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Introduction

Wearable devices are increasingly used in cardiovascular 
health monitoring. and they are considered key tools for digital, 
personalized and preventive medical care [1]. However, their wider  
deployment for clinical applications is still facing some challenges 
associated with accuracy and influence of environmental and 
operational factors. It has been shown that the HR and HRV analysis 
are powerful non-invasive parameters for assessing the function 
of the autonomic nervous system (ANS) and the status of various 
heart diseases by measuring the changes in the cardiac rhythm 
through time [2,3].The CPT, in which the subject immerses one 
hand or foot into ice water for 1-3 min, serves as a valuable tool to 
provoke sympathetic activation and has been used in the clinical  

 
and research settings to evaluate sympathetic neural control in 
humans [4]. 

Therefore, the analysis of the HR and HRV during CPT is a 
simple and efficient method by inducing temperature-related stress 
to trigger cardiovascular dynamics so as to better understand 
its impact on HR and HRV during ECG monitoring. In contrast to 
traditional time- or frequency-domain analysis, Peng et al focused 
on the time-frequency analysis of HR and HRV during the CPT, 
employing a time-varying autoregressive model [5]. Subsequent 
investigations have broadened the applications of HR and HRV 
in post-COVID period, particularly as a marker of cardiovascular 
dysautonomia [6,7]. Furthermore, beyond HRV, some researchers 
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Abstract 
As the demand for wearable technologies rises, the precision, reliability and user-friendly operation of wearable devices become increasingly 

critical. This study systematically investigated the effects of cold pressor test (CPT) on heart rate (HR) and heart rate variability (HRV), which are 
clinically useful parameters for the assessment and monitoring of autonomic nerve function and cardiovascular activities. Especially, HR data obtained 
from Electrocardiography (ECG), Photoplethysmography (PPG) and Impedance Plethysmography (IPG) were compared under the same temperature 
conditions. The CPTs were conducted on 22 subjects during baseline phase (Rest1), cold stimulus phase, recovery phase and another baseline phase 
(Rest2). It was found that cold water exposure would result in significant increased HR (p<0.001) and decreased HRV. Notably, a unique response 
was observed in one hypertensive subject that his HR decreased during cold stimulus phase. Furthermore, the results of comparative analysis 
demonstrated that HR from IPG exhibited better alignment with ECG across four phases while PPG showed poorer performance. However, under 
cold stimulus conditions, decrease in correlation was observed. This suggests that, compared to PPG, IPG may serve as a more reliable alternative to 
ECG for HR estimation. It should be pointed out that wearable devices incorporating IPG sensors can offer an efficient and gesture-free or hands-free 
alternative for HR estimation under diverse environmental conditions. Therefore, considering the estimation accuracy and user-friendly aspects, 
the IPG seems to be an optimal choice for wearable HR monitoring in comparison with the commonly used ECG and PPG methods, subject to further 
tests under a large database.
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explored pulse rate variability for the assessment of autonomic 
responses [8] and investigated BP variability to evaluate vascular 
elasticity during CPT [9].

Furthermore, wearable devices incorporating ECG for HR 
measurement, such as wristwatches, currently demand cross-
heart physio-electrical contact with the device, which impose 
posture restrictions and inconvenience on the user [10]. For those 
wearable devices deriving HR from PPG, they are susceptible to 
contact force, ambient light and skin tone variations, potentially 
leading to inaccuracies [11]. In contrast, IPG devices are relatively 
underutilized in wearable HR measuring technologies. In the 
present study, conducted with a cohort of 22 volunteers, we aim 
to investigate the influence of the CPT on HRs and HRVs from ECG, 
PPG and IPG which were recorded simultaneously. By recording the 
signals and 3 types of temperature measurements in 4 different 
phases, we carefully examined the intricate dynamics of HR and 
HRV responding to the stimulus of external cold. In this study, 
using HR derived from ECG as the reference, the accuracy of HR 

estimation from PPG and IPG were systematically compared under 
the different temperature conditions.

Methods

Experimental protocol

The human subject experiments of the CPT were performed 
with a total of N = 22 participants in the seated position, which 
were divided into 4 different phases as shown in Figure 1. After a 
2-minute relaxation period, a 2-minute baseline phase (Rest 1) was 
recorded. Subsequently, participants immersed their right hand 
in ice water at 3-6°C for 1 minute, representing the cold stimulus 
phase. Followed by a 6-minute recovery phase and finally, another 
2-minute baseline phase (Rest 2) was recorded. Throughout the 
experiment, continuous BP, ECG, PPG and IPG signals were collected 
simultaneously by the BIOPAC system in the sampling rate of 
2000 Hz for each signal. Temperature measurements included the 
localized hand temperature, ice water temperature, and forehead 
temperatures taken both before and after the cold stimulus. 

Figure 1: The procedure of the cold pressor test.

Figure 2: Definition of RRECG, RRPPG and RRIPG.

