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Abstract 
The rapid advancement of the Internet of Things (IoT) in healthcare has created a growing demand for efficient, miniaturized, and sustainable 

energy storage solutions. Supercapacitors, particularly those based on nanostructured self-assembled films of graphene oxide and metal oxides, 
have emerged as promising candidates due to their high-power density, rapid charge/discharge capabilities, and long cycle life. These characteristics 
make them ideal for powering wearable and implantable health monitoring devices, ensuring continuous and reliable operation. This review explores 
the potential of nanostructured supercapacitors as energy storage units in IoT-enabled medical applications, emphasizing recent advancements in 
material science, fabrication techniques, and integration strategies. The discussion also highlights challenges and future perspectives in optimizing 
the electrochemical performance and biocompatibility of these devices, paving the way for the next generation of smart and self-powered healthcare 
technologies.
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Introduction

The growing demand for portable and wearable electronic 
devices has driven the development of more efficient and sustainable 
energy solutions [1]. In the healthcare field, the Internet of Things (I 
oT) has played a fundamental role in advancing monitoring 
systems, enabling real-time collection, transmission, and analysis 
of biomedical data [1]. Devices such as wearable sensors for 
heart rate, glucose, and muscle activity monitoring, as well as 
implantable devices like pacemakers and neurostimulators, 
require reliable and long-lasting energy sources [1]. Although 
conventional batteries are widely used to power these devices, 
they have significant limitations, such as prolonged recharge time, 
degradation over charge and discharge cycles, and environmental  

 
impact due to improper disposal. In this context, supercapacitors 
emerge as a promising alternative due to their high power density, 
rapid recharge capability, and long lifespan [1-4]. Specifically, 
supercapacitors based on nanostructured films composed of 
graphene oxide (GO) and metal oxides have demonstrated 
excellent performance in improving the efficiency and stability of 
these devices [2-4]. This mini-review explores the potential use 
of self-assembled nanostructured films as electrocapacitive layers 
in the development of supercapacitors for IoT-based healthcare 
devices. It covers the fundamental principles of supercapacitors, 
their advantages over conventional batteries, and perspectives on 
integrating this technology into self-sustaining biomedical devices.
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Principles and Advantages of Supercapacitors

Supercapacitors are energy storage devices that operate based 
on the electrostatic accumulation of charges at the electrode-
electrolyte interface or through surface redox reactions. Unlike 
conventional batteries, which store energy through chemical 
reactions within the electrode volume, supercapacitors rely on 
electrostatic capacitance (electric double-layer capacitors) or 
pseudocapacitance (redox-active materials) to provide long cycle 
life and fast charging [1-4]. In particular, the key advantages of 
supercapacitors for medical IoT applications can include:

•	 High power density: Enables fast recharging and instant 
energy release, which is crucial for devices requiring immediate 
response.

•	 Long lifespan: Supercapacitors can endure millions of 
charge and discharge cycles without significant degradation, 
ensuring greater durability in biomedical applications.

•	 Low toxicity: Advanced materials, such as graphene-
based and metal oxide films, enable the development of safer 
and biocompatible devices.

•	 Flexibility and miniaturization: Supercapacitors can 
be manufactured in flexible and ultrathin formats, allowing 
integration into wearable and implantable devices.

•	 Sustainability: The use of recyclable materials and eco-
friendly manufacturing processes minimizes environmental 
impact.

Using Nanostructured Films in Supercapacitors

Nanostructured films possess nanoscale architectures, 
where the materials forming the electrodes are extremely small, 
significantly increasing the surface area available for energy storage 
[4]. This increased surface area fosters synergistic interactions 
among the film compounds, resulting in distinct advantages 
and playing a pivotal role in the development of advanced 
electrode materials for supercapacitors, particularly in enhancing 
performance and electrochemical properties [4]. For instance, 
the combination of nanomaterials structured through techniques 
such as Layer-by-Layer (LbL) and Langmuir-Blodgett (LB) allows 
for the fabrication of highly organized and efficient electrodes for 
supercapacitors [4,5]. These techniques enable precise control over 
the thickness and composition of the films, which is advantageous 
for optimization of electrochemical properties essential for 
biomedical applications [4-12].

