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Introduction

For the nonlinear systems with triangular normal form, such as 
the (strict) feedback forms 
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and the (strict) feedforward forms
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have been extensively investigated during the past twenty years. 

Now it is well known that the former can be globally asymptotically 
stabilized by backstepping-based control methods [1], while 
the later can be globally asymptotically stabilized by the nested 
saturation feedbacks [2,3] or the forwarding procedures [2,4]. In 
this paper, the GAS of a class of highly nonlinear systems with non-
triangular forms is investigated. Due to the important applications 
in underactuated mechanical systems [5], the nonlinear dynamic 
systems under consideration can be generally expressed as 
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It is intuitionally, if the nonlinear term of the right-hand side of 
(3) satisfies 
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),,(),,,,( 1212121 ξξξ zzFuzzF =     
   (4)

then the non-triangular nonlinear systems (3) degenerate 
to the strict feedback forms. When the nonlinear function

),,,,( 2121 uzzF ξξ  has a form

),,(),,,,( 212121 uFuzzF ξξξξ =   (5)

then the systems (3) is simplified to the feedforward systems. 

The primary limitation of stabilization of nonlinear systems in 
non-triangular forms (3) is because of the “peaking phenomenon” 
that was pointed out by Sussmann and Kokotović [6]. The 
problem is that driving the subsystem ( )21,ξξ exponentially fast 
to zero using a linear partial state feedback does not necessarily 
asymptotically stabilize the composite system in (3). Such a partial 
state feedback might cause the subsystem ( )21, zz  to have finite 
escape time. To overcome the effect of peaking in the stabilization 
of the non-triangular systems (3), the researches followed in 
this direction commonly restrict the form of the nonlinear terms 
either by structural requirements [1,7] or by growth conditions 
[2, 6, 8] to prevent the possibility of finite escape time. The 
structure restrictions lead to the researches of nonlinear systems 
with triangular forms, while the growth conditions lead to the 
applications of saturated feedback with small gains. The main 
drawback of all existing bounded controller with small gain feedback 
is the relatively poor performances, such as the large settling time, 
the possibility of slow peaking [8], and the low resistibility on the 
external disturbance [2].

It is different from the research directions for finding the 
globally asymptotical controllers on the basis of the relatively 
accurate nonlinear dynamics model. The robust controls, such as 
the high-order sliding mode [9], H∞controllers [10], and fractional-
power-based feedbacks [11], etc. also provide the important 
research directions for controlling the highly nonlinear systems. 
The H∞-based control for the nonlinear systems is intractable in 
solving the Hamilton-Jacobi-Isaacs (HJI) equations. The high-order 
sliding mode control is difficulty in proving the stability of the 
controller because of using the discontinuous feedbacks. To date, 
these two kinds of robust control design methods are primarily 
limited to some special homogeneous nonlinear systems or even 
the linear systems. The fractional-power feedback is a kind of 
Hölder continuous [11] but non-smooth feedback techniques. By 
the “adding a power integrator” method [12], the Lyapunov function 
can be constructed systematically, and the robust control method is 
not limited to the triangular systems. Inspired by the works of [13-
16], in this paper the GAS of the non-triangular nonlinear system 
(3) with some additional conditions is investigated by applying the 
fractional-power feedback. 

This paper is organized as follows. In section 2, the essence the 
control problem for the nonlinear system (3) is analyzed. A robust 
finite-time stabilizing controller is presented in the section 3. In 
section 4, a specific example is employed to numerically demonstrate 

the stability of the presented controller. The conclusions and some 
discussions are provided in the last section.

1. The inherent characteristics of the control problem of 
the nonlinear system (3)

According to the Lyapunov stabilization theory, the 
essence of the control problem of the nonlinear system (3) is 
to find an input u  and a positive-definite and proper function 

0),,,,( 2121 >= tzzVV ξξ , such that 0lim =
∞→

V
t  is satisfied, where 

t  be the time variable. Due to the special structure of system 
(3), the control problem of it can be changed to design a function 

),,( 21 tzzFz , such that the differential equation. 

),,(),,,,( 212121 tzzFuzzF z=ξξ   (6)

has unique solution )(tu  and it drives the system (3) satisfies 
0lim =

∞→
V

t . We will show in the sequel that solving the nonlinear 
differential equation (6) can be simplified to solve an algebraic 
equation with considering some additional conditions. Before 
showing that, the following theorem is necessary to be introduced.

