

Online Journal of Conference Proceedings

Review Article

Copyright © All rights are reserved by Sheetal Buddhadev

From Molecular Markers to Multimodal Therapies: Bridging Pathophysiology and Precision Medicine in Parkinson's Disease

Sheetal Buddhadev^{1*}, Sarah Gadavala² and Sandip Buddhadev³

¹Professor, Faculty of Pharmacy, Noble University, Parth Vatika, Bhesan Road, Junagadh, 362310, India

²Assistant Professor, Faculty of Pharmacy, Noble University, Parth Vatika, Bhesan Road, Junagadh, 362310, India

³Dean, Dr. Subhash Ayurveda Research Institute, Dr. Subhash University, Junagadh, Gujarat, India

*Corresponding author: Dr. Sheetal Buddhadev, Professor, Faculty of Pharmacy, Noble University, Junagadh, Gujarat, India

Received Date: November 13, 2025
Published Date: November 26, 2025

Abstract

Parkinson's disease (PD) is a complex neurodegenerative disorder traditionally characterized by dopaminergic neuron loss in the substantia nigra and the presence of Lewy bodies. However, recent advances in molecular biology and neurogenomics have revealed that PD is a heterogeneous condition involving a spectrum of molecular alterations, including mitochondrial dysfunction, oxidative stress, neuroinflammation, protein misfolding, and genetic mutations such as in SNCA, LRRK2, and PARK genes.

This review presents an integrative overview of the evolving landscape of molecular markers in PD, emphasizing their role in early diagnosis, disease progression, and therapeutic targeting. From cerebrospinal fluid biomarkers to neuroimaging and genetic profiling, the identification of reliable molecular signatures is reshaping how PD is understood and managed.

Furthermore, we explore the emergence of multimodal therapeutic strategies tailored to individual pathophysiological profiles. These include a combination of pharmacological treatments (e.g., dopaminergic agents, neuroprotectants), gene and cell-based therapies, non-invasive brain stimulation, and gut microbiota modulation. Together, these personalized approaches align with the principles of precision medicine, aiming to improve clinical outcomes and quality of life.

By bridging molecular insights with therapeutic innovation, this review underscores the potential of a precision-based, multimodal approach to redefine Parkinson's disease management. Future research should focus on the integration of biomarker-based stratification with individualized therapy, paving the way for more targeted and effective interventions.

Keywords: Parkinson's Disease; Molecular Biomarkers; Precision Medicine; Multimodal Therapy; Neurodegeneration

Introduction

Parkinson's disease (PD) is one of the most prevalent progressive neurodegenerative disorders, primarily affecting the motor system and resulting from the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The disease manifests clinically through tremors, bradykinesia, rigidity, and postural instability, often accompanied by non-motor symptoms such as sleep disturbances, depression, cognitive decline, and autonomic dysfunction [1]. The prevalence of PD increases with age, making it a significant concern in aging populations worldwide. Epidemiological studies suggest that nearly 10 million individuals are affected globally, with the number expected to rise as life expectancy continues to improve [2].

Traditionally, the understanding of PD has revolved around dopaminergic neuron loss and the presence of Lewy bodies, which are abnormal protein aggregates composed mainly of α -synuclein. This classical neuropathological perspective, while foundational, provides only a partial view of the disease. It fails to fully explain the clinical heterogeneity observed among patients and the involvement of non-dopaminergic systems in disease progression [3]. Moreover, the conventional focus on dopamine replacement therapy, such as the use of levodopa, although effective in symptom control, does not halt or reverse neurodegeneration, highlighting a significant gap in the therapeutic approach [4].

Recent advances in molecular biology, neurogenomics, and systems neuroscience have revealed that PD is far more complex than initially believed. It is now recognized as a multifactorial disorder arising from the interplay of genetic predisposition, environmental exposure, mitochondrial dysfunction, oxidative stress, and neuroinflammatory processes [5]. Mutations in several genes, including SNCA, LRRK2, PARK2, PINK1, and DJ-1, have been associated with both familial and sporadic forms of PD, providing insights into the molecular mechanisms underlying neuronal vulnerability [6]. These discoveries have expanded the disease paradigm beyond dopaminergic neuron loss to a broader network-level dysfunction involving multiple brain regions and cellular pathways.

Furthermore, the emergence of molecular biomarkers has opened new avenues for understanding PD pathogenesis, enabling early diagnosis, prognosis, and patient stratification. Biomarkers derived from cerebrospinal fluid (CSF), blood, imaging, and even gut microbiota have demonstrated potential in identifying preclinical or prodromal stages of PD [7]. These advances reflect a transition from symptom-based to mechanism-based diagnosis, emphasizing the importance of biological signatures in defining disease subtypes and guiding therapeutic strategies. The integration of molecular insights with therapeutic development has given rise to the concept of precision medicine in PD. Precision medicine aims to tailor treatment according to an individual's molecular, genetic, and environmental profile, thereby improving therapeutic efficacy and minimizing adverse effects [8]. This shift represents a departure from the conventional one-size-fits-all model, acknowledging the

heterogeneity in disease mechanisms and drug responses among patients.

As a result, researchers are increasingly focusing on multimodal therapeutic strategies that combine pharmacological agents, gene and cell-based interventions, neurostimulation techniques, and microbiota modulation. These approaches seek not only to alleviate symptoms but also to modify disease progression by targeting multiple pathological mechanisms simultaneously [9]. The present review aims to provide an integrative overview of the evolving landscape of molecular markers in Parkinson's disease and to explore how these insights are shaping the development of multimodal and precision-based therapies. By bridging molecular pathophysiology with therapeutic innovation, the review highlights the potential of individualized treatment paradigms to redefine clinical management and improve patient outcomes [10].

Pathophysiology of Parkinson's Disease

Parkinson's disease (PD) is characterized by a multifaceted pathophysiology involving dopaminergic neuronal loss, mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. These processes act in synergy to produce progressive neurodegeneration, particularly within the nigrostriatal pathway, which is crucial for motor control [11]. The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to dopamine deficiency in the striatum, disturbing the balance between excitatory and inhibitory neural circuits and resulting in the hallmark motor symptoms of PD such as tremor, bradykinesia, rigidity, and postural instability [12].

Dopaminergic Neurodegeneration

The substantia nigra pars compacta contain dopaminergic neurons that project to the striatum and regulate motor coordination. In PD, more than 60% of these neurons degenerate before clinical symptoms appear [13]. This degeneration causes a reduction in dopamine synthesis and impaired synaptic transmission. Dopaminergic neuronal loss also triggers compensatory mechanisms in other neurotransmitter systems, such as glutamatergic and GABAergic circuits, contributing to motor fluctuations and treatment complications [14].

Mitochondrial Dysfunction and Oxidative Stress

Mitochondrial dysfunction is one of the earliest identified contributors to PD pathogenesis. Defects in mitochondrial complex I of the electron transport chain lead to reduced ATP production and increased generation of reactive oxygen species (ROS) [15]. Excess ROS induces oxidative damage to lipids, proteins, and DNA, ultimately causing neuronal apoptosis. Mutations in genes such as PINK1 and PARK2, which regulate mitochondrial quality control and mitophagy, further highlight the importance of mitochondrial integrity in neuronal survival [16]. Moreover, postmortem studies have revealed elevated oxidative stress markers in PD brains, confirming that mitochondrial impairment is a central feature of disease progression [17].

