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Introduction

Modern robotic lines and AMR fleets are cyber-physical systems 
(CPS) with geographically and functionally distributed intelligence. 
Centralized orchestration often collapses under real- time jitter, 
privacy constraints, and single points of failure. The DAI framework 
in [1] addresses these limitations by structuring autonomy around  

 
cooperating agents that keep fast loops local while exposing lean, 
standards-based interfaces for coordination. This framing bridges 
long-standing strands of research-task allocation and consensus 
for multi-robot cooperation [2-4], dis- tributed optimal control 
for joint motion planning [5], and edge learning for perception & 
maintenance [6, 7]-into a deployable, modular stack. Interoperabil-
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Abstract
Distributed AI (DAI)-encompassing multi-agent coordination, distributed control, and federated/edge learning-is now central to automating 

robotic work cells and mobile fleets where tight latency budgets, data sovereignty, and operational resilience dominate system design. Rather than 
a monolithic “brain in the cloud,” a DAI approach decomposes autonomy into local perception/decision/control loops with only the necessary 
coordination across peers. This mini-review distils a practical blueprint:

(i)	Multi-robot task allocation and consensus to decide who does what, when; 

(ii)Distributed model predictive control (DMPC) to decide how robots move together safely and efficiently; 

(iii)Federated learning (FL) to adapt perception and predictive models on-device; and 

(iv)Runtime safety envelopes via Control Barrier Functions (CBFs). We emphasize edge-first layering (cell → line/fleet → plant/cloud), standards-
based interoperability (ROS 2/DDS and OPC UA), and twin-first validation. The core message is actionable: combining auctions/consensus, DMPC, 
FL, and CBFs over deterministic ROS 2/DDS transports provide a tractable path from pilots to brownfield scale-up without sacrificing safety, uptime, 
or auditability.
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ity and determinism are achieved by combining ROS 2’s publisher/
subscriber graph with DDS Quality- of-Service (QoS) policies for re-
liability, deadlines, and liveliness [8, 9]. OPC UA (IEC 62541) bridg-
es IT/OT boundaries via secure information models [10]. Digital 

twins de-risk change management by stress-testing policies and 
control updates before rollout [11, 12]. Together, these ingredients 
transform autonomy from a lab artifact into a production capability 
with traceable behavior and service-level objectives (SLOs).

Figure 1: Layered DAI architecture with BDIx agents. BDIx agents run at the Edge/Fleet layer (coordination) and Plant/Cloud layer (batch 
optimization/model management). The Robot/Cell layer hosts ROS 2/DDS loops and CBF supervisors; OPC UA bridges IT/OT; a Digital Twin 
validates updates before staged roll- out.

DAI Framework (According to [1])

Layering and roles. Robot/Cell agents (ROS 2 nodes on robots/
PLCs) close sub-10ms loops for actuation, perception pre- process-
ing, and device health. The Edge Line/Fleet layer arbitrates shared 
resources (e.g., aisle right-of-way, tool/changeover windows) and 
schedules jobs under local constraints. The Plant/Cloud layer 
handles slower-time-scale optimization (e.g., shift-level schedul-
ing), model lifecycle (train/validate/sign), and global KPIs. Clear 
role separation prevents control interference and simplifies cer-
tification. Communication. DDS QoS provides predictable pub/
sub behavior (bounded latency, reliable delivery, liveliness moni-
toring). Topics encode state, intents, and bids; namespaces isolate 
cells while enabling selective cross-cell exchange. OPC UA exposes 
equipment hierarchies and alarms to MES/SCADA and supports se-
cure handshakes for command authorization.

Learning at the edge. FL aggregates model updates rather than 
raw data, preserving privacy while leveraging fleet-wide experience 
[6, 7]. Non-IID data and connectivity heterogeneity are handled via 
client sampling, adaptive learning rates, and compression (e.g., 
sparsification/quantization). On-device drift detectors trig- ger 
light-weight personalization between federated rounds. Assurance 
and safety. CBF-based supervisors wrap learned or optimal control-
lers. At each cycle, a small QP minimally modifies the command to 
keep the system within a certified safe set [13]. This yields graceful 
degradation during anomalies (sensor dropout, packet loss) and 
makes learning compatible with safety standards.

