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Introduction

Machine learning [1, 2] is the core of artificial intelligence. Its 
main idea is to use the existing data that has been mastered, ana-
lyze and process the data, and seek rules from it. Finally, predict the 
unknown through the analysis of known data, and the most crit-
ical one is machine learning algorithm. In recent years, Gaussian 
process [3,4,5] has attracted wide attention due to its effectiveness. 
Gaussian process is an effective machine

learning method [6,7], which combines both Bayesian theory 
and kernel theory, and thus has the advantages

of both machine learning methods. Gaussian process can realize 
both classification and regression [7], which has certain advantag-
es. Gaussian process model [8,9], as an excellent machine learning 
model in the field of regression and classification, has been wide-
ly concerned, and many excellent successes have been born at the 
right moment. Gaussian process has a lot of applications in practi 

 
cal problems [10,11]. The second part describes the process from 
unary Gaussian distribution to multivariate Gaussian distribution 
and then to Gaussian, and introduces the kernel function used in 
this paper. The third part strictly deduces the Gauss process regres-
sion model.

The fourth part is the experimental part of the algorithm. Three 
evaluation criteria are used to analyze the

performance of the model with different kernel functions, and 
the results are obtained.

Gaussian Process Regression
Gaussion distribution

The simplest and most common unary Gaussian distribution 
[12], the probability density function is
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μ is mean and σ is variance, and the probability density function 
is drawn as the familiar bell curve. From unary Gaussian distribu-
tion to multivariate Gaussian distribution [13] [14], it is assumed 
that each dimension

is independent of each other
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Where nµ ∈   is the mean vector, and n nK ×∈  is the covari-
ance matrix. Since we assume that each dimension is directly in-
dependent of each other, K is a diagonal matrix. When variables of 
each imension are correlated, the form of the above equation is still 
the same, but in this case, the covariance matrix K is no longer a di-
agonal matrix and only has the properties of semi-positive definite 
and symmetric. This is also commonly abbreviated as

( ),x N Kµ

Therefore,A mean and a variance determine a onedimensional 
Gaussian distribution, and a mean vector

and a covariance matrix determine a multidimensional Gauss-
ian distribution

Gaussion Process

When we look at sampling from the perspective of function and 
understand that each sampling with infinite dimension is equiva-
lent to sampling a function, the original probability density function 
is no longer a distribution of points, but a distribution of functions. 
This infinite element Gaussian distribution is called a Gaussian pro-
cess. Gaussian processes are formally defined as: for all

( ) ( ) ( ) ( ) ( )1 2 1 2, ,..., . , ,...,n nx x x x f x f x f x f x= =   

all obey the multi-element Gaussian distribution, Then f is said 
to be a Gaussian process, expressed as

( ) ( ) ( )( ), ,f x N x k x xµ

The ( ) n nxµ ∈ →  indicates the Mean function and returns 
the mean of each dimension; The ( ), : n n n nx xκ ×× →    is a co-
variance function Covariance Function (also known as the Kernel).
Function returns the ovariance matrix between the dimensions of 
two vectors. A Gaussian process is uniquely defined as a mean func-
tion and a covariance function, and subsets of the finite dimensions 
of a Gaussian process all obey a multivariate Gaussian distribution 
(for ease of understanding, we can imagine a binary Gaussian dis-
tribution in which each dimension obeys a Gaussian distribution).A 
Gaussian process can be determined by a mean function and a co-
variance function!

kernel Function

The kernel takes the vectors in the original space as input vec-
tors and returns the function of the dot product

of the vectors in the feature space (converted data space, possi-
bly higher dimensional) [15,16].

Definition 1. Kernel Function : X is subset of ,n ∃  mapping 
( ): : H, Hφ φ φ ξ ∈ is Hilbert Space, for , X,x y∀ ∈  there is 

( ) ( ) ( )( ) ( ) ( ), : , ,Tx y x y x yκ φ φ φ φ= the ( ),x yκ  is Kernel 
Function

Linear kernel

Computes a covariance matrix based on the Linear kernel be-
tween inputs 

1X  and 2X  :

( )1 2 1 2, . (4)T
Lineark X X X Xυ=

where - v is a variance parameter.

RBF

Computes a covariance matrix based on the RBF (squared ex-
ponential) kernel between inputs 1X  and 2X  :

( ) ( ) ( )2
1 2 1 2 1 2

1, exp (5)
2

T
RBFk X X X X X X− = − − Θ − 

 

where Θ  is a lengthscale parameter. See gpytorch. kernels.
Kernel for descriptions of the lengthscale options.
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Gaussion Process Regression

GPR

The formula of Gaussian process regression is derived as fol-
lows.

Gaussian process a priori said

( )( ) ( ) ( ),f xxp f x x f x Kµ= Ν

This is a prior distribution representing the output y we expect 
to get after input x before looking at any data.