R–R intervals (RRECG) were calculated as the difference of 
successive R-wave peak locations from ECG signal. Similarly, 
the peak-to-peak interval (RRPPG) was determined as the time 
interval of two successive peak of the PPG signal while the valley-
to valley interval (RRIPG) was calculated as the time interval of two 
successive valleys of the IPG signal as shown in Figure 2. HR was 
derived as the reciprocal of the calculated interval in seconds. The 
statistical analysis of time-domain HRV, included the average and 
standard deviation of normal RRIs (AVNN, SDNN), the percentage 

of successive intervals that differ by more than 50 ms (pNN50), 
and proportion of NN50 divided by total number of normal RRIs  
(pNN50) [12]. Numerical variables were expressed as Mean ± SD.

Result & Discussion

HR and HRV Analysis from ECG

The averaged HR and standard deviation for all 22 subjects 
during the CPT were shown in Figure 3A. It was obvious that the HR 
was increasing during cold stimulus and gradually return to baseline 
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during the recovery phase and Rest2. The statistical results showed 
that the HR during cold-water immersion increased significantly 
compared with those HR calculated during Rest1, Recovery and 
Rest2 (p < 0.0001) as plotted and summarized in Figure 3B and 
Table 1, reflecting the expected sympathetic response in most 
subjects. Different temperature measurements were conducted on 
ice water, immersed hand and forehead before and after the cold 
stimulus. The results shown in Figure 3C, and Table 1 revealed 

the temperature of the immersed hand significantly decreased, 
indicative of the immediate vasoconstrictive response to the cold 
stimulus and redirect blood flow away from the extremities, while 
the temperature of the ice water significantly increased when 
removing the handout of the water. In particular, there were no 
significant differences in forehead temperature, suggesting that 
core temperature remained relatively stable owing to the central 
thermoregulation during the experiment. 

Table1: HR and different temperature measurements in different phases.

Rest1 Cold Stimulus

HR 1.21±0.16 1.30±0.15

Recovery Rest2

HR 1.19±0.16 1.22±0.16

Before Cold Stimulus After Cold Stimulus

Ice Water 4.99±1.16 5.93±1.12

Hand 30.64±3.13 16.56±2.18

Forehead 36.45±0.56 36.45±0.48

Figure 3: A. The average of the HR during the CPT for 22 subjects over time, the red dotted curves indicate the ‘mean ± standard deviation’; B. 
Boxplots of HR in 4 different phases; C. Boxplots of different temperature measurements before and after the cold stimulus. The boxes display 
median, 25th, 75th percentiles (solid line), mean (cross). “***” indicates statistical significance at p < 0.0001 (N=22).
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The findings of this experiment support the hypothesis that 
the CPT induces sympathetic nervous system activation in most 
individuals, leading to increased HR. Subject 16 was selected 
as an example and plotted in Figure 4A. However, this expected 
sympathetic response was not uniform across all participants and 
a unique response was observed in a hypertensive subject. This 
particular subject, with a snapshot BP of 146/86 mmHg during 
baseline measurement and under antihypertensive medication, 
demonstrated a decreased HR during the cold stimulus phase 
(Figure 4B). It suggested that the autonomic control of HR in 
hypertensive patients may exhibit distinctive patterns in response 
to cold stress, potentially attributable to antihypertensive 
medications and underlying cardiovascular conditions. This 
distinctive response indicates the importance of considering 

individual health profiles and medication regimens in the context of 
cardiovascular assessments, which warrants further investigation.

The time-domain HRV analysis, comprising key parameters such 
as AVNN, SDNN, NN50 and pNN50 are pivotal tools for evaluating 
ANS activity and cardiovascular health. In our statistical analysis, 
the decreased HRV was observed during the cold stimulus phase as 
summarized in Figure 5. This reduction in HRV parameters, which 
signifies a decrease in variability between consecutive RRI, reflects 
a shift towards enhanced sympathetic dominance and decreased 
parasympathetic activity. However, several studies have indicated 
that decreased HRV is an adverse prognostic factor for many CVDs. 
It was found that lower HRV is associated with a higher risk of 
mortality in acute myocardial infarction survivors [13,14]. 

Building on these investigations, it is essential to consider 
the potential implications for people with CVDs or at risk in real-
world scenarios. For instance, abrupt transitions between indoor 
and outdoor environments with large temperature differences can 
evoke an immediate sympathetic nervous system response, leading 
to elevated HR and increased cardiac workload. This physiological 
reaction may raise the risk of cardiovascular events. Additionally, the 
results of this study suggested that the temperature effects should 
be considered in ECG monitoring. Given these considerations, it is 

highlighted that the importance of temperature compensation or 
control in ECG monitoring for cardiovascular health assessment and 
recommended that cardiovascular patients should pay attention or 
avoid abrupt change situations such as entering a cooled room from 
hot outside in summer. 

Moreover, a special response was observed in the hypertensive 
subject, who experienced a decrease in HR during cold stimulus 
phase (from 1.45 to 1.27 beat/s). The impact of cold exposure 

Figure 5: The analysis of time-domain HRV during 4 different phases for the 22 subjects.

