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Some Analytical Grad-Shafranov Solutions in General 
Relativity: The Separation of Variables and the 

azimuthal-Angle Dependence

Orchidea Maria Lecian*
Sapienza Unviersity of Rome, Rome, Italy

Introduction

The Grad-Shafranov in spherical coordinates for 
Astrophysical objects is present in [1], where introductory 
analytical study of winds and jets of compact astrophysical 
objects and stars is provided with in [1]. The analysis of the 3 d 
General-Relativistic simulations revealed azimuthal instabilities 
[2]. Further behaviors are described in [3]. The solution of the GS 
equation is demonstrated to comprehend 5 (’essentially’). 

Arbitrary functions: F the mass conservation, G the 
perfect electrical conductivity, H the conservation of angular 
momentum, J the conservation of energy (Bernoulli constant) 
and S conservation of energy [4]. 

As recalled in [4], the GS equation is demonstrated after 
the absence of flow for F = G = 0. Differently, in the General-
relativistic case, the dependence on the azimuthal- angle variable 
and that on time are neglected in [5]; in [5] the functions G and  

 
F are displayed. In the present analysis, a different approach is 
chosen with respect to [4] and to [5] to take into account the 
qualities of the General-Relativistic system. A validity range 
of the General-Relativistic analysis is chosen, according to the 
features of the stress-energy tensor in the chosen neighborhood 
of the blackhole. The dependence on the azimuthal-angle 
variable is here newly considered. Furthermore, the solutions of 
the Grad-Shafranov equations are newly proven to be solved at 
the different orders in the rrg  component of the metric tensor 
in the chosen spherically-symmetric stationary spacetimes, and 
the instances are taken from their series expansions within 
the validity range of the solutions; more in detail, not only the 
Schwarzschild spacetime is taken into account: the result are 
newly proven to hold in a new different way also the generalized 
Schwarzschild spacetimes, such as those involving a linear-
term in the rrg , a cosmological-constant term, Mannheim-
Kazanas-inspired spacetimes  the Bardeen-inspired spacetimes 
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Abstract 
Some new GrisShafranov solutions of spherically symmetric stationary space- times in General Relativity are analytically written in the 

chosen validity range. The Grad-Shafranov equations are proven to be solved at different orders of the powers of the grr component of the metric 
tensor for the Schwarzschild space- time, and for the generalized Schwarzschild spacetimes (i.e. the Schwarzschild spacetimes with a linear term, 
the Schwarzschild spacetimes with a cosmological constant, the Schwarzschild spacetimes with a linear term and a cosmological constant, the 
Mannheim-Kazanas-inspired spacetimes, the Bardeen-inspired spacetimes, etc.).

The assumption of separation of variables is newly formulated. The new General-Relativistic characterization and the new Astrophysical 
qualifications are outlined.
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etc. After the new hypothesis of separation of variables, the 
new analytical solutions are newly spelled out explicitly under 
suitable assumptions; the assumptions are those qualifying the 
Astrophysical qualities of the system. The research guidelines 
of the further Astrophysical qualifications of the solutions are 
outlined. 

The Generalized Grad-Shafranov Equation in 
General Relativity: Developments of the Mobarry- 
Lovelace formalism

The Generalized Grad-Shafranov Equation in General 
Relativity in the Mobarry- Lovelace formalism around a 
Schwarzschild blackhole can be solved in spherical- coordinates 
systems and in cylindrical-coordinate systems. In the following, 
the spherical coordinates will be chosen to newly solve 
analytically the Grad-Shafranov equations of a stationary, 
spherically symmetric, ideal plasma flow around a Schwarzschild 
blackhole and around a generalized Schwarzschild blackhole 
(issued as from the conditions expressed in Section 3). The Grad-
Shafranov equations are here written in spherical coordinates as
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being 1
rrgα = ; the variation s′  ≡ δ s deltaΨ  of the 

entropy s is used, and FJ  ≡  2/w mcγ α  is defined from 
[6] as a function of the proper enthalpy per particle w. 
In Eq. (1), the generalized Grad-Shafranov operator *∆  from 
[5] is here newly rewritten as
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The Schwarzschild spacetimes and the generalized Schwarzschild spacetimes

The generalized Schwarzschild spacetimes are expressed after the line element.