Neuroinflammation and Immune Mechanisms

Chronic neuroinflammation plays a key role in sustaining neuronal damage in PD. Activated microglia release proinflammatory cytokines such as TNF- α , IL-1 β , and IL-6, as well as nitric oxide and ROS, which exacerbate neuronal injury [18]. This inflammatory response may be initiated by α -synuclein aggregates or environmental toxins that activate pattern recognition receptors like Toll-like receptors (TLRs) [19]. Astrocytes, which normally maintain homeostasis in the CNS, also undergo reactive changes, losing their neuroprotective role and contributing to inflammation. Increasing evidence supports the hypothesis that peripheral immune cells infiltrate the brain and amplify neuroinflammatory processes in PD [20].

Protein Misfolding and α-Synuclein Pathology

A defining pathological hallmark of PD is the accumulation of misfolded α -synuclein within neurons, forming Lewy bodies and Lewy neurites. Under physiological conditions, α -synuclein plays a role in synaptic vesicle regulation and neurotransmitter release. However, misfolded or phosphorylated α -synuclein tends to aggregate and spread in a prion-like manner from one neuron to another [21]. These aggregates disrupt cellular functions, impair proteasomal degradation, and trigger mitochondrial and lysosomal stress. Studies suggest that α -synuclein propagation follows a stereotypical pattern through neural circuits, explaining the progressive nature of PD and the sequential involvement of different brain regions [22].

Genetic Factors in Parkinson's Disease

The genetic component of PD has been increasingly recognized, with numerous genes implicated in both familial and sporadic forms. Mutations in SNCA (encoding α-synuclein) lead to protein overexpression and aggregation. LRRK2 mutations are the most common genetic cause of late-onset PD and affect multiple cellular processes, including vesicle trafficking, mitochondrial function, and autophagy [23]. Recessive mutations in PARK2, PINK1, and DJ-1 are typically associated with early-onset PD and contribute to mitochondrial quality control and oxidative stress regulation [24]. Additionally, genome-wide association studies (GWAS) have identified several risk loci related to lysosomal and immune function, emphasizing that PD results from a complex interplay between genetic susceptibility and environmental exposure [25].

Non-Dopaminergic Pathways and Systemic Involvement

Beyond dopaminergic systems, PD affects other neurotransmitter systems, including serotonergic, cholinergic, and noradrenergic neurons, explaining many of the non-motor symptoms such as depression, cognitive impairment, and sleep disorders [26]. Furthermore, recent research has revealed that pathological changes may begin in the gut or olfactory bulb long before motor symptoms arise. The gut-brain axis hypothesis proposes that misfolded α-synuclein might originate in the enteric nervous system and spread to the brain via the vagus nerve [27]. This systemic nature of PD underscores the need for comprehensive approaches to diagnosis and therapy that consider both central and

peripheral mechanisms.

Cellular Homeostasis and Autophagy Dysfunction

Autophagy, the cellular process responsible for degrading damaged organelles and proteins, is impaired in PD. Dysregulation of autophagy-lysosomal pathways results in the accumulation of toxic protein aggregates and defective mitochondria [28]. Lysosomal enzymes such as glucocerebrosidase (GCase), encoded by the GBA gene, are often mutated in PD patients, linking lysosomal dysfunction with α -synuclein accumulation [29]. The convergence of mitochondrial and lysosomal deficits creates a self-perpetuating cycle of neuronal stress and degeneration, making these pathways promising therapeutic targets.

Integrative Perspective on PD Pathogenesis

The pathophysiology of PD is thus not confined to a single mechanism but represents an intricate network of interdependent processes. Mitochondrial dysfunction enhances oxidative stress, which in turn triggers protein misfolding and inflammation, leading to progressive neuronal death [30]. Understanding these molecular interconnections is crucial for developing disease-modifying therapies. Current research is shifting from targeting individual pathways to multimodal strategies that address the complex pathophysiology underlying PD progression [31].

Molecular Biomarkers in Parkinson's Disease

The search for reliable biomarkers in Parkinson's disease (PD) has become a major focus of modern neurobiological research. Since PD exhibits long preclinical phases before the onset of motor symptoms, identifying early and disease-specific biomarkers is crucial for timely diagnosis, prognosis, and evaluation of therapeutic responses [32]. Biomarkers can be derived from various biological sources, including cerebrospinal fluid (CSF), blood, neuroimaging modalities, genetic profiling, and even the gut microbiome. Each class of biomarker provides unique insights into the molecular and cellular mechanisms underlying PD pathogenesis.

Cerebrospinal Fluid (CSF) Biomarkers

Cerebrospinal fluid reflects the biochemical milieu of the brain and is therefore an ideal source for studying PD-associated changes. Among the most studied CSF biomarkers are α -synuclein, tau proteins, and DJ-1. Total α -synuclein levels are often decreased in PD patients, possibly due to aggregation and sequestration in Lewy bodies, while oligomeric and phosphorylated forms are elevated, suggesting a shift in protein conformation and solubility [33]. Tau protein, a marker of neuronal injury, is variably altered in PD but tends to be significantly elevated in atypical parkinsonian syndromes, aiding in differential diagnosis (34). DJ-1, a protein involved in oxidative stress response, is reported to be elevated in PD CSF, reflecting oxidative damage in the central nervous system [35].

Another promising CSF biomarker is neurofilament light chain (NfL), which represents axonal damage. Studies indicate that NfL levels are modestly increased in PD and strongly correlated with disease severity and progression [36]. However, CSF collection is

invasive, limiting its use for routine screening. Therefore, research efforts are increasingly directed toward peripheral biomarkers that can be obtained through less invasive means.

Blood and Peripheral Biomarkers

Peripheral biomarkers hold great potential for large-scale PD screening and longitudinal monitoring. Plasma and serum levels of α -synuclein, inflammatory cytokines, urate, and microRNAs (miRNAs) have been extensively studied. Peripheral α -synuclein exhibits inconsistencies across studies, possibly due to technical variations in assay methods and contamination from red blood cells [37]. Elevated levels of inflammatory cytokines such as IL-6, TNF- α , and CRP have been observed in PD patients, reflecting systemic inflammation that parallels central neuroinflammation [38].

Urate, a natural antioxidant, has attracted attention as a potential protective biomarker. Epidemiological studies suggest that higher plasma urate levels are associated with a lower risk of developing PD and slower disease progression [39]. Moreover, circulating miRNAs, particularly those regulating neuronal differentiation and apoptosis, such as miR-34b/c and miR-153, show differential expression in PD, offering potential as non-invasive diagnostic tools [40].

Neuroimaging Biomarkers

Neuroimaging provides in vivo visualization of PD pathology, facilitating both early diagnosis and monitoring of disease progression. Dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging are well-established tools for assessing presynaptic dopaminergic deficits [41]. PET imaging with radiotracers such as [18F]-DOPA or [11C]-DTBZ allows quantitative evaluation of striatal dopamine synthesis and vesicular monoamine transport.

Beyond dopaminergic imaging, magnetic resonance imaging (MRI) techniques such as diffusion tensor imaging (DTI) and neuromelanin-sensitive MRI can detect microstructural and chemical changes in the substantia nigra, even before motor symptoms appear [42]. Advanced molecular imaging approaches targeting α -synuclein aggregates and neuroinflammation are being developed and may soon revolutionize the diagnostic landscape of PD [43].

Genetic and Epigenetic Biomarkers

The identification of genetic mutations and polymorphisms has transformed the understanding of PD susceptibility and progression. Variants in genes such as SNCA, LRRK2, PARK2, PINK1, and GBA are well-established risk factors [44]. Genetic profiling allows for the identification of individuals at higher risk and supports the stratification of patients for targeted therapies. Epigenetic modifications, including DNA methylation and histone acetylation, also play critical roles in PD pathogenesis. Hypomethylation of the SNCA gene promoter is associated with increased α -synuclein expression and disease onset [45]. Similarly, altered microRNA expression profiles contribute to post-transcriptional dysregulation of key neuronal genes [46]. These findings underscore the relevance

of genetic and epigenetic signatures as diagnostic and prognostic biomarkers.