Theorem 1: For the nonlinear system (3), assume the function 
),,,,( 2121 uzzF ξξ  is independent of the input u , and the 

following set of the ordinary differential equations. 
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has unique solution
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then the controller 

( ) αξββξ +−+−−= 124
ku

   
(9)

where ( ) 1213 αααξβ +−+−−= zk  , 

( ) 11122 zzk −+−−= ααα  , and 111 zk−=α , renders the 
origin of the nonlinear system (3) GAS.

Proof: Let’s define a Lyapunov function candidate

( ) ( ) ( )232
2

21
2

12
2
1 2

1
2
1

2
1

2
1 αξαξα −+−+−+= zzV

  
(10)

By a standard backstepping procedure [1], one can see that the 
controller

( ) 213324 αξααξ +−+−−= ku

where ( ) 1222133 αααξα +−+−−= zk  , 

( ) 111222 zzk −+−−= ααα  , and 111 zk−=α , renders the 
Lyapunov function candidate (10) satisfies.
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Thus, if the following equations are satisfied
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is GAS. Because of the implicit function theorem [17], it is well 
known that, if the following inequality 
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holds, then there exists a set of functions (8) satisfying the 
equations (7). If we define
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then the controller (9) renders the origin of the non-triangular 
nonlinear system (12) GAS. This completes the proof.

Remark 1: The obstacle of using the theorem 1 is that the 
differential equations (7) are intractable generally. For a general 
case, one has to use a numerical method to solve the equations 
(7) [17] except some very special circumstances. From the point 
of view of the well-known Input to State Stability (ISS) theory 
[2,7], to globally stabilize the nonlinear system (3), the differential 
equations (7) should satisfy the following relationships
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For the purpose of clarity, the equations (13) can also be 
rewritten as
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(14)

This means the subsystem ( )21, zz  of (12) is zero-input stable 
(or free dynamics stable). Since the first equation of (14) is a 
nonlinear algebraic equation with respect to the single unknown 
variable 1ξ , it is straightforward that the equation (14) will 
be explicitly solvable for some special cases. On the basis of the 
relationships (14), Olfati-Saber [7] presented the “Fixed-Point 
Law” for stabilizing a class of nonlinear systems. It is worth noting 
that the differential equations (7) depict a surface in the state 
space ( ) 4, R∈îz , but the equation (14) is just a curve (invariant 
manifold) on the surface. Therefore, the non-triangular nonlinear 
systems that can be dealt with by the ISS theory are also limited 
to some very special cases. In the next section, it is shown that the 
fractional-power-based nonsmooth but continuous controllers can 
globally stabilize a class of highly nonlinear systems.

2. Robust controller based on the fractional-power 
feedback

Motivated by the relevant works [7,8, 12-16], in this section, 
the design of the robust controllers based on the fractional-power 
feedbacks is investigated to stabilize a class of non-triangular 
nonlinear systems. For a more general class of nonlinear systems 
comprising the nonlinear system (3), we present a theorem as 
follows.

Theorem 2: Consider the non-triangular nonlinear system
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(15)

where 0>iβ , 4,3,2,1=i  are constants, ∑
=

≤
i

j
jii Mtug

1
)(),,( ξξξ  

with 0)(0 MM i ≤≤ ξ  are bounded 1C functions and 0M  is 
a constant. Then there exists a set of positive constants 0>ik , 

4,3,2,1=i , such that the fractional-power-based controller

( ) 9139
3

39
44 αξ −−= ku     

(16)

where ( ) 9359
2

59
333 αξα −−= k , ( ) 9579

1
79

222 αξα −−= k , 
and 97

111 ξα k−= , globally stabilize the origin of the system (15) in 
finite settling time.

Proof: Due to the special cascade form of the linear part in the 
nonlinear system (15), we use “nearly” a standard backstepping 
procedure [1] to analyze the stability of the closed-loop system 
(15)-(16), and the Lyapunov function candidate is constructed 
by applying the powerful “adding a power integrator” technique 
presented in [12]. 

 Now let’s firstly consider the subsystem 1ξ , and select a 
corresponding Lyapunov function candidate 2

11 2
1 ξ=V , the time 
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derivate of 1V  can be written as 
( ) )(1

2
112111111 ξξαξξβαξβ MV +−+=  (17)

Select the virtual input 1α  to be.