Automation Patterns & How-To
Who does what, when

Use the Gerkey-Matarić taxonomy to match problem structure 
to allocation methods [2]. Market-based approaches (auctions, 
contract nets) scale gracefully under changing workloads by con-
verting tasks into bids scored on travel time, energy, capability, and 
deadlines [3]. Distributed consensus stabilizes shared beliefs (e.g., 
queue states) and enables coordinated decisions without a central 
arbiter [4]. In non-stationary environments, MARL can learn dis- 
patching heuristics online; policy updates should be rate-limited, 
with rollback hooks and CBF-wrapped exploration to bound risk.

How robots move together

DMPC couple’s local trajectory optimizers through exchanged 
plans or compact intent messages [5]. Practical deployments rely 
on: 

(i)	 short horizons with warm starts from the last feasible plan;

(ii)	 constraint tightening to absorb model mismatch; 

(iii)	 asynchronous updates to tolerate network jitter; and 

(iv)	 priority rules for deadlock-prone spaces (narrow aisles, in-
tersections). Feasible- but-suboptimal plans are preferred 
over brittle global optima; CBF layers guarantee collision and 
speed-limit compliance if neighbours misbehave or packets 
drop.
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Learning at the edge

For vision/QA and predictive maintenance, FL avoids central 
data pooling. Choose compact backbones that fit device memo-
ry and thermal envelopes; schedule federated rounds off-shift or 
during charging. Handle device churn with partial participation; 
use twin- generated augmentations for rare defect classes. Main-
tain a signed model registry; only models that pass twin-based re-
gression and safety checks are promoted to production.

Trust and safety

CBFs define forward-invariant safe sets from task-relevant con-
straints (separation, speed near humans, keep-out zones). Each cy-
cle solves a tiny QP to project the nominal action back into the safe 
set with minimum deviation [13]. This makes safety orthogonal to 
the controller choice (PID, DMPC, RL) and provides auditable guar-
antees that align with certification audits.

Brownfield checklist (quick start)

•	 Pilot a cell: Map robot/PLC I/O to ROS 2 nodes; tune DDS QoS 
(reliable, deadline, liveliness) for state/control topics; ex- pose 
PLC tags via OPC UA with role-based access.

•	 Edge coordinator: Start with auctions for tasking; add DMPC 
for shared-space traffic; encode simple priority rules to break 
ties.

•	 FL loop: Deploy a compact model per robot; run nightly/week-
ly federated rounds; enable on-device drift triggers for interim 
adaptation; track model lineage.

•	 Safety: Wrap controls with CBF supervisors; add health checks 
and watchdogs; PTP time-sync for consistent logs and event 
ordering.

•	 Twin-first: Validate policies and models in the digital twin; use 
staged rollouts (canary → cell → line); monitor KPIs and auto- 
rollback on regression.

Case Vignette: AMRs with Edge Vision & DMPC

Consider a kitting line with heterogeneous AMRs. Each robot 
runs a ROS 2 stack providing localization, battery/health telemetry, 
and an on-device defect detector for bins. A line-edge coordinator 
exe- cutes periodic auctions that assign pick missions using bid 
scores combining distance, residual battery, and congestion esti-
mates. A DMPC layer regulates hallway right-of-way: robots share 
planned velocities over DDS; when packets arrive late, CBF super-
visors bound speeds and enforce separation until the plan refresh-
es. Federated rounds aggregate detector updates during the night 
shift, while a twin replays the next day’s job mix and human traffic 
pat- terns to validate the candidate model before promotion. This 
combination reduces dispatch oscillations, smooths hallway flows, 

and contains risk: when one AMR reboots mid-mission, others re-
plan locally while CBFs ensure safe yields.

Conclusion

DAI turns autonomy into an engineered system property: 
agents negotiate tasks, coordinate motion, and adapt perception 
locally, while twins, DDS/OPC UA, and CBFs keep behavior pre-
dictable, explainable, and certifiable. The framework in [1] offers 
a pragmatic path from pilots to fleet-scale deployments-with mea-
surable gains in throughput and availability-without surrendering 
safety or data control.

Acknowledgements

The author thanks colleagues at CYENS and the University of 
Cyprus.

Conflict of Interest

The author declares no conflicts of interest.