Gut Microbiota as a Diagnostic Marker

The gut-brain axis has emerged as a novel frontier in PD research. Increasing evidence suggests that alterations in the gut microbiota composition may precede the onset of motor symptoms. Reduced abundance of short-chain fatty acid-producing bacteria, such as Faecal bacterium and Roseburia, and increased levels of proinflammatory taxa, such as Enterobacteriaceae, have been observed in PD patients [47]. These microbial changes are associated with increased intestinal permeability, systemic inflammation, and α-synuclein aggregation in the enteric nervous system. Moreover, microbial metabolites, including butyrate and lipopolysaccharides, may influence neuroinflammation and neuronal survival through immune and metabolic pathways [48]. Fecal biomarkers, combined with microbial genomic profiling, offer potential for early, noninvasive PD diagnosis. Future studies integrating microbiome data with molecular and imaging biomarkers could yield a comprehensive framework for precision diagnostics.

Multi-Omics Integration and Systems Biology Approach

The complexity of PD demands an integrative approach combining genomics, proteomics, metabolomics, and lipidomics to obtain a holistic view of disease mechanisms. Multi-omics data integration allows for the identification of biomarker networks rather than single molecules, thereby improving diagnostic accuracy and reproducibility (49). Systems biology-based models are being developed to analyse large-scale datasets and uncover key molecular pathways driving neurodegeneration. Such models have the potential to guide individualized treatment decisions and to identify novel therapeutic targets [50].

A comparative summary of key molecular biomarkers and their diagnostic or prognostic relevance in Parkinson's disease is presented in Table 1.

Challenges and Future Directions in Biomarker Research

Despite considerable progress, biomarker discovery in PD faces challenges related to heterogeneity, sample variability, and methodological differences across studies. Standardization of assay techniques and validation in large, longitudinal cohorts remain essential to translate biomarker research into clinical practice [51]. Moreover, ethical considerations related to genetic testing and data privacy must be addressed as biomarker-guided precision medicine becomes more widely adopted. Ultimately, the integration of molecular, imaging, and digital biomarkers will enable early detection, continuous monitoring, and personalized therapeutic interventions for PD patients, marking a paradigm shift from reactive to predictive medicine [52].

Emerging Therapeutic Approaches

Parkinson's disease (PD) management has traditionally focused on symptomatic relief through dopaminergic replacement therapy. While effective in early stages, these treatments fail to alter disease progression or address non-motor symptoms. Over the past decade, research has shifted toward multimodal and disease-modifying strategies that target multiple aspects of PD pathology. Emerging

therapies aim to restore dopaminergic function, protect neurons from degeneration, and modulate the underlying molecular pathways responsible for the disease [53].

Table 1: Summary of major molecular and systemic biomarkers investigated in Parkinson's disease, categorized by biological source, molecular nature, and their diagnostic or prognostic utility in clinical and research settings.

Type of Biomarker	Biological Source	Example(s)	Clinical Significance	Current Status / Research Insights
Protein-based	Cerebrospinal fluid (CSF)	α-synuclein, DJ-1, Tau	Indicate neuronal injury and aggregation; useful in differential diagnosis	CSF α-synuclein and DJ-1 under validation in early PD detection
Neurofilament markers	CSF, blood plasma	Neurofilament light chain (NfL)	Reflects axonal damage and disease progression	Proven correlation with PD severity and progression
Genetic biomarkers	Peripheral blood / DNA samples	SNCA, LRRK2, PARK2, GBA	Identify genetic susceptibility and familial PD	Used in genetic counseling and targeted therapy trials
Inflammatory bio- markers	Blood plasma	IL-6, TNF-α, CRP	Reflect systemic and central neuroinflammation	Elevated levels linked with faster disease progression
Metabolic biomarkers	Serum, plasma	Uric acid, lipid metab- olites	Indicate oxidative stress and mitochondrial dysfunction	Lower urate levels associated with higher PD risk
Neuroimaging bio- markers	Brain imaging	DAT-SPECT, PET, neuro- melanin MRI	Visualize dopaminergic neuron loss and progression	Standard in differential diagnosis of PD and atypical parkinsonism
Gut microbiota bio- markers	Fecal samples	Enterobacteriaceae, Faecalibacterium	Reflect gut-brain axis dysregu- lation and inflammation	Promising for early diagnosis and therapeutic modulation

Pharmacological Treatments

The cornerstone of PD therapy remains dopaminergic drugs, particularly levodopa, often combined with dopa-decarboxylase inhibitors to enhance central bioavailability. However, chronic levodopa administration leads to motor fluctuations and dyskinesia [54]. New formulations, such as extended-release and intestinal gel infusions, have been developed to maintain stable plasma concentrations and improve patient compliance. Dopamine agonists like pramipexole and ropinirole stimulate dopamine receptors directly, offering an alternative to levodopa in early PD, though side effects such as impulse control disorders and somnolence limit their use [55].

Monoamine oxidase B (MAO-B) inhibitors, including selegiline and rasagiline, reduce dopamine breakdown and exert mild neuroprotective effects by reducing oxidative stress [56]. Additionally, catechol-O-methyltransferase (COMT) inhibitors, such as entacapone and opicapone, prolong levodopa's half-life, providing better control of motor symptoms [57]. Recent trials have explored repurposed drugs targeting mitochondrial function and oxidative stress, including coenzyme Q10, creatine, and urate-elevating agents, though clinical results remain mixed [58]. Neuroprotective compounds like N-acetylcysteine and iron chelators have shown promise in mitigating oxidative damage and preserving dopaminergic neurons [59].

Gene and Cell-Based Therapies

Advancements in molecular neuroscience have enabled gene therapy approaches to restore or enhance dopaminergic signaling. Viral vectors, such as adeno-associated viruses (AAV), are employed to deliver therapeutic genes directly into affected brain regions. One strategy involves the introduction of aromatic L-amino acid decarboxylase (AADC) genes to enhance dopamine synthesis in striatal neurons [60]. Another approach focuses on the delivery of neurotrophic factors like glial cell line-derived neurotrophic factor (GDNF) or neurturin to promote neuronal survival and regeneration [61].

Cell-based therapy represents another frontier in PD management. Induced pluripotent stem cells (iPSCs) derived from patients can be differentiated into dopaminergic neurons and transplanted into the striatum to replace lost neurons [62]. Clinical trials have demonstrated feasibility and safety, although long-term graft survival and integration remain challenges [63]. Mesenchymal stem cells (MSCs) and neural progenitor cells are also under investigation for their neurotrophic and immunomodulatory properties [64].

Non-Invasive Brain Stimulation

Neurostimulation techniques have gained attention as adjunct therapies for PD. Deep brain stimulation (DBS), involving electrode implantation in the subthalamic nucleus or globus pallidus interna, is an established therapy for advanced PD and provides significant motor improvement [65]. However, it is invasive and unsuitable for all patients. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are emerging noninvasive alternatives that modulate cortical excitability and network connectivity [66]. These techniques have shown benefits in motor

function, cognition, and depression associated with PD. Moreover, adaptive DBS systems that adjust stimulation parameters in real time based on neural feedback are being developed to enhance efficacy and reduce side effects [67].