97
1111

ˆ ξβα k−=      
(18)

where 01̂ >k  is a constant. Noting that )(~)( 1
916

11
2

1 ξξξξ MM ≤

, then (17) follows that

( ) ( )1211
916

10
2

111
ˆ αξξβξδβ −+−−≤ kV   

(19)

where 0)(~
10 >> ξδ M  is a constant. 

In the second step, let’s consider the subsystem ),( 21 ξξ  of 
(15), and choose a new Lyapunov function candidate

112 WVV +=     (20)

where

( ) dssW
911
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1
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1

2

1
∫ −=
ξ

α
α

   
(21)

Refer to the Lemma 3 presented in the Appendix of the paper, it 
is easy to show that 01 >W  for all 12 αξ ≠ , then the time derivate of 

2V  can be written as
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(22)

Now let’s estimate the bounds of the last three terms in right-
hand side of (22). Using the Lemma 1 and 2 in the Appendix of the 
paper, it is not difficult to show that the second term of the right-
hand side of (22) satisfies

( ) ( ) ( )
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where 01 >δ  and 02 >δ  are two constants. The third term of 
the right-hand side of (22) can be expressed as

( ) [ ]),,(232
91179

1
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2

1 tugW ξξβαξξ
ξ
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∂
∂



 
(24)

The fourth term of the right-hand side of (22) satisfies
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Once more, by applying the Lemma 1 and 2 of the appendix, the 
inequality (25) follows that

( ) ( )( )

( ) 91679
1

79
24

916
13

112
79

1
79

2
79

112
1

1

1

1 ˆ
7
22

αξδξδ

ααξαξβξ
ξ
α

α

−+≤

+−−≤
∂
∂

∂
∂ kW

(26)

where 03 >δ  and 04 >δ  are two constants too. Substitute the 
inequalities (23)-(26) into (22), we obtain

( ) ( )( )
( ) [ ]),,(232

91179
1

79
2

91679
1

79
242

916
1310

2
112

tug

kV

ξξβαξ

αξδδξδδδβ

+−+

−++−−−−≤

   

(27)

Noting that 97
1111

ˆ ξβα k−=  and the following fact

97
111

9779
1

79
21122

ˆ2 ξβαξααξξ k+−≤+−≤
 (28)

then the last term of the right-hand side of (27) satisfies

( ) ( ) ( )21
91179

1
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222
91179

1
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2 )(),,( ξξαξξξαξ +−=− Mtug
 
(29)

Due to the Lemma 1 and 2 in the appendix, it follows that
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(30)

where 05 >δ  and 06 >δ  are two constants. Thus the 
inequality (27) can be written as 

( ) ( )( )
( ) ( ) ( ) 22

91179
1

79
2232

91179
1
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2

91679
1
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2642

916
15310

2
112

ˆ

αβαξαξβαξ

αξδδδξδδδδβ

−+−−+

−+++−−−−−≤ kV

 
(31)

If we choose

( )( ) 9579
1

79
2642222

ˆ αξδδδβα −+++−= k  (32)

where 0ˆ
2 >k  is a constant. Then (31) follows that

( ) ( )
( ) ( )232

91179
1

79
2

91679
1

79
2

2
22

916
15310

2
112

ˆˆ

αξβαξ

αξβξδδδδβ

−−+

−−−−−−−≤ kkV

   
(33)

This completes the second step.
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Proceeding along similar lines of the derivation of the second 
step given above, for the subsystem ),,( 321 ξξξ , one can select 
the new Lyapunov function candidate.

223 WVV +=      (34)

where

( ) dssW
913

59
2

59
2

3

2
∫ −=
ξ

α
α

 
(35)

and selects a new virtual input

( )( ) 9359
2

59
3

*
1333

ˆ αξδβα −+−= k   
(36)

where 0ˆ
3 >k  and 0*

1 >δ  are two constants too. 

For the overall system (15), we can define a new Lyapunov 
function candidate

334 WVV +=        (37)

where 

( ) dssW
915

39
3

39
3

4

3
∫ −=
ξ

α
α

   
(38)

and select the input 

( )( ) 9139
3

39
4

*
244

ˆ αξδβ −+−= ku    
(39)

where 0ˆ
4 >k  and 0*

2 >δ  are two constants. Then it is not 
difficult to show that the time-derivate of 4V  satisfies following 
inequality

( ) ( )
( ) ( ) 91639

3
39

4
2
44

91659
2

59
3

2
33

91679
1

79
2

2
22

916
15310

2
114

ˆˆ

ˆˆ

αξβαξβ

αξβξδδδδβ

−−−−

−−−−−−−≤

kk

kkV

   
(40)

On the other hand, the Lyapunov function candidate given by 
(37) satisfies the inequality

( ) ( ) ( )239
3

39
4

259
2

59
3

279
1

79
2

2
1

32114

2222 αξαξαξξ −+−+−+≤

+++= WWWVV

  
(41)

Therefore, by applying the inequality (A1) of the Appendix, it 
is easy to show that there exists a sufficiently large constant 0>k  
such that the following inequality holds.