After that, we import some training data with input x and out-
put ( )y f x= .Next, we have some new input *x and need to com-
pute ( )* *y f x=

If now we observe some data ( )* *,x y  and assume that 
*y  and 

f(x) obey joint Gaussian distribution

( ) ( )*
* **

, (6)f xx xx
Ty xxxx

f x k k
ky k

N µ
µ

    
    

Among them

( ) ( ) ( )* * *
* * *, , , , ,xx xx x x

K k x x K k x x K k x x= = =

Have x, y as the training data, 
*x  for the input data), now, the 

model is ( )* *, , ,p Y X X Y What we need is 
*

y

This becomes a given joint Gaussian distribution, finding the 
conditional probability ( )* *, , :P y x x y

The above formula indicates that the distribution f of the func-
tion after given data (x∗, y∗) is still a Gaussian

process. The specific derivation is as follows:

Here are some definitions and theorems:

Definition 2. Set ( )1,... qU U U ′= for random vector, 1,... qU U  
,Uqare independent of each other and with

N(0,1) distribution; Let μ be p dimensional constant vector and 
A be p q×  constant matrix, then the distribution of X = AU +μ is 
called p dimensional normal distribution or X is called p dimension-
al normal random vector. Write it as ( ), .pX N AAµ ′



Say simply, by q a independent standard normal random 
variable of some linear group of the distribution of the ran-
dom vector, is referred to as multiple normal distributed. 
 
Theorem 1. Let ( ), ,pX N Bµ ∑  is s p× constant matrix, d is scon-
stant vector, let ,Z B dµ= +  then ( ),sZ N B d B Bµ ′+ ∑  Proof. 
Prove that 0,∑ ≥ ∑  can be decomposed into: ,AA′∑ =  is defined 
by 2.1 as (1)

d
X AU Aµ= +  is p q×  matrix),

Where ( )1,..., qU U U ′= , and 1,..., qU U  is independent distribu-
tion with N (0, 1) again

( ) ( ).
d

Z BX d B AU d BAU B dµ µ= + = = + = + +

By definition, ( )( )( )81 , ,Z N B d BA BAµ ′+

( ), .sZ N B d B Bµ ′+ Σ

Lemma ( )
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X(2) is given, the conditional distribution of X(1) is Among them

( ) ( )( ) ( )1 2
1.2 11.2, ,rX X N µ Σ

( ) ( ) ( )( )1 2 21
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Proof. Prove that for a nonsingular linear transformation, let
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By 2.2 the property of 2 obviously has
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and ( ) 11.2

22

0
0

D Z
Σ 

=  Σ   so 
Z(1)and  are independent. The joint density of Z is

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 2 1 2 1 2
1 2 1 2, . . .g z z g z g z g z f z= =

and Z(2) = X(2), so ( )( ) ( )( ) ( )( )2 2
2 2 2g z f z f= ⋅  denisty of X(2) ). be-

cause Z = BX, Using the integral transformation formula, the density 
function f(x) of X can be represented by g(z), i.e
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So theorem 3.4 tells us that

( ) ( )* * * * *, , ,p y X X Y N y µ= ∑

( )* 1
* *

T
y xx xxk k X fµ µ µ−= + −

* 1
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T
yy xx xx xxK k k k−∑ = −

( ) ( )* * ** , ,y f x p y X X Y= =

( )( )1 1
* * * * *,T T

xx xx f y xx xx xx xxN k k x k k k kµ µ− −− + −

This is the posterior distribution of y∗ calculated based on the 
prior distribution and the observations. In the case of GPR, this for-
mula helps us get the predicted value, and in most cases u = 0

Marginal maximum likelihood (MLL)

These are modules to compute the marginal log likelihood 
(MLL) of the GP model when applied to data [17,18,19]. I.e., given a 

( ), ,GP f G Kµ  and data X, y, these modules compute

( ) ( )( ) ( )( ) ( )8pf y x p y f X p f X X dfι = = ∫

This is computed exactly when the GP inference is computed 
exactly . It is approximated for GP models that

use approximate inference.

These models are typically used as the ”loss” functions for GP 
models (though note that the output of these

functions must be negated for optimization).

From 2.2 ,we know that:
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So, the loglikehood is

( ) 11 1log log log 2 (13)
2 2 2

T
xx xx

npf y X y K y K π−= − − −

Therefore, the optimized parameter model can be obtained 
[20] (take RBF kernel function as an example).

( )log ,p y X∂
Θ

∂Θ

1 1 11 1
2 2

T xx xx
xx xx xx

K Ky K K y tr K− − −∂ ∂ = −  ∂Θ ∂Θ 
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( )11
2

T xx
xx

Ktr Kαα − ∂ = − ∂Θ 

1 (14)xxwhere K yα −=

The random gradient descent algorithm is carried out on the 
parameters Θ  [21,22]

( )log , (15)p y Xγ ∂
Θ = Θ− Θ

∂Θ

Experimental Evaluation

Dataset

The data set contains information about housing prices in Bos-
ton, Massachusetts collected by the U.S. Census Bureau. The data 
set contains 506 samples.It contains 13 characteristic variables and 
a target value: the average house price.Below is a brief introduction 
to the housing price data setGaussian process regression was per-
formed on the above Boston housing price data set, and the dataset 
was randomly divided into a training set and a test set in a 1:1. We 
assume that the data of the training set obey the Gaussian process, 
so as to predict the average housing price (Figure 1).