Gut Microbiota Modulation

The gut-brain axis plays an important role in PD pathogenesis, offering a novel therapeutic target. Probiotic supplementation and dietary interventions aimed at restoring microbial balance have demonstrated potential in preclinical models [68]. Fecal microbiota transplantation (FMT), though experimental, has been shown to alleviate constipation and improve motor function in PD patients [69]. Short-chain fatty acids (SCFAs), produced by beneficial gut bacteria, exhibit anti-inflammatory and neuroprotective effects by maintaining blood-brain barrier integrity and modulating microglial activity [70]. Dietary fibers and polyphenol-rich foods may promote SCFA production and reduce neuroinflammation. These findings highlight the potential of microbiome modulation as an adjunctive, non-pharmacological strategy in PD management.

Nanotechnology and Drug Delivery Advances

Nanotechnology offers innovative solutions to overcome the limitations of traditional drug delivery in PD, such as the blood-brain barrier (BBB) and systemic side effects. Nanocarriers, including liposomes, polymeric nanoparticles, and solid lipid nanoparticles, can encapsulate neuroprotective or dopaminergic agents, enabling targeted delivery to the brain [71]. For example, nanoparticle-based formulations of levodopa and dopamine agonists enhance bioavailability and reduce peripheral metabolism [72]. Additionally, nanocarriers can deliver gene-editing tools like CRISPR/Cas9 and siRNA to specific neuronal populations, opening possibilities for personalized molecular correction [73]. Nanoparticles conjugated with ligands or antibodies specific to neuronal receptors have shown enhanced targeting efficiency and reduced toxicity [74].

Neuroinflammation Modulation

Chronic neuroinflammation contributes to dopaminergic neuron loss, and therapies aimed at modulating the immune response are under investigation. Nonsteroidal anti-inflammatory drugs (NSAIDs), minocycline, and inhibitors of microglial activation have demonstrated neuroprotective effects in experimental models [75]. Immunotherapy targeting misfolded α -synuclein aggregates represents another promising direction. Both active and passive vaccination strategies are being developed to neutralize extracellular α -synuclein and prevent its propagation [76]. Phase II clinical trials of monoclonal antibodies such as prasinezumab and cinpanemab have provided preliminary evidence of safety, though clear efficacy remains to be established [77]. Combining immunotherapy with biomarkers for patient stratification may enhance therapeutic success by identifying those most likely to benefit.

Regenerative and Neurorestorative Strategies

Beyond replacement therapies, regenerative approaches focus on promoting endogenous repair mechanisms. Neurotrophic

factors, including brain-derived neurotrophic factor (BDNF) and GDNF, support neuronal growth and synaptic plasticity [78]. Small molecules and peptides capable of enhancing neurogenesis and synaptic repair are under development. Exosome-based therapies have also emerged as a promising approach. Exosomes derived from stem cells contain bioactive molecules such as miRNAs, proteins, and lipids that promote neuronal survival and modulate inflammation [79]. These nanovesicles can cross the BBB and may serve as natural carriers for therapeutic agents.

Integrative and Combination Therapies

Given the multifactorial nature of PD, combination therapies targeting multiple pathogenic pathways simultaneously hold promise for disease modification. For instance, integrating pharmacological treatments with neurostimulation or stem cell transplantation could synergistically enhance dopaminergic restoration [80]. Similarly, lifestyle interventions, including exercise, cognitive training, and dietary modification, can complement pharmacological approaches to improve overall outcomes [81]. Emerging clinical evidence supports the integration of these multimodal strategies within the framework of precision medicine, allowing clinicians to tailor therapy according to the molecular and clinical profile of each patient [82]. This paradigm shift from uniform treatment to individualized therapy marks a transformative advancement in PD care.

Precision Medicine in Parkinson's Disease

Precision medicine represents a transformative shift in the management of Parkinson's disease (PD), moving away from generalized treatment approaches toward individualized therapy tailored to the genetic, molecular, and clinical profiles of patients. This approach acknowledges the heterogeneity of PD, which encompasses diverse pathogenic mechanisms and variable responses to treatment [83]. By integrating multi-omics data, advanced imaging, artificial intelligence (AI), and digital health technologies, precision medicine aims to optimize both diagnosis and therapeutic outcomes.

Concept and Application of Precision Medicine

The concept of precision medicine in PD is grounded in identifying molecular subtypes of the disease and matching these subtypes with targeted therapies. Traditionally, PD has been diagnosed based on clinical features; however, patients with similar motor symptoms may exhibit distinct molecular etiologies involving oxidative stress, mitochondrial dysfunction, protein aggregation, or immune dysregulation [84]. This variability explains the inconsistent response to conventional treatments such as levodopa and dopamine agonists.

The precision medicine framework incorporates genetic profiling, biomarker-based stratification, and advanced phenotyping to customize interventions. For example, patients harbouring GBA mutations, which impair lysosomal function, may benefit from agents enhancing autophagy or chaperone-mediated therapy [85]. Similarly, LRRK2 mutation carriers could respond

better to kinase inhibitors designed to modulate its overactive signalling pathways [86]. Identifying these molecular subgroups allows clinicians to apply targeted interventions that go beyond symptomatic relief to disease modification.

Integration of Multi-Omics Data

The integration of genomics, transcriptomics, proteomics, and metabolomics - collectively known as multi-omics - provides a comprehensive understanding of PD pathophysiology. Genomic studies help identify mutations or single-nucleotide polymorphisms associated with susceptibility, while transcriptomic and proteomic analyses reveal dysregulated gene expression and protein pathways [87]. For instance, transcriptomic studies of postmortem PD brain tissue have identified upregulation of genes involved in oxidative phosphorylation and downregulation of synaptic signalling pathways [88].

Proteomic profiling of cerebrospinal fluid has revealed differential expression of neuroinflammatory and mitochondrial proteins, which may serve as diagnostic biomarkers [89]. Metabolomic analyses further complement these findings by identifying alterations in lipid metabolism, amino acid levels, and mitochondrial metabolites in PD patients [90]. Combining these datasets enables the construction of molecular networks that pinpoint key regulatory nodes, offering novel therapeutic targets. The development of bioinformatics tools and machine learning models has accelerated this integration process, allowing high-dimensional data to be analysed efficiently and translated into actionable insights [91].

Artificial Intelligence and Predictive Modelling

Artificial intelligence (AI) and machine learning (ML) have become powerful tools in precision neurology. In PD, AI-driven algorithms are used to analyse complex datasets, identify disease subtypes, predict disease progression, and evaluate treatment responses [92]. Supervised ML models trained on genomic and clinical data can classify patients into distinct molecular subgroups and estimate their risk of rapid progression or cognitive decline. Deep learning approaches applied to neuroimaging datasets, such as MRI and PET scans, can detect subtle structural and functional brain changes undetectable by conventional analysis [93].

AI-based wearable technologies and digital biomarkers also enable continuous monitoring of motor and non-motor symptoms, providing real-time feedback to clinicians [94]. These tools can support personalized dose adjustment of dopaminergic medications and guide DBS parameter optimization.AI integration with multiomics data is paving the way for the development of predictive models that can forecast disease trajectory and therapeutic efficacy. This approach could help design adaptive treatment plans that evolve with disease stage and patient-specific biology [95].

Biomarker-Guided Therapy

The identification of robust biomarkers plays a pivotal role in implementing precision medicine. Biomarkers can help stratify patients into subgroups based on disease mechanisms, progression rate, or treatment responsiveness [96]. For example, patients exhibiting high CSF α -synuclein oligomers may benefit from antiaggregation therapies, while those with elevated inflammatory cytokines might respond better to immunomodulatory drugs [97].