Figure 4: HR changes of two selected subjects during the CPT. A. Healthy subject #16, healthy male, 27 years old. B. Hypertensive subject 
#22, male, 41 years old. The orange shaded area represents the cold stimulus phase, the blue curve represents the HR at each cardiac 
cycle and the red line shows the overall trend.
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among persons with CVDs is not well known. Though some studies 
found that cold exposure reduces myocardial oxygen supply in 
coronary artery, which may lead to ischemia and further harm 
CVD patients [15], one study demonstrated a positive effect of 
cold adaptation on cardio-protective mechanisms [16]. This 
interplay between temperature-induced stress and cardiovascular 

activities indicates the necessity of capturing and interpreting 
such distinctive responses during ECG monitoring. Cold adaptation 
may be beneficial for cardiovascular health, and it is a potential 
intervention or therapeutic approach for CVD management but 
needs further investigation.

Comparative Analysis of HR from ECG, PPG and IPG

Table 2: Comparisons of Mean and SD of HR from ECG, PPG, and IPG in Different Phases.

  Rest1 Cold Stimulus Recovery Rest2

HRECG 1.21±0.16 1.30±0.15 1.19±0.16 1.22±0.16

HRPPG 1.21±0.20 1.30±0.24 1.19±0.20 1.22±0.21

HRIPG 1.21±0.18 1.30±0.19 1.20±0.18 1.23±0.18

Table 3: RMSE, MAE and r of HRECG vs. HRPPG and HRECG vs. HRIPG in Different Phases.

  HRECG vs. HRPPG HRECG vs. HRIPG

  Rest1 Cold Stimulus Recovery Rest2 Rest1 Cold Stimulus Recovery Rest2

RMSE 0.125 0.179 0.131 0.128 0.104 0.117 0.098 0.092

MAE 0.064 0.098 0.068 0.066 0.052 0.068 0.050 0.042

r 0.784 0.659 0.765 0.789 0.827 0.781 0.847 0.866

Table 2 summarized the mean and standard deviation (SD) 
of HR from each modality throughout different phases. Overall, 
HR from both PPG and IPG closely approximates HR from ECG. 
Although the mean HR from PPG aligns well with those from ECG, 
the higher SD suggests increased variability, potentially attributed 
to the limitations of PPG under certain conditions. Table 3 presents 
a detailed analysis of Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and Pearson correlation (r) for HR obtained 
from ECG versus HR from PPG and IPG in different phases. Notably, 
the results reveal that HRIPG exhibits smaller RMSE and MAE values 
compared to HRPPG, indicating higher accuracy in capturing HR 
dynamics. Furthermore, the stronger r observed for HRIPG versus 
HRECG underscores the efficacy of IPG in closely mirroring ECG-
derived HR.

The observed trends in the results offer valuable insights into 
the potential of IPG as a robust alternative for HR assessment, 
particularly when compared to PPG. A distinct observation emerged 
during the Cold Stimulus phase, where both RMSE and MAE values 
were noticeably higher, and the r was smaller compared to other 
phases. This indicates that the accuracy and agreement between 
HR measurements from different modalities were more challenging 
during exposure to cold stimuli. Further investigations such as 
temperature compensation or control in cold environment are 
needed to overcome these inaccuracy issues.

Better performance shown in IPG may be attributed to its 
special features. IPG, being an impedance-based technology, may 
be less susceptible to external factors such as skin tone, ambient 
light, or motion artifacts that commonly affect PPG. IPG may offer 
deeper tissue penetration compared to PPG, potentially capturing 
more accurate signals representing vascular dynamics. [17] 
Understanding these factors can potentially guide the refinement 

and optimization of wearable technologies, enhancing their efficacy 
in real-world applications.

Conclusion

In summary, our investigation has shed light on the effects of 
the CPT on HR and HRV. Exposure to the cold water would result 
in significantly increased HR and decreased HRV, indicative of 
enhanced sympathetic dominance and decreased parasympathetic 
activity. Especially, the unanticipated decrease in HR observed 
in the hypertensive subject during cold stimulus phase suggests 
that cold exposure may hold promise as a potential approach for 
CVD intervention and therapy or even as a diagnostic marker. 
Furthermore, the observed decreased HRV parameters during cold 
stimulus, known as an adverse prognostic factor for many CVDs, 
underlines the importance of avoiding abrupt environment changes, 
particularly for individuals with or at risk of CVDs. Furthermore, the 
findings highlight the potential of IPG as a robust alternative for HR 
assessment, showcasing its close agreement with ECG-derived HR, 
better accuracy, and stronger correlation compared to PPG. During 
the cold stimulus phase, both RMSE and MAE among different 
modalities were higher, indicating the increased complexity of HR 
measurement under cold stimuli, emphasizing the need for tailored 
approaches in different temperature scenarios.

Looking ahead, as the demand for precise and convenient 
wearable monitoring continues to grow, future research on 
understanding the influence of temperature on HR, and HRV could 
benefit wearables to ensure the reliability and adaptability of remote 
monitoring across diverse environmental conditions. Besides, IPG 
could be used for assessing cardiovascular dynamics, providing 
insights into blood flow, cardiac output, and vascular resistance. 
Further studies in implementing IPG-based methodologies on 
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wearable devices are worthy to explore. Exploring these avenues 
can augment cardiovascular health assessment and management in 
wearable health technology.
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