References
1.	 Ioannou I, Nagaradjane P, Vassiliou V, Pitsillides A, Christophorou C 

(2024) Distributed Artificial Intelligence for 5G/6G Communications: 
Frameworks with Machine Learning (1st ed.). CRC Press. 

2.	 Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task 
allocation in multi-robot systems. Int J Robotics Res 23(9): 939-954.

3.	 Dias MB, Zlot R, Kalra N, Stentz A (2006) Market-based multirobot 
coordination: a survey and analysis. Proc IEEE 94(7): 1257-1270.

4.	 Olfati Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in 
networked multi-agent systems. Proc IEEE 95(1): 215-233.

5.	 Camponogara E, Jia D, Krogh BH, Talukdar S (2002) Distributed model 
predictive control. IEEE Control Syst Mag 22(1): 44-52.

6.	 McMahan HB, Moore E, Ramage D, Hampson S, Aguëra y Arcas B (2017) 
Communication-efficient learning of deep networks from decentralized 
data. AISTATS. arXiv:1602.05629.

7.	 Bonawitz K, Eichner H, Grieskamp W (2019) Towards federated learning 
at scale: System design. arXiv:1902.01046.

8.	 Maruyama Y, Kato S, Azumi T (2016) Exploring the performance of ROS 
2. Proc 13th ACM Int Conf.

9.	 Object Management Group (2015) Data Distribution Service (DDS) v1.4.

10.	Mahnke W, Leitner S-H, Damm M (2009) OPC Unified Architecture. 
Springer.

11.	Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital 
twin in CPS-based production systems. Procedia Manufacturing 11: 939-
948.

12.	Lu Y, Liu C, Wang K, Huang H, Xu X (2020) Digital twin-driven smart 
manufacturing: reference model and applications. Robotics Comput-
Integr Manuf 61: 101837.

13.	Ames AD, Xu X, Grizzle JW, Tabuada P (2017) Control barrier function 
based quadratic programs for safety critical systems. IEEE Trans Autom 
Control 62(8): 3861-3876.

http://dx.doi.org/ 10.33552/OJRAT.2025.04.000584
https://www.researchgate.net/publication/220122267_A_Formal_Analysis_and_Taxonomy_of_Task_Allocation_in_Multi-Robot_Systems
https://www.researchgate.net/publication/220122267_A_Formal_Analysis_and_Taxonomy_of_Task_Allocation_in_Multi-Robot_Systems
https://www.researchgate.net/publication/2998069_Market-Based_Multirobot_Coordination_A_Survey_and_Analysis
https://www.researchgate.net/publication/2998069_Market-Based_Multirobot_Coordination_A_Survey_and_Analysis
https://www.researchgate.net/publication/221933025_Consensus_and_Cooperation_in_Networked_Multi-Agent_Systems
https://www.researchgate.net/publication/221933025_Consensus_and_Cooperation_in_Networked_Multi-Agent_Systems
https://www.researchgate.net/publication/242014363_Distributed_Model_Predictive_Control
https://www.researchgate.net/publication/242014363_Distributed_Model_Predictive_Control
https://www.researchgate.net/publication/330871107_Towards_Federated_Learning_at_Scale_System_Design
https://www.researchgate.net/publication/330871107_Towards_Federated_Learning_at_Scale_System_Design
https://www.researchgate.net/publication/309128426_Exploring_the_performance_of_ROS2
https://www.researchgate.net/publication/309128426_Exploring_the_performance_of_ROS2
https://www.researchgate.net/publication/200032332_OPC_unified_architecture
https://www.researchgate.net/publication/200032332_OPC_unified_architecture
https://www.sciencedirect.com/science/article/pii/S2351978917304067
https://www.sciencedirect.com/science/article/pii/S2351978917304067
https://www.sciencedirect.com/science/article/pii/S2351978917304067
https://www.researchgate.net/publication/312441507_Control_Barrier_Function_Based_Quadratic_Programs_for_Safety_Critical_Systems
https://www.researchgate.net/publication/312441507_Control_Barrier_Function_Based_Quadratic_Programs_for_Safety_Critical_Systems
https://www.researchgate.net/publication/312441507_Control_Barrier_Function_Based_Quadratic_Programs_for_Safety_Critical_Systems