Imaging biomarkers such as DAT-SPECT and neuromelanin MRI can quantify dopaminergic neuron loss and help evaluate therapeutic outcomes. Furthermore, genetic and epigenetic biomarkers guide the use of gene-specific interventions such as antisense oligonucleotides or CRISPR-mediated gene editing [98]. The integration of biomarker data with AI-enhanced analytics ensures continuous refinement of therapeutic strategies for optimal outcomes.

Pharmacogenomics and Individualized Drug Response

Pharmacogenomics explores the relationship between genetic variability and drug response. In PD, genetic polymorphisms in drug-metabolizing enzymes, dopamine receptors, and transporters significantly influence treatment efficacy and adverse effects [99]. For instance, polymorphisms in the COMT gene affect the breakdown of dopamine and modify levodopa responsiveness, while variants in the DRD2 gene influence susceptibility to levodopa-induced dyskinesia [100]. Genotyping can thus be employed to determine the optimal drug regimen, dosage, and combination for each patient. Pharmacogenomic-guided prescribing has the potential to minimize side effects and improve therapeutic efficiency. As genotyping technologies become more accessible, routine incorporation of pharmacogenomics into clinical practice may become a standard of care for PD [101].

Digital Health and Precision Monitoring

Wearable devices, smartphone-based applications, and sensor technologies have revolutionized precision monitoring in PD. These digital health tools capture objective data on gait, tremor, sleep patterns, and medication adherence [102]. Machine learning algorithms analyse this data to detect subtle fluctuations in symptom severity and predict impending "off" periods, enabling dynamic medication adjustment [103]. Digital platforms also empower patients to engage in self-management and provide clinicians with continuous data, facilitating early intervention. Such technologies not only enhance treatment precision but also generate large datasets valuable for research and AI model training [104].

Ethical and Practical Considerations

While precision medicine promises substantial benefits, it raises ethical, economic, and logistical challenges. Genetic testing and biomarker profiling require careful counselling to address privacy, consent, and data security concerns [105]. Moreover, the high cost of genomic sequencing and advanced imaging may limit accessibility in low-resource settings. Therefore, developing cost-effective and scalable models for precision medicine implementation remains a key priority [106]. Interdisciplinary collaboration among neurologists, bioinformaticians, geneticists, and data scientists is essential to bridge the gap between research

and clinical application. As precision medicine continues to evolve, its success will depend on integrating scientific innovation with ethical responsibility and patient-centred care [107].

Bridging Molecular Insights with Multimodal Therapies

The convergence of molecular discoveries and clinical innovations has redefined the therapeutic landscape of Parkinson's disease (PD). Bridging molecular insights with multimodal therapies represents a major step toward precision-based, disease-modifying interventions. This approach integrates biomarker-guided stratification, gene and cell-based treatments, neurostimulation, and microbiome modulation, collectively addressing the multifactorial pathogenesis of PD [108]. The traditional therapeutic focus on dopaminergic restoration is now complemented by strategies that target mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein aggregation. By aligning molecular targets with clinical phenotypes, multimodal therapies promise not only symptomatic improvement but also potential neuroprotection and neuro restoration [109].

Integrating Biomarkers into Therapeutic Decision-Making

Biomarkers have emerged as key tools in linking molecular mechanisms with individualized therapy. For instance, cerebrospinal fluid and blood-based biomarkers of α -synuclein, tau, and neurofilament light chain (NfL) provide objective measures of neuronal injury and disease stage [110]. Genetic markers such as LRRK2 and GBA mutations help identify patients who may respond to specific targeted treatments, such as kinase inhibitors or lysosomal modulators [111]. Incorporating biomarker profiles into treatment decisions enables clinicians to classify patients into subgroups that share common molecular signatures. This stratification facilitates precision-guided interventions, where therapy selection is based on underlying pathophysiology rather than generalized clinical symptoms [112]. For example, combining imaging biomarkers with genetic data allows for early detection of neurodegenerative changes and real-time assessment of therapeutic efficacy.

Synergy Between Pharmacological and Biological Therapies

Multimodal therapy seeks to leverage the complementary mechanisms of pharmacological, biological, and technological approaches. Pharmacological treatments remain essential for symptomatic relief but are increasingly combined with disease-modifying modalities such as gene therapy or stem cell transplantation. Gene therapy targeting AADC or neurotrophic factors enhances dopaminergic synthesis and promotes neuronal survival [113]. When used alongside dopaminergic medications, these interventions can produce sustained motor improvement while reducing medication-induced complications [114]. Similarly, stem cell-derived dopaminergic neuron grafts can restore striatal dopamine levels, whereas pharmacological agents like MAO-B inhibitors may support graft survival by reducing oxidative stress.

This integrated approach exemplifies how molecular understanding can inform rational combination therapy design.

Role of Neurostimulation in Multimodal Treatment

Deep brain stimulation (DBS) remains a cornerstone in the multimodal management of PD, offering significant motor benefits for patient's refractory to medication. Recent advancements in adaptive DBS allow dynamic adjustment of stimulation parameters based on real-time neural feedback, enhancing efficacy and reducing side effects [115]. Integration of DBS with molecular biomarkers can refine patient selection and outcome prediction. For instance, neuroimaging markers of structural connectivity and electrophysiological recordings can be used to tailor electrode placement and stimulation parameters to individual neural circuit dysfunctions [116]. Combining DBS with pharmacological or regenerative therapies holds promise for synergistic restoration of basal ganglia circuitry and long-term functional recovery [117].

Gut-Brain Axis Modulation as an Adjunct Therapy

Emerging evidence highlights the influence of gut microbiota on neuroinflammation, oxidative stress, and neurotransmitter metabolism in PD. Therapeutic modulation of the gut-brain axis through probiotics, prebiotics, or fecal microbiota transplantation (FMT) is being explored as an adjunct to conventional therapies [118]. For instance, supplementation with Lactobacillus and Bifidobacterium species has shown potential to reduce constipation and improve motor function, possibly by restoring gut permeability and modulating systemic inflammation [119]. When integrated with pharmacological and neuroprotective interventions, gut microbiome modulation could enhance therapeutic efficacy through a holistic systems-based approach [120].

Systems Biology and Computational Modelling

Systems biology offers a powerful framework for integrating multi-omics data, clinical observations, and therapeutic outcomes into predictive models. Computational modelling can identify key molecular nodes driving disease progression and simulate the effects of multi-target interventions [121]. Machine learning algorithms trained on genomic, proteomic, and imaging data can predict patient-specific therapeutic responses, optimizing treatment combinations in silico before clinical application [122]. These models are essential for developing adaptive treatment paradigms that evolve with disease progression and biological feedback.

Challenges in Translating Molecular Insights into Clinical Practice

Despite promising progress, several challenges hinder the translation of molecular research into routine PD management. Biological variability, incomplete understanding of disease heterogeneity, and limited longitudinal biomarker data complicate patient stratification [123]. Moreover, ethical considerations surrounding genetic testing, high costs of personalized treatments, and lack of standardized clinical frameworks for multimodal therapy integration remain significant barriers [124]. To overcome

these limitations, collaborative initiatives between academia, industry, and regulatory bodies are essential. Large-scale longitudinal studies, such as the Parkinson's Progression Markers Initiative (PPMI), are paving the way for validating biomarkers and refining multimodal therapeutic algorithms [125].

Case Examples and Translational Evidence

Recent clinical trials exemplify the potential of integrating molecular and multimodal approaches. For instance, trials combining AAV2-AADC gene therapy with conventional dopaminergic medication have demonstrated sustained improvement in motor scores and reduction in medication dose requirements [126]. Similarly, transplantation of iPSC-derived dopaminergic neurons in conjunction with immunosuppressive therapy has shown encouraging outcomes in primate and early human studies [127].