98
44 kVV −≤

According to the Lemma 4 provided in the appendix of the 
paper, we complete the proof.

Remark 2: The crucial tools used in the proof of the theorem 2 
are the inequalities (A1)-(A4) provided in the Appendix. With the 
help of the “adding a power integrator” technique, the Lyapunov 
function and the controller can be constructed step by step, which 
is analogous to a standard backstepping procedure. However, 

it is different from the standard backstepping procedure since 
the internal virtual controllers iα , 3,2,1=i  are not smooth, i.e. 

0Ci ∈α . So we have to construct the 
1C  function iW , 3,2,1=i  

and to estimate the bounds of the induced differential terms of 
dtWd i  in every step, such that the internal error associated with 

the preceding state variable can be involved in the followed virtual-
controllers. 

Remark 3: We want to mention that Lemma 4 provided in 
the Appendix was firstly presented in [11], and it provides the 
foundation of synthesizing the controllers by fractional-power-
based feedbacks. In the literature [12] presented by Qian and 
Lin, the “adding a power integrator” technique is wisely used to 
designing the finite-time stabilizing controllers (FTSCs) for a class 
of nonlinear systems with strict feedback forms. In the relevant 
literatures [13] and [14], Hong et al. use a different approach from 
that of [12,15,16] to design the FTSCs. In this paper, we follow the 
approach presented in [12,15] since the Lyapunov function and 
the FTSCs can be simultaneously constructed with the help of the 
“adding a power integrator” technique. In [16], a FTSC is designed 
for linear systems by applying the approaches presented in [12] and 
[15]. In the present paper, we extend the approach of designing the 
FTSCs to a class of nonlinear systems with non-triangular forms.

Remark 4: It is noteworthy that the selections of the fractional-
powers for the FTSC (16) is not exclusive, such as that does in the 
relevant literatures [11] and [12,15]. It is straightforward that there 
exists a set of constants 0>ik , 4,,1=i , such that the following 
family of controllers. 

( ) )12()72()52()12(
3

)52()12(
44

+−−+−+ −−=
mmmmmmku αξ  

(42)

where 

( ) )12()52()32()12(
2

)32()12(
333

+−−+−+ −−=
mmmmmmk αξα , 

( ) )12()32()12()12(
1

)12()12(
222

+−−+−+ −−=
mmmmmmk αξα , and

)12()12(
111

+−−= mmk ξα

for all 4≥m , can globally stabilize the non-triangular 
nonlinear systems (15) in finite settling time. The controller (42) 
can be regarded as a generalization of the controller (16).

Remark 5: For the following general non-triangular nonlinear 
system with single input

),,(

),,(

),,(

1

1211

tugu

tug

tug

nnn

iiii

ξβξ

ξξβξ

ξξβξ

+=

+=

+=

+











 

(43)

the corresponding FTSCs can be given as follows by properly 
selecting the parameters niki ,2,1,0 =>  of the feedbacks.
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( ) )12(13)12(
1

3)12( ++
−

+ −−=
nn

n
n

nnku αξ  (44)

where

( ) )12()122()322()12(
1

)322()12( ++−+−+
−

+−+ −−=
nininn

i
inn

iii k αξα , for 
1,2 −= ni 

……
)12()12(

111
+−−= nnk ξα

.

Proceeding along similar lines as in the proof of theorem 2, 

the controllers (42) and (44) can be constructed without any 
difficulties.

An example of applications

In this section, the benchmark SISO non-triangular nonlinear 
system, Ball-and-Beam (B&B) system is employed to numerically 
verify the robust stability of the presented controller (16). There 
are two types of the mechanisms of the B&B systems shown by 
the relevant literatures [7,8,18-21]. One type of them is illustrated 
in Fig.1, which is also investigated in this paper. The other type 
is based on the four-bar mechanisms of crank-linkage [18-20], of 
which the swing-link (as the beam) is used to drive the ball. 

