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Abstract 
Molecular solar thermal (MOST) systems, such as norbornadiene–quadricyclane, azobenzenes, and dihydroazulenes, offer promising pathways 

for solar energy storage via photoinduced isomerization, energy storage and subsequent thermal energy release. A key challenge in optimizing 
these systems lies in accurately modeling the coupled electronic and conformational transitions within condensed phases. We present a rigorous 
theoretical framework based on the Generalized Langevin Equation (GLE) that captures essential features of solute–solvent interactions, including 
memory effects and non-Markovian friction arising from slow environmental relaxation. The GLE formalism incorporates a time-dependent memory 
kernel Γ(t) to describe temporally correlated noise and friction over a broad range of timescales. This approach is especially well-suited for modeling 
MOST systems in polar and structured solvents where dielectric relaxation, hydrogen bonding, and hydrodynamic interactions critically influence 
the dynamics of transition states and thermal back-reaction rates.
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Introduction

Harnessing and storing solar energy at the molecular level is one 
of the most exciting frontiers in chemistry and materials science. 
As the need for renewable and sustainable energy technologies 
increases, the conversion of sunlight into a storable chemical form 
without the need for intermediate electrical or mechanical energy 
is a very desirable approach [1-9].

It involves photochemical systems that are capable of 
reversibly storing solar energy through structural or electronic  

 
rearrangements. This provides a method to obtain scalable, 
sustainable, and efficient solar-to-chemical energy conversion 
systems. Current investigations focus on the use of photo-switchable 
molecules that perform a transformation upon photoexcitation and 
so one is able to store solar energy in the form of chemical bonds. 
The chemical transformations enable reversible storage of solar 
energy in the form of metastable chemical bonds and this is the 
basic principle for molecular solar thermal (MOST) energy storage 
systems [1-9].
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Understanding the dynamics of MOST systems requires 
modeling the influence of the solvent environment, molecular 
friction, and energy dissipation pathways on reaction dynamics. 
The timescales involved in these processes span from femtosecond 
electronic transitions to nanosecond-to-millisecond conformational 
relaxations. Therefore, one needs a framework that goes beyond 
simple Markovian dynamics. The Generalized Langevin Equation 
(GLE) is able to incorporate memory-dependent friction and 
correlated noise and we can model solvent-coupled dynamics [10-
27]. The GLE is:

( ) ( ) ( ) ( ) ( )' ' ' ,
t

o

dVmx t x t t x t dt R t
dx

= − − Γ − +∫ 

             (1)

where ( )tΓ is a memory kernel and R(t) is a stochastic force 
satisfying the fluctuation-dissipation relation:

( ) ( ) ( )' ' .BR t R t k T t t〈 〉 = Γ −
	          (2)

The reaction coordinate is given by x, the mass of the reacting 
system is m and the potential is denoted V. This allows one to analyze 
how the effects of solvent viscosity and polarization relaxation are 
able to modify energy conversion efficiency and reaction dynamics 
in MOST systems [10-27].

The GLE has become a foundational tool for investigating the 
dynamics of chemical reactions in condensed-phase environments. 
Unlike its Markovian counterpart, the GLE is able to include non-
Markovian dynamics by accounting for memory effects through 
time-dependent friction kernels. Thereby it is possible for the 
method to model more accurately the dynamical correlations 
between a reactive system and its complex environment [10-27].

Traditional rate theories given by Transition State Theory 
(TST) and Kramers’ theory assume instantaneous dissipation and 
uncorrelated noise. For realistic condensed-phase systems, the 
response of the solvent to the chemical reaction is delayed and 
frequency-dependent. This is due to the following: 

(i) Hydrodynamic memory related to diffusion in the solvent, 
(ii)	 dielectric relaxation due to reorientation of solvent 
molecules. [10-27] The time-dependent interactions related to 
these two effects can significantly alter reaction rates and the GLE 
gives a microscopical extension to Kramers’ theory by incorporating 
these features. We are able to compute generalized transmission 
coefficients and predict how frequency-dependent friction modifies 
barrier-crossing dynamics [10-27]. Generally, GLE-based methods 
have been applied to study a broad range of processes including 
(i) Proton and electron transfer reactions in polar solvents, (ii) 
isomerization in molecular switches and biological systems, (iii) 
barrier crossing in enzyme active sites, and (iv) solvent-controlled 
reaction dynamics, where the solvent friction determines the 
dominant time scale.