Furthermore, combined DBS and pharmacological strategies have achieved synergistic benefits in reducing motor fluctuations and improving quality of life [128]. Such evidence highlights

the real-world feasibility of integrating molecular insights into multidimensional treatment frameworks.

Toward a Precision-Based Multimodal Model

The future of PD therapy lies in a comprehensive, precisiondriven multimodal model that integrates molecular biomarkers, AI-based monitoring, and personalized therapeutics. By uniting pharmacology, neuromodulation, regenerative medicine, and lifestyle interventions under a single framework, clinicians can tailor care to each patient's molecular and clinical profile [129]. This convergence represents a paradigm shift in neurotherapeutics - from symptomatic control to biological correction. Ultimately, a precision-based multimodal strategy aims not only to manage PD symptoms but also to halt neurodegeneration and restore functional neural networks, offering renewed hope for patients worldwide [130]. The integration of molecular markers with multimodal therapeutic approaches can be conceptually represented as shown in Figure 1, illustrating how molecular mechanisms, biomarkers, and emerging therapies converge within the framework of precision medicine.

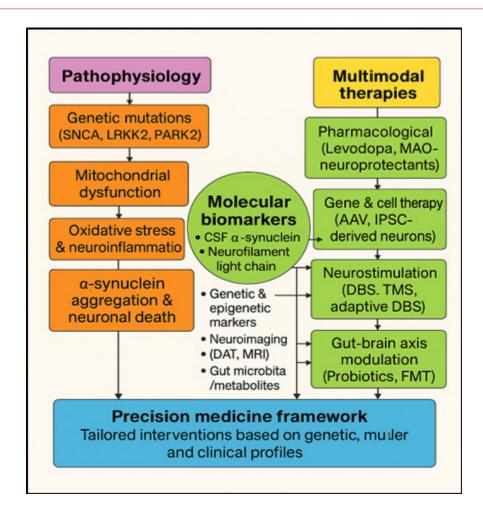


Figure 1: Integrative framework linking molecular pathophysiology and multimodal therapies in Parkinson's disease.

Future Directions

Despite remarkable progress in understanding Parkinson's disease (PD) at the molecular and therapeutic levels, several key challenges remain before precision-based multimodal care can become a clinical reality. Future research must prioritize early diagnosis, improved biomarker validation, and strategies that bridge laboratory discoveries with clinical translation [131]. A major goal for upcoming studies is the identification of preclinical biomarkers that can detect PD before irreversible neuronal loss occurs. Integrating CSF, blood, genetic, and imaging biomarkers through standardized protocols will be essential for developing diagnostic accuracy and predictive models [132]. The combination of omics technologies with AI-based analytics could refine patient stratification and accelerate personalized therapy design [133]. Gene editing technologies, such as CRISPR/Cas9, hold promise for correcting disease-causing mutations like LRRK2 and SNCA, while advances in cell replacement therapy may offer functional recovery through iPSC-derived dopaminergic neurons.

However, ensuring long-term graft integration, immune compatibility, and safety remains critical for successful clinical adoption [134]. Future therapies are also likely to emphasize combination strategies, integrating pharmacological agents, neurostimulation, gut microbiota modulation, and lifestyle interventions. Such an approach will address both central and peripheral mechanisms of PD, maximizing therapeutic benefit [135]. Global collaboration through longitudinal consortia, openaccess databases, and patient-centered initiatives like PPMI will be vital for translating precision medicine into daily clinical practice. Ultimately, the future of PD management lies in a holistic, datadriven model that combines molecular understanding with humancentered care - offering hope for disease modification and improved quality of life [136].

Conclusion

Parkinson's disease represents a complex neurodegenerative condition driven by interconnected molecular mechanisms, including oxidative stress, mitochondrial dysfunction, neuroinflammation, and genetic mutations. The understanding of its pathophysiology has evolved from a dopamine-centric model to a multifactorial one, enabling the discovery of biomarkers and molecular targets that can guide early diagnosis and individualized treatment. Advances in genetics, neuroimaging, and omics-based technologies have further accelerated the shift toward precision medicine, allowing clinicians to design therapies tailored to a patient's unique biological profile.

The integration of molecular insights with multimodal therapeutic approaches-combining pharmacological agents, gene and cell-based therapies, neurostimulation, and gut microbiota modulation-marks a transformative step toward disease modification. Although challenges remain in translating these innovations into everyday practice, the future of Parkinson's disease management lies in a personalized, data-driven framework that bridges molecular understanding with clinical care. Such an

approach holds the promise of not only improving symptom control but also altering the course of the disease and enhancing patients' quality of life.

Acknowledgement

The authors gratefully acknowledge the Faculty of Pharmacy, Noble University for their continuous support and encouragement during the preparation of this review article.

Conflict of Interest

The authors declare no conflict of interest.

References

- Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, et al. (2017) Parkinson disease. Nature Reviews Disease Primers 3: 17013.
- Dorsey ER, Bloem BR (2018) The Parkinson pandemic-A call to action. JAMA Neurology 75(1): 9-10.
- 3. Bridi JC, Hirth F (2018) Mechanisms of α -synuclein induced synaptopathy in Parkinson's disease. Frontiers in Neuroscience12: 80.
- Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: A review. JAMA 311(16): 1670-1683.
- Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience 18(2): 101-113.
- Klein C, Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harbor Perspectives in Medicine 2(1): a008888.
- 7. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nature Reviews Neuroscience 18(7): 435-450.
- Espay AJ, Brundin P, Lang AE (2017) Precision medicine for disease modification in Parkinson disease. Nature Reviews Neurology 13(2): 119-126.
- Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, et al. (2018) International Parkinson and Movement Disorder Society Evidence-Based Medicine Review: Update on treatments for the motor symptoms of Parkinson's disease. Movement Disorders 33(8): 1248-1266.
- Kalia LV, Lang AE (2015) Parkinson's disease. The Lancet 386(9996): 896-912.
- 11. Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6): 889-909.
- 12. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, et al. (2017) Past, present, and future of Parkinson's disease: A special essay on the 200th anniversary of the shaking palsy. Movement Disorders 32(9): 1264-1310.
- 13. Hornykiewicz O (2010) A brief history of levodopa. Journal of Neurology 257(2): S249-S252.
- 14. Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. The Lancet Neurology 12(8): 811-821.
- Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO Journal 31(14): 3038-3062.
- 16. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85(2): 257-273.
- 17. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson's disease. Frontiers in Neuroanatomy 9: 91