                  

( )22 2 2 2 2 22 2 2
2

1 sin dds c dt dr dr r θ φα θα
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                                                                  (3)

In Eq. (3), the object α can be referred to the Schwarzschild 
spacetime, as well as to generalized Schwarzschild spacetimes, 
expressed after the line element.

2 1 ( ),rs r
r

ζα = − +                                                               (4)

with ( )rδ  a suitable function of the radial variable r  
(and all the opportune parameters) which must undergo the 
condition that the roles of the Schwarzschild radius be modified 
only slightly.

The Grad-Shafranov equation in General Relativity: 
Astrophysical scenarios

The aim of this section is to study the solutions of Eq. (1) 
in a General- Relativistic spacetime.

Differently from [5], the functional dependence of the 

poloidal flux function on the azimuthal angle φ  is here newly 
considered, as motivated from The Schwarzschild spacetime is 
chosen as a first instance of investigation.

A range of validity of the wanted solution ( ), ,r θ φΨ  from Eq. 

(1) is chosen as

1 2 ,s sN r r N r< <       (5)

being sr  the Schwarzschild radius of the spacetime 
considered.

The choice of a solution ( ), ,r θ φΨ  which is depending 
also on the phi variable in a spherically symmetric spacetime 
is motivated after the investigations of [7]; in [7], the qualities 
descending from the ϕ properties of the characterization of 
the matter content in the considered portions of spacetimes 
are examined. The choice of the validity range is motivated 
after the investigations in [8] as far as lower extremum of the 
validity range, i.e. r <  3 ,rs  in General Relativity; the relevance 
of the study of the solutions at a distance of 10rS form the black- 
hole was pointed out in [9], [10]; the upper extremum of the 
validity range, i.e. 100r rs< is motivated after [10]. The range 
100 1000rs rs− was examined in [3].

General-Relativistic scenarios

The metrics chosen to be dealt with within the investigation 
are spherically- symmetric stationary metrics. As an instance, 
the Schwarzschild spacetime is considered. The results are 
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straightforward extended to the generalized Schwarzschild 
spacetimes, i.e. such as the Schwarzschild deSitter spacetimes, 
the Schwarzschild antideSitter spacetimes, the generalized 
Schwarzschild space- times with a linear term, the generalized 
Schwarzschild spacetimes with a linear term and a cosmological-
constant term, the Mannheim-Kazanas spacetimes, the 
Bardeen-inspired metrics, and further generalizations. The 
Grad-Shafranov equations will therefore newly decomposed 
according to the powers of the g(rr)

 

component and will be 
newly solved accordingly.

To explain the procedure, the first terms of the series 
expansions are listed:

( )22 2 22 2 2 2 2 2
2

1  sinds dr r d r dc dt θ θ φα α
= + + +  (6)

will be considered.

The results must be studied for the generalized 
Schwarzschild metric.
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Where 2α −  in Eq. (7) can be stated as
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being Sr  the Schwarzschild radius, where the 
2α −

 refers 
therefore to generalized Schwarzschild spacetimes. The 
following series expansions are listed:
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The validity range chosen according to Eq. (5) allows one 
to series-expand the grr component around the multiples SNr  of 
the Schwarzschild radii. The series expansions must be assured 
to hold. The validity range will be therefore expressed as

1 2s sN r r N r< ≤  (15)

with 1N  and 2N  integers such that 1 23 .N N≤ <  

The validity range Eq. (15) is chosen in a way such that 

the terms of the series expansions of the powers of the grr 
component do not overlap.