Overall, the GLE framework allows for accurate predictions of 
rate constants, transmission coefficients, and reaction coordinate 
dynamics with the possibility to investigate non-equilibrium 

molecular reaction dynamics [10-27]. It is crucial for the theoretical 
understanding of chemical kinetics in realistic systems that one is 
able to connect microscopic solvent dynamics and macroscopic 
reaction rates [10-27].

Molecular solar thermal energy storage systems offer 
significant advantages since they are closed-loop, relying only 
on light and heat. One is able to store energy without moving 
parts and it offers modular scalability from the molecular to the 
materials level. However, practical application of MOST systems is 
still limited by several challenges i) obtaining long storage lifetimes 
without unwanted thermal degradation, ii) improving the quantum 
yield and spectral overlap with the solar spectrum, iii) ensuring 
molecular back-conversion to release heat on demand, and iv) 
keeping thermal stability and reversibility over many cycles [3].

Some of the most studied MOST systems include norbornadiene-
quadricyclane systems, azobenzenes, and dihydroazulenes, each 
system is capable of storing energy in a metastable high-energy 
form after photoisomerization. These photochromic molecules 
have turned out to be ideal candidates for MOST systems where 
energy is stored during the light-induced transition and later 
released as heat through thermal or catalytic back-conversion [1,2].

Norbornadiene derivatives undergo a photoinduced [2+2] 
cycloaddition to form quadricyclane which is a highly strained 
cage-like structure. This reaction absorbs a photon in the UV or 
visible range and the system is able to store more than 100 kJ/mol 
of energy. The stored energy is released by the reverse reaction as 
heat upon thermal or catalytic stimulation. The transition from QC 
to NBD is governed by a well-defined reaction coordinate and can 
be modeled as a barrier crossing process. It is possible to change 
the energy landscape significantly by including substituents on 
the NBD ring. Generally the substituents can tune the absorption 
spectrum, quantum yield, and back-conversion barrier. Quantum 
chemical calculations and ultrafast spectroscopy studies revealed 
that substituent effects change significantly the excited-state 
lifetimes and vibrational relaxation pathways [2,4]. Appropriate 
molecular designs can improve the thermal half-life of QC while 
keeping reversibility and eliminating side reactions.

Azobenzenes exhibit cis–trans isomerization upon irradiation 
and the trans isomer is thermodynamically favored. On the other 
hand, the cis form obtained via UV or blue-light excitation, is a 
metastable higher-energy state.

,
hv

Catalysttrans Azobenzene cis Azobenzene trans Azobenzene∆− → − → −

The energy stored per molecule (around 50 kJ/mol) is lower 
than that for the NBD–QC systems, whereas azobenzenes benefit 
from high quantum yields, rapid and reversible switching. The 
azobenzenes can be functionalized to absorb across different 
parts of the solar spectrum by substituting electron-donating 
and withdrawing groups on the aromatic rings [5]. Furthermore, 
azobenzenes have been widely integrated into polymeric back-
bones, liquid crystals, and even self-assembled monolayers for 
responsive materials and optomechanical actuation.
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The DHA–VHF pair is another promising MOST candidate. The 
absorption of UV-Vis radiation initiates ring-opening of DHA to 
form VHF which is a structure stabilized by resonance. This MOST 
system is able to store about 55–70 kJ/mol of energy, and it reverts 
to DHA while releasing heat.

hv
DHA VHF DHA

∆

→ →

Generally, DHA-VHF systems offer improved fatigue resistance 
and reduced photochemical degradation. Rearrangements of the 
electronic structure via substitution make it possible to design 
molecules with thermal half-lives ranging from minutes to days. 
The reversion barrier related to the heat releasing reaction is 
often modeled using transition state theory corrected by frictional 
dynamics and it is sensitive to both solvent polarity and viscosity 
[6].