Figure 1: Boston dataset.

GPR Algorithm

According to the Dataset, we can get the input training data as 
follows:

{ }1, 2, . . . 253

T
X X X X=

{ }1 2 13, ,. . . , 1, 2,.......253i i i iX X X X i= =

The target data is :

{ }1, 2, . . . 253

T
Y y y y=

The predict data is:

( ) ( )2ˆ , 0,Y f x N σ= ∈∈

The training set was trained for 5 epochs, every epoch was it-
erated 1000 times, and the MLL function was used to calculate the 
loss of the predicted value and the target value. Fig 2 shows the 
loss function image of the model against the training data set after 
Gaussian process regression uses linear kernel function and RBF 
kernel function respectively.

As can be seen from the figure, the loss function value of the 
model using linear kernel function is lower than that using RBF 
kernel function in the same training batch, and the rate of decline 
is faster. When the loss function converges, the loss value of the 
model using linear kernel function is lower than that using RBF 
kernel function. Therefore, from the convergence of loss function, 
the model using linear kernel function performs better. Table 1 and 
Table 2 show the partial parameter values of the model in the train-
ing process (Table 1,2 & Figure 2).

Table 1: Parameter.

Linear RBF noise

0.693147 0.693147 0.693247

0.96436 0.975312 1.300361

1.238469 1.323533 2.016961

1.471993 1.7366 2.702634

1.648751 2.206498 3.295374
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Table 2: Parameter.

Linear RBF noise

1.770648 2.720727 3.787125

1.846764 3.267597 4.189744

1.887529 3.83662 4.519375

1.902391 4.417646 4.791023

1.899158 5.000462 5.017116

Fig 3 and Fig 4 respectively show the fitting between the pre-
dicted value and the real value of the Gaussian process regression 
model under the two kernel functions. The comparison between 
FIG. 3 and FIG. 4 shows that the predicted value of the model under 

the linear kernel function better fits the original real value. There-
fore, in terms of the fitting of the predicted value, the model using 
linear kernel function is better than that using RBF kernel function.

Figure 2: Trainloss.
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Figure 3: Comparison of predicted values.

Figure 4: MAE.
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Metric

The evaluation criteria of three regression models are used in 
this paper. Mean Absolute Error(MAE): Is the average value of abso-
lute error, which can better reflect the actual situation of predicted 
error.

1

1 ˆ (16)
n

i i
i

MAE y y
n =

= −∑

Mean Square Error(MSE):Is the square of the difference be-
tween the predicted value and the true value, and then the average 
of the sum, generally used to detect the deviation between the pre-
dicted value and the true value of the model.

( )2

1

1 ˆ (17)
n

i i
i

MSE y y
n =

= −∑

R2 squared:Coefficient of determination. Reflects the accuracy 
of model fitting data, generally R2 range is 0 to 1. The closer the val-
ue is to 1, it indicates that the variable of the equation has a stronger 
ability to explain y, and this model also fits the data well (Figure 3).

( )

( )

2

2 1

2

1

ˆ
1 (18)

n

i i
i

n

i
i

y y
R

y y

=

=

−
= −

−

∑

∑

Fig 5 shows the MAE value of the Gaussian process regression 
model on the test set under the two kernel functions. MAE values 
for partial iterations are listed in the table. As can be seen from Fig-
ure 5, MAE under the linear kernel model is much smaller than that 
under the RBF kernel model. It can be seen that, from the perspec-
tive of MAE evaluation criteria, the model using linear kernel func-
tion has better performance than that using RBF kernel function 
(Figure 4).

The value of MSE is shown in Figure 6. As can be seen from the 
figure, the mean square error using the linear

kernel model is smaller, which means that the predicted value 
using the linear kernel model has less deviation from the real val-
ue. Therefore, from the point of view of mean square error, it can 
be seen that the advantage of using linear kernel function is more 
obvious (Figure 5,6).

Figure 6 shows the value of R2square. It can be seen from the 
figure that the R2square value of the model using linear kernel 
function is closer to 1 than that of the model using RBF kernel func-
tion. The closer it is to 1, the stronger the interpretation ability of 
the model to the real value is, thus indicating the better fitting de-
gree of the model to the data. So in this respect you can also see the 
advantage of using linear kernel functions.

Summary

Figure 5: MSE.

Figure 6: R2square.
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Gaussian process regression can effectively simulate data, but 
the choice of kernel function has a great impact on the simulation 
results of data, so how to choose a suitable kernel function when we 
use Gaussian regression model becomes very important.In this pa-
per, the linear kernel and RBF kernel are compared in the Gaussian 
process regression model, and it is concluded that the linear kernel 
is better than RBF kernel in this data set. Therefore, we know that 
the selection of kernel function should not only consider the effi-
ciency of its own model, but also consider the influence of data set 
itself. Therefore, in the future work, I hope to find a better and fast-
er method to select the kernel function more suitable for the model, 
so as to achieve a better prediction effect on the data.
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