New separation of variables of the solution of the 
Grad-Shafranov equation

The range of validity Eq. (5) is chosen such that the 
solution ( ), ,r θΨ ∅  be achieved after the new separation of 
variables, i.e. such as
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( ) ( ) ( ) ( ), , .r a r f Mθ φ θ φΨ =    (16)

Eq. (1) is split as the different orders in α as
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Some new solutions of the Grad-Shafranov 
equation in generalized Schwarzschild spacetimes

The solution is calculated at the different orders in α from 
Eq. (1) under the condition.
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The further hypothesis is requested:
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From Eq. (16), Eq.’s (17) are newly solved as
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where the integration constants ,A , 1,C  2 ,C  3,C  have been 
defined; to these purposes, the constant C1 necessitates further 
General-Relativistic characterizations (as it will be done in the 
following), while the initial condition 0θ  must be given.

It is momentous to remark that the new dependence on the 

variable φ  is a General-Relativistic quality, which has newly 
been discovered in the case of Schwarzschild spacetime and in 
those of generalized Schwarzschild spacetimes, as it had never 
been pointed out in the present literature.

General-Relativistic characterization and 
Astrophysical qualifications

From the obtention of the solutions Eq.’s (21), the following 
characterizations are required. The new limits 

2/F α and 
2/G Alpha must be newly considered. As an example, as far as the 

conservation of particles’ surface function is concerned, the new 

limit for 2 2 24 4F c k c k nmπρ α π γ α≡ ≡ must be considered, being 
/mnρ γ α≡ with γ  the Lorentzian γ  factor, n the proper baryon-

number density. The implications arising from Eq. (18) indicate 
the dependencies which must hold also in the Keplerian case 
when the azimuthal variable is considered. The h y p o t h e s e s 
Eq. (18) and Eq. (20) must be compared. The hypothesis Eq. 
(19) is interpreted as a General-Relativistic quality of the Grad-
Shafranov function H  due to the new General-Relativistic 

dependence on the azimuthal angle φ  , within the range in which 

the General-Relativistic dependence on the azimuthal angle φ  is 
demonstrated. The functional dependence of the entropy /sα αΨ
can be further investigated. 

The integration constant 1C  is chosen accordingly.

Outlook

In [11], the Grad-Shafranov solutions are considered in 
the case of the Schwarzschild spacetime; in particular, the 
cylindrical coordinates are chosen. The analytically expression 
of the solution of the Grad-Shafranov equations in the Keplerian 
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case are analytically solved: as, in the Keplerian case, 1rrg ≡  
and 1ttg ≡ , the solutions are not split according to any series 
expansion of the components of the metric.

In [12], the MHD qualities of a jet related within a spinning 
blackhole spacetime are studied: the electromagnetic fields 
and the fluid motion are ruled by the Grad-Shafranov equation 
and the J  (Bernoulli) equation, respectively; a steady and 
axisymmetric jet in the Kerr spacetime (characterized as after 
the items of investigation [13]) is studied: as a methodology, 
the bulk velocity in the fluid description is posed as vanishing 
throughout the loading zone, as it diverges at the Kerr blackhole 
horizon; as a result, slow flow acceleration and flow velocity 
stratification are found within the regions 105 gravitational 
radii from the central blackhole object. 

In the case of the Kerr spacetimes, the Grad-Shafranov 
equations in the case of a disk were integrated numerically in 
[13]. In the present analysis, the Grad-Shafranov equations are 
considered in spherically symmetric, stationary spacetimes, 
such as the Schwarzschild spacetime and the generalized 
Schwarzschild spacetimes. The validity range of the solutions 
is chosen according to the qualities of the given spacetimes. 
The Grad-Shafranov equations are demonstrated to be split 
according to the different powers of the rrg  components of 
the metric tensor; the validity range must be therefore one for 
which the series expansions of the powers of the rrg  component 
of the spacetimes metrics do not overlap. The solution of the 
Grad-Shafranov equations is rewritten under the hypotheses 
of separation of variables and solved analytically. The new 
constraints are found.
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