Figure 1: The Beam-and-Ball system.

As that shown in the Figure 1, m  is the mass of the ball, 1I
and 2I  denote the inertia of the beam and ball respectively, x  
and θ  are the generalized coordinates of the mechanism, and d  
is the distance between the center of the ball and the axis of the 
pivot along the vertical direction of beam. Then the dynamics of the 
system can be given by

022221

11211

=++

=++

hxmm

hxmm








θ

τθ

 

(42)

where 
)( 22

111 dxmIm ++= , mdmm −== 2112 , 

λm
mr
Imm =






 += 2

2
22 1

, 

( )θθθ sincos21 dxmgxmxh −+= 



, and 

θθ sin2
2 mgmxh +−= 

.

If we define  

( )1212

1

22

2112
11 hhm

m
mmmu −+








−==

−

τθ

 
(43)

to be the new input, then the dynamics equation (42) can be 
written as 









=

+−=−−=

u

udmgmxu
m
mhx
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θθ





 sin2
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(44)

Using the global coordinate transformations













=

=
−=

−=

θ

θ
θλ

θλ







4

3

2

1

z

z
dxz

dxz

  

(45)

the dynamics of (44) can be expressed as the form in state space

( ) uzzzzdzzzgzzz ==++−== 443
2
4313221 ,,sin, 

(46)

If 0=d , then (46) is simplified to be

uzzzzzzgzzz ==+−== 443
2
413221 ,,sin,      (47)

The dynamics given by (47) was commonly used in the relevant 
researches [8,19,21]. Stabilization of the B&B system with more 
general dynamics (46) was also studied in [7], but the controller 
was not clearly presented there. Due to the nonlinear term related 
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to 2
4z  in (46) and (47), the nonlinear systems under consideration 

are in a non-triangular form. In the present paper, the acceleration 
of gravity is given to be ( )2m/s1=g , which means the system 
working in a weak gravity flied. Thus, the disturbances caused 
by the nonlinear terms about the 2

4z  ins (46) and (47) relatively 
enhanced. 

To globally stabilize the nonlinear systems (46) and (47), it is 
necessary to transform the systems into the normal form of (15). 
Towards the end, we present following proposition.

Proposition 1: By the following coordinate transformation

i
ir

i z−= λξ , uw r 5−= λ , for 4,,1=i , Rr∈ , and 0>λ  (48)

the nonlinear systems (46) and (47) can be changed to the 
normal form (15).

Proof: By applying the coordinate transformation (48), it is 
easy show that the nonlinear system (46) can be rewritten as

wrp λξλξξξλξξλξξ ==+−== 4433221 ,),,(, 

 (49)

where 
( ) ( ) 2

43
)3(

1
)1(2

3
)3(2

3 sin),( ξξλξλλξλλλξξ −−−−−−− ++−= rrrr drp   (50)

Thus, the perturbation term (50) is parameterized by the 
pairs ( )r,λ . Since (48) is a global diffeomorphism, for all fixed 
constant 0>λ  and a feasible state 4,,1),( =itzi  of the system, 
there exists a real number Rr∈  and 00 >M , such that following 
inequality holds

( )210),( ξξξ +≤ Mrp
 

(51)

This completes the proof.

Remark 6: It is shown in relevant literatures [7, 8] that the 
controllers based on the saturated feedbacks with low gains can 
globally stabilize the nonlinear system (47). The fact is that the 
growth of the perturbation term ),( ξrp  should be limited so that 
the nonlinear term in (47) satisfies the following relationship.

)sin(sign)sin(sign 3
2
413 zgzzzg −=+−

It is easy shown in proposition 1 that the perturbation term 
),( ξrp  in (49) can also be written as

( ) 2
43

52
41

33
3

27),( ξξλξξλξλξ rrrOrp −−− ++−=

where )(⋅O  denote the big Landau symbol. Hence, for all 
fixed 0>λ , the boundary of the perturbation term ),( ξrp  can 
be limited to satisfies the inequality (51) by adjusting the real 
parameter Rr∈ . For instance, if we select ( )1,0∈λ , then a smaller 

Rr∈  will help to limit the perturbation term in a given bounds 
for the state variables with large errors, while a larger Rr∈  is 
helpful for reducing the settling time for the of the state variables 
with small errors. 

