcare diagnostics. The HMMF approach is proof 
of the creative advancements being made in medical diagnostics 
because it can take advantage of the advantages of individual ML 
algorithms while also minimizing their drawbacks.

Discussion

Using ML in medical diagnostics presents a viable way to handle 
the complexity of conditions like CKD. A notable development in this 
area is the HMMF method, which combines the predictive abilities 
of ANNs, SVM, and LR to provide a more sophisticated and precise 
diagnostic tool. The efficacy of this approach suggests that machine 
learning algorithms have the capacity to improve patient outcomes 
by augmenting diagnostic precision and facilitating customized 
treatment strategies. Furthermore, the discovery by ML of urea and 
creatinine levels as significant CKD predictors offers a more focused 
strategy for early disease detection and treatment. Healthcare 
providers can potentially halt the progression of the disease and 
enhance the quality of life for CKD patients by concentrating 
on these important indicators and acting promptly. The study’s 
implications go beyond the diagnosis of CKD. It implies that the 
HMMF approach and related machine learning techniques could 
be utilized for a variety of medical conditions, thereby augmenting 
the precision and efficacy of disease diagnosis and treatment. The 
incorporation of such cutting-edge diagnostic techniques will be 
essential in tackling the problems facing contemporary medicine as 
the healthcare sector develops, opening the door for a time when AI 
and ML will be essential parts of patient care.

In conclusion, a major advancement in the use of ML in 
healthcare has been achieved with the successful application of 
the HMMF method for CKD diagnosis. This work not only shows 
how well HMMF can increase diagnostic accuracy, but it also shows 
how ML algorithms can be used to improve medical diagnosis and 
treatment plans in more general ways. More precise, effective, and 
individualized healthcare is becoming a more likely possibility as 
we investigate and improve these technologies.
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