- 18. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson's disease. Parkinsonism & Related Disorders 18(1): S210-S212.
- 19. Kim C, Ho DH, Suk JE, You S, Michael S, et al. (2013) Neuron-released oligomeric α -synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature Communications 4: 1562.
- Cebrián C, Zucca FA, Mauri P, Steinbeck JA, Studer L, et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cellmediated degeneration. Nature Communications 5: 3633.
- 21. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences USA 95(11): 6469-6473.
- 22. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, et al. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging 24(2): 197-211.
- Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Reviews Neuroscience 11(12): 791-797.
- Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304(5674): 1158-1160.
- 25. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, et al. (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology 18(12): 1091-1102.
- Halliday GM, Leverenz JB, Schneider JS, Adler CH (2014) The neurobiological basis of cognitive impairment in Parkinson's disease. Movement Disorders 29(5): 634-650.
- Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, et al. (2016) Gut microbiota regulates motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167(6): 1469-1480.
- Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131(8): 1969-1978.
- Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, et al. (2009)
 Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New England Journal of Medicine 361(17): 1651-1661.
- Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113): 787-795.
- Surmeier DJ, Schumacker PT (2013) Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. Journal of Biological Chemistry 288(15): 10736-10741.
- 32. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, et al. (2013) Association of cerebrospinal fluid β -amyloid 1-42, T-tau, P-tau181, and α -synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurology 70(10): 1277-1287.
- 33. Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Abrahamsson E, et al. (2020) Validation of serum neurofilament light chain as a biomarker of Parkinson's disease progression. Movement Disorders 35(11): 1999-2008.
- 34. Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z (2010) Significance and confounders of peripheral DJ-1 and α -synuclein in Parkinson's disease. Neuroscience Letters 480(1): 78-82.
- 35. Marques TM, Van Rumund A, Oeckl P, Kuiperij HB, Esselink RA, (2019) Serum NFL discriminates Parkinson disease from atypical parkinsonisms. Neurology 92(13): e1479-e1486.
- Dutta G, Barber DS, Zhang P, Dopp JM (2019) Role of microglial cells in manganese neurotoxicity. Toxicology and Applied Pharmacology 380: 114678.
- Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: A systematic review and meta-analysis. JAMA Neurology 73(11): 1316-1324.

- Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, (2014) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: A randomized clinical trial. JAMA Neurology 71(2): 141-150
- Khoo TK, Hamilton PB, Taylor JM, Barker RA, Burn DJ (2013) The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 80(3): 276-281.
- Niccolini F, Politis M (2014) Dopamine receptor mapping with PET imaging in Parkinson's disease. Journal of Neurology 261(12): 2251-2263.
- Pyatigorskaya N, Magnin B, Mongin M, Yahia-Cherif L, Valabregue R (2021) Magnetic resonance imaging biomarkers to assess substantia nigra damage in Parkinson's disease. Frontiers in Neuroscience 15: 685310.
- Vazquez-Roque RA, Camilleri M (2019) Bile acid metabolism, microbiota, and gastrointestinal dysfunction in Parkinson's disease. Movement Disorders 34(10): 1519-1527.
- 43. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nature Reviews Neurology 9(8): 445-454.
- 44. Schmitt I, Wullner U, Strehle M, Peeraer E, Van Rompuy AS (2019) Epigenetic modification of the SNCA gene in Parkinson's disease. Movement Disorders 34(12): 1839-1847.
- 45. Cardo LF, Coto E, De Mena L, Ribacoba R, Moris G (2013) Profile of microRNAs in the plasma of Parkinson's disease patients and healthy controls. Journal of Neurology 260(5): 1420-1422.
- 46. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, et al. (2017) Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders 32(5): 739-749.
- Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M (2017)
 Functional implications of microbial and viral gut metagenome changes
 in early-stage L-DOPA-naive Parkinson's disease patients. Genome
 Medicine 9(1): 39.
- 48. Zhang B, Horvath S (2005) A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology 4(1): Article17.
- 49. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biology 18(1): 83.
- 50. Postuma RB, Berg D (2016) Advances in markers of prodromal Parkinson disease. Nature Reviews Neurology 12(11): 622-634.
- 51. Bloem BR, Okun MS, Klein C (2021) Parkinson's disease. The Lancet 397(10291): 2284-2303.
- 52. Espay AJ, Hausdorff JM, Sanchez-Ferro A, Klucken J, Merola A (2019) A roadmap for implementation of digital biomarkers in Parkinson's disease. Nature Reviews Neurology 15(9): 543-556.
- Olanow CW, Schapira AH (2013) Therapeutic prospects for Parkinson's disease. Annals of Neurology 74(3): 337-347.
- Stocchi F, Jenner P, Obeso JA (2010) When do levodopa motor fluctuations first appear in Parkinson's disease? European Neurology 63(5): 257-266.
- Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A (2004) Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 292(23): 2631-2637.
- 56. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J et al. (2009) A double-blind, delayed-start trial of rasagiline in Parkinson's disease. New England Journal of Medicine 361(13): 1268-1278.
- Lees AJ, Hardy J, Revesz T (2009) Parkinson's disease. The Lancet 373(9680): 2055-2066.
- 58. Beal MF (2003) Bioenergetic approaches for neuroprotection in Parkinson's disease. Annals of Neurology 53(S3): S39-S47.

- 59. Barodia SK, Creed RB, Goldberg MS (2017) Parkin and PINK1 functions in oxidative stress and mitochondrial quality control: lessons from fly models of Parkinson's disease. Antioxidants & Redox Signaling 27(12): 940-954.
- Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20): 1662-1669.
- 61. Whone AL, Boca M, Luz M, Woolley M, Mooney L (2019) Extended treatment with glial cell line–derived neurotrophic factor in Parkinson's disease. Journal of Parkinson's Disease 9(2): 301-313.
- 62. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, et al. (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature 548(7669): 592-596.
- 63. Takahashi J (2020) iPS cell-based therapy for Parkinson's disease: a Kyoto trial. Regenerative Therapy 13: 18-23.
- 64. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Translational Research 155(2): 62-70.
- 65. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Archives of Neurology 68(2): 165-171.
- 66. Lefaucheur JP (2019) Transcranial magnetic stimulation in the management of Parkinson's disease. Neurophysiologie Clinique 49(1): 57-64.
- Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology 74(3): 449-457.
- 68. Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, et al. (2019) Gut microbiota in Parkinson's disease: temporal stability and relations to disease progression. EBioMedicine 44: 691-707.
- Xue LJ, Yang XZ, Tong Q, Shen P, Ma SJ (2020) Fecal microbiota transplantation therapy for Parkinson's disease: a preliminary study. Medicine 99(35): e22035.
- Houser MC, Tansey MG (2017) The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson's disease pathogenesis? NPJ Parkinson's Disease 3: 3.
- 71. Patel T, Zhou J, Piepmeier JM, Saltzman WM (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Advanced Drug Delivery Reviews 64(7): 701-705.
- 72. Raj R, Das S, Maiti P (2020) Nanocarriers in neurodegenerative disorders: a perspective on targeting oxidative stress and mitochondrial dysfunction. Molecular Neurobiology 57(12): 5025-5043.
- 73. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery 18(5): 358-378.
- 74. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, et al. (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of Controlled Release 235: 34-47.
- 75. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. British Journal of Pharmacology150(8): 963-976.
- 76. George S, Brundin P (2015) Immunotherapy in Parkinson's disease: micromanaging alpha-synuclein aggregation. Journal of Parkinson's Disease 5(3): 413-424.
- 77. Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, et al. (2020) Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurology 77(3): 309-317.

- Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, et al. (2013) Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80(18): 1698-1701.
- 79. Kojima R, Bojar D, Rizzi G, Hamri GC, El-Baba MD, et al. (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nature Communications 9(1): 1305.
- Gräber S, Buhmann C, Oertel WH, Eggert KM (2010) Combined use of L-DOPA and deep brain stimulation in advanced Parkinson's disease. European Journal of Neurology 17(11): 1377-1386.
- 81. Van der Kolk NM, King LA (2013) Effects of exercise on mobility in people with Parkinson's disease. Movement Disorders 28(11): 1587-1596.
- 82. Titova N, Chaudhuri KR (2017) Personalized medicine in Parkinson's disease: time to be precise. Movement Disorders 32(8): 1147-1154.
- 83. Scherzer CR (2019) Advancing Parkinson's disease research: From clinical observations to precision medicine. Movement Disorders 34(11): 1610-1618.
- 84. Bloem BR, Okun MS, Klein C (2021) Parkinson's disease. The Lancet 397(10291): 2284-2303.
- 85. Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, et al. (2016) Activation of β -glucocerebrosidase reduces pathological α -synuclein and restores lysosomal function in Parkinson's disease. Proceedings of the National Academy of Sciences USA 113(7): 1931-1936.
- Denali Therapeutics (2022) LRRK2 inhibitors in Parkinson's disease: Clinical trials and molecular targets. Nature Reviews Neurology 18(3): 147-158.
- 87. Nido GS, Dick F, Toker L, Petersen K, Alves G, et al. (2020) Common gene expression signatures in Parkinson's disease are driven by changes in cell composition. Acta Neuropathologica Communications 8(1): 55.
- 88. Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, et al. (2013) Identification and rescue of α -synuclein toxicity in Parkinson patient-derived neurons. Science 342(6161): 983-987.
- 89. Goldman SM, Postuma RB (2014) Premotor and nonmotor features of Parkinson's disease. Current Opinion in Neurology 27(4): 434-441.
- 90. Trupp M, Jonsson P, Öhrfelt A, Zetterberg H, Obudulu O, et al. (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with Parkinson's disease. Neurobiology of Disease 73: 269-279.
- 91. Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nature Reviews Neurology 11(1): 25-40.
- 92. Eskofier BM, Lee SI, Daneault JF, Golabchi FN, Ferreira-Carvalho G, et al. (2016) Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment. Frontiers in Neurology 7: 103.
- 93. Chen S, Kang J, Sun C, Guo H, Ding W (2020) Artificial intelligence in Parkinson's disease: current applications and future perspectives. Aging and Disease 11(6): 1563-1582.
- 94. Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, et al. (2018) Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial. Movement Disorders 33(8): 1287-1297.
- 95. He R, Yan X, Guo J, Xu Q, Tang B, et al. (2021) Artificial intelligence in Parkinson's disease: from detection to prediction. Frontiers in Neuroscience 15: 733046.
- 96. Simuni T, Siderowf A (2018) Parkinson's disease: biomarkers in development. The Lancet Neurology 17(12): 1066-1068.
- 97. Brundin P, Dave KD, Kordower JH (2017) Therapeutic approaches to target alpha-synuclein pathology in Parkinson's disease. Nature Reviews Neuroscience 18(9): 570-585.

- 98. Schapira AH, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nature Reviews Neuroscience 18(7): 435-450.
- 99. McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE (2011) From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a resource for personalized medicine. Clinical Pharmacology & Therapeutics.
- 100. Contin M, Martinelli P (2010) Pharmacogenetics of levodopa response in Parkinson's disease: Focus on dopamine receptors and transporters. Pharmacogenomics 11(6): 735-749.
- 101. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, et al. (2013) Implementing genomic medicine in the clinic: the future is here. Genetics in Medicine 15(4): 258-267.
- 102. Rovini E, Maremmani C, Cavallo F (2017) How wearable sensors can support Parkinson's disease diagnosis and treatment: a systematic review. Frontiers in Neuroscience 11: 555.
- 103. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson's disease. Movement Disorders 28(12): 1628-1637.
- 104. Coravos A, Khozin S, Mandl KD (2019) Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digital Medicine 2(1): 14.
- Torkamani A, Andersen KG, Steinhubl SR, Topol EJ (2017) Highdefinition medicine. Cell 170(5): 828-843.
- DeMattos RB, Grunden JW, Anderson AJ, Kuroda M, Uher JJ, et al. (201) Ethics of precision medicine in neurodegenerative diseases. Neuron 98(2): 248-256.
- 107. Trusheim MR, Berndt ER, Douglas FL (2007) Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nature Reviews Drug Discovery 6(4): 287-293.
- 108. Schapira AH, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nature Reviews Neuroscience 18(7): 435-450.
- Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience 18(2): 101-113.
- 110. Mollenhauer B, Parnetti L, Rektorova I (2020) Validation of serum neurofilament light chain as a biomarker of Parkinson's disease progression. Movement Disorders 35(11): 1999-2008.
- Denali Therapeutics (2022) LRRK2 inhibitors in Parkinson's disease: Clinical trials and molecular targets. Nature Reviews Neurology 18(3): 147-158.
- Espay AJ, Brundin P, Lang AE (2017) Precision medicine for disease modification in Parkinson disease. Nature Reviews Neurology 13(2): 119-126.
- 113. Christine CW, Starr PA, Larson PS (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20): 1662-1669.
- 114. Kordower JH, Fiandaca MS, Mandel RJ (2013) Cell and gene therapy for Parkinson's disease: where do we stand? Current Opinion in Neurology 26(4): 452-457.
- Little S, Pogosyan A, Neal S, Zavala B (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology 74(3): 449-457.
- Horn A, Kühn AA (2015) Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage 107: 127-135.

- Lozano AM, Lipsman N, Bergman H (2019) Deep brain stimulation: current challenges and future directions. Nature Reviews Neurology 15(3): 148-160.
- 118. Sampson TR, Debelius JW, Thron T (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167(6): 1469-1480.
- 119. Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, et al. (2019) Gut microbiota in Parkinson's disease: temporal stability and relations to disease progression. EBioMedicine 44: 691-707.
- Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S (2017) Functional implications of microbial and viral gut metagenome changes in earlystage Parkinson's disease patients. Genome Medicine 9(1): 39.
- 121. Zhang B, Horvath S (2005) A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology 4(1): Article17.
- 122. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biology 18(1): 83.
- 123. Bloem BR, Okun MS, Klein C (2021) Parkinson's disease. The Lancet 397(10291): 2284-2303.
- DeMattos RB, Grunden JW, Anderson AJ (2018) Ethics of precision medicine in neurodegenerative diseases. Neuron 98(2): 248-256.
- 125. Marek K, Jennings D, Lasch S (2011) The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology 95(4): 629-635.
- 126. LeWitt PA, Rezai AR, Leehey MA (2011) AAV2-GAD gene therapy for advanced Parkinson's disease: A double-blind, sham-surgery controlled, randomized trial. The Lancet Neurology 10(4): 309-319.
- Kikuchi T, Morizane A, Doi D, Magotani H (2017) Human iPS cellderived dopaminergic neurons function in a primate Parkinson's disease model. Nature 548(7669): 592-596.
- 128. Gräber S, Buhmann C, Oertel WH, Eggert KM (2010) Combined use of L-DOPA and deep brain stimulation in advanced Parkinson's disease. European Journal of Neurology 17(11): 1377-1386.
- 129. Titova N, Chaudhuri KR (2017) Personalized medicine in Parkinson's disease: time to be precise. Movement Disorders 32(8): 1147-1154.
- Espay AJ, Lang AE (2018) Parkinson's disease: new concepts in pathogenesis and treatment. Journal of Neurology, Neurosurgery & Psychiatry 89(6): 633-638.
- 131. Simuni T, Siderowf A (2018) Parkinson's disease: biomarkers in development. The Lancet Neurology 17(12): 1066-1068.
- 132. Chen S, Kang J, Sun C, Guo H, Ding W (2020) Artificial intelligence in Parkinson's disease: current applications and future perspectives. Aging and Disease 11(6): 1563-1582.
- 133. Takahashi J (2020) iPS cell-based therapy for Parkinson's disease: a Kyoto trial. Regenerative Therapy 13: 18-23.
- 134. Titova N, Chaudhuri KR (2017) Personalized medicine in Parkinson's disease: time to be precise. Movement Disorders 32(8): 1147-1154.
- 135. Bloem BR, Okun MS, Klein C (2021) Parkinson's disease. The Lancet 397(10291): 2284-2303.
- 136. Kalia LV, Lang AE (2015) Parkinson's disease. The Lancet 386(9996): 896-912.