Simulation 1:  For the system (47)( 0=d ), given 
the initial state to be )0,6/,0,2.0(),,,( 4321 π−=zzzz , the 
parameters of the controller (16) are selected to be =),,,( 4321 kkkk

)3,2,1,5.0( , and then the simulation results are illustrated in Figure 
2 and Figure 3. 

Simulation 2: For the system (46)( 7.0=d ), the initial state 
of the system is given by )0,3/,0,2.0(),,,( 4321 π=zzzz , while 
the control parameters are not changed, namely =),,,( 4321 kkkk

)3,2,1,5.0( , then the simulation results are plotted in the Figure 4 
and Figure 5.

Figure 2: Responses of the state variables z1  and z2  in the simulation 1.
Figure 3: Responses of the state variables z3  and z4  in the simulation 1.
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Figure 4: Responses of the state variables  z1 and  z2 in the simulation 2.
Figure 5: Responses of the state variables  z3  and z4  in simulation 2.

Conclusions

It is shown in the present paper that the non-smooth but 
continuous feedback is potentially an effective way for robustly 
stabilizing a class of highly nonlinear systems with non-
triangular form. A chain of integrators perturbed by a vector field 
characterizes the systems considered in this paper. We show the 
considered highly nonlinear systems can be globally stabilized to 
the origin in finite settling time. Through the B&B system, we also 
show that a class of nonlinear systems with non-triangular form 
can be transformed into the perturbed linear systems, and the 
perturbation terms can be limited in the given bounds by adjusting 
the introduced scale parameters of the transformation. Then the 
B&B system can be globally stabilized by the presented FTSCs. 

Appendix

Lemma 1[12,15,16]: For any real numbers ia , ni ,,2,1 =  
and 10 ≤< γ , the following inequality satisfies.

∑∑
==

≤






 n

i
i

n

i
i aa

11

γ
γ

.  

(A1)

When 10 ≤=< qpγ , where 0>p and 0>q are all odd 
integers, then.

γγγγγ yxyxyx −≤−≤− − 221

   
(A2)

When 1>= qpγ , then

γγγγ yxyx −≤− −12
   

(A3)

Lemma 2[12,15,16]: If a and b are two positive real numbers, 
and 0),( >yxβ is real value function, then it follows that.

ba
ba

baba y
ba

yxbx
ba
yxayx +

−
+

+
+

+
≤

),(),( ββ

    
(A4)

It is noteworthy that the Lemma 2 can be proved by the Young’s 
inequality, namely qp b

q
a

p
ab 11

+≤ , where 111
=+

qp
, and 

0>p , 0>q . In particular, if let nm
m

mxa += β , 

m
nmp +

= , n
nmq +

= , then the inequality (A4) follows.

Lemma 3: If 10 <=< qpγ , where 0>p and 0>q are 
two odd integers, then the power integration is positive, namely.

0)( 211 >−= ∫ −ξ

α

γγγ α dssW
  

(A5)

Proof: It is straightforward that inequality (A5) can be proved 
by

( )

( )

( )

0)(22

)(2

)(sign2

)(sign)(

21
2

2
1
2

2
1
2)3A(

21111211

≥−×=

−−=

−−≥

−−=−

−
−

−

−
−
−

−

−
−
−

−

−−

∫

∫

∫∫

γγ
γγ

ξ

α
γ
γ

γ
γγ

ξ

α
γ
γ

γ
γγ

ξ

α

γγγγγξ

α
γγγ

αξ
γ

αα

αα

ααα

sds

dsss

dsssdss

where the “(A3)” on the “≥ ” indicates by applying the inequality 
(A3).

Lemma 4[11,15,16]: For the non-Lipschitz autonomous 
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system )(xfx = , suppose there exists a continuous function 
RD →:)(xV  defined on a neighborhood DN ⊆  of the origin, 

such that the following conditions hold: (a) )(xV  is positive definite 
on nRD ⊂ ; (b) There exist real numbers 0>c  and )1,0(∈γ , such 
that 0)()( ≤+ xcVxV γ

 , { }0/N∈x . Then the origin of system 
)(xfx =  is locally finite-time stable. The setting time, depending 

on the initial state 0)0( xx = , satisfies [ ])1()()( 1
00 γγ −≤ − cxVxTx  

for all 0x  in some open neighborhood of the origin. If nRD =  and 
)(xV  is also unbounded, then the origin of system )(xfx =  is 

globally finite-time stable.
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