Supercapacitors based on nanostructured films have exhibited 
outstanding electrochemical performance. The integration of 
a nanostructured electrocapacite layer with high surface area 
enhances supercapacitor capacitance and cyclic stability [4-12]. 
Moreover, nanostructures provide the necessary flexibility and 
mechanical resilience for applications in flexible supercapacitors 
without compromising electrical performance. A variety of 
nanostructured materials, including carbon-based nanostructures, 
metal oxides, and conductive polymers, can be incorporated into 

these films to further optimize their properties [4,6-11]. 

The use of GO and metal oxides hold immense potential for 
transforming energy storage in IoT-based healthcare devices [1-
3]. Their unique properties enable the achievement of the desired 
performance, including high power density, mechanical flexibility, 
and biocompatibility. These characteristics establish them as key 
components in the development of sustainable and autonomous 
biomedical systems [1-3].

Application of Supercapacitors in Healthcare 
Devices

Nanostructured materials integrated into supercapacitors 
can enable the development of miniaturized, flexible, and 
lightweight energy storage devices, crucial for wearable and 
implantable medical sensors. These devices require efficient 
power sources capable of sustaining continuous operation while 
ensuring biocompatibility and mechanical stability [1,4]. For 
healthcare monitoring, supercapacitors play a vital role, enabling 
real-time data collection and transmission without frequent 
battery replacements. They can be integrated into biosensors for 
glucose monitoring, electrocardiogram patches for cardiac health 
assessment, and even neurostimulation devices. Additionally, the 
ability of supercapacitors to operate under dynamic conditions, 
such as mechanical deformations in wearable electronics, makes 
them ideal candidates for next-generation IoT health systems [1,4].

Recent studies have demonstrated the great potential of 
supercapacitors for applications in healthcare IoT devices for 
biomedical sensing and implantable devices. The incorporation of 
biosupercapacitors utilizing bioactive materials could open new 
possibilities for implantable energy storage systems, ensuring 
efficient and reliable operation within biological environments 
[8-11]. An example is an implantable biosupercapacitor that 
integrates PEDOT with ferritin nanoparticles within carbon 
nanotube structures, ensuring high conductivity and achieving 
an impressive capacitance of 32.9 mF cm⁻² [12]. Another study 
developed an implantable biosupercapacitor utilizing a glucose 
oxidase-modified fiber, which demonstrated a high power density 
of 22.6 mW cm⁻² [13]. Additionally, researchers proposed an 
energy storage device capable of harvesting energy from lactate 
present in human sweat by incorporating carbon nanotubes and 
electrodeposited polypyrrole, a conducting polymer, with excellent 
stability and high power output [14]. Another emerging research 
direction explores how the integration of piezoelectric materials 
with supercapacitors could enable self-powered medical devices, 
harnessing biomechanical movements as a sustainable energy 
source [15,16].

Conclusions and Future Perspectives 

The advancement of nanotechnology has played a crucial role 
in the evolution of supercapacitors as a promising alternative 
to conventional batteries in IoT medical devices. The use of 
nanostructured films enables the fabrication of supercapacitors 
with enhanced properties, which make them ideal for wearable 
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and implantable devices. Future research directions should focus 
on optimizing material compositions and fabrication techniques 
to further enhance the performance of these supercapacitors. 
Despite the considerable advantages of nanomaterial-based 
supercapacitors for IoT healthcare applications, several challenges 
still must be addressed. Nevertheless, future advancements in 
materials engineering and nanotechnology are expected to drive 
innovative strategies to enhance the efficiency and integration of 
supercapacitors in biomedical devices.
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