It is crucial to balance energy density, cycling stability, and 
spectral tuning while minimizing side reactions. Therefore, 
understanding the underlying rate processes by including how 
friction, hydrodynamics, and dielectric effects impact back-
conversion is essential. This knowledge will provide critical insight 
into designing next-generation MOST molecules.

The rate of a chemical reaction is given by how reactive 
compounds cross energy barriers and this is often modeled as 
escape from a potential well. Classical transition state theory 
(TST) provides a rate estimate based on equilibrium distributions 
while ignoring friction and memory effects. However, real systems 
exhibit non-Markovian dynamics due to solvent interactions. It is 
important to utilize the GLE in order to obtain a more accurate 
model by accounting for time-dependent friction and as-sociated 
colored noise as required by the fluctuation-dissipation theorem 
(FDT) [10-27].

The next step is to derive the chemical reaction rate constant 
from the GLE framework incorporating two realistic memory 
contributions: hydro-dynamic (due to unsteady fluid flow) and 
dielectric (due to polarization relaxation).

The Generalized Langevin Equation

The GLE for a particle in a potential U(x) under non-Markovian 
friction is given by [10-27]:

( ) ( ) ( ) ( ) ( )' ' ' ,
t

o

dUmx t x t t x t dt R t
dx

= − − Γ − +∫ 

	 (3)

where m is the mass of the particle, the function Γ(t) is the 
memory (or friction) kernel, describing how the medium exerts a 
history-dependent drag, and R(t) is a stochastic force representing 
thermal fluctuations.

The noise term satisfies:

( ) 0,R t〈 〉 =    (4)

( ) ( ) ( )' ' ,BR t R t k T t t〈 〉 = Γ −
        (5)

which reflects the fluctuation-dissipation theorem (FDT) [10-
18,24] and this ensures thermodynamic consistency by coupling 
the dissipative and fluctuating forces.

We stress that the application of the GLE is based on the 
following physical assumptions [10-27]:

•	 The particle is immersed in a thermal bath. The temperature 
T of the bath is constant and the noise strength is given by 

Bk T .

•	 The memory kernel Γ(t) and the noise R(t) depend on time 
differences.

•	 Furthermore, the friction kernel is causal and Γ(t) = 0 for t 
smaller than 0[19].

Hydrodynamic memory relates to inertia and viscous diffusion 
in the surrounding fluid. The hydrodynamic memory kernel is 
modeled as:

( ) ( ) 1 ,hydro
H

t t
t

δ
π τ

 
Γ = + 

   	           (6)

where 6 aγ πη=  is the Stokes friction coefficient for a spherical 
particle of radius a in a fluid of viscosity η . The hydrodynamic 
relaxation time is 

2

H
a
v

τ =  where v η ρ= is the kinematic viscosity 
and ρ the fluid density.

The delta-function term represents instantaneous (Markovian) 
drag, while the 1 2t− tail accounts for the [20,21] long-time tails 
in the velocity autocorrelation function [22]. Dielectric memory 
comes from the relaxation of the electric polarization field in a 
dielectric medium. The dielectric memory kernel is:

( ) Dt
diel Dt e τγ −Γ =

	 (7)

and we have that i) Dγ is the amplitude of the dielectric 
friction, and ii) Dτ is the dielectric relaxation time. This provides 
an exponential decay of the polarization response. This behavior 
is related to Debye relaxation [23] and is crucial when modeling 
the motion of charged particles and dipoles in polar solvents [10-
18,24].

Including both hydrodynamic and dielectric contributions 
into the GLE gives a physically grounded description of Brownian 
motion in complex environments. The fluctuation-dissipation 
relation ensures thermodynamic consistency and the memory 
kernels reflect the slow relaxation dynamics of the medium.

The total kernel is given by

( ) ( ) ( ).hydro dielt t tΓ = Γ +Γ
	 (8)

We use Fourier transforms to solve the GLE analytically and we 
define

( ) ( ) .i tx x t e dtωω
∞

−∞
= ∫ 	                  (9)
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In the frequency domain we get:

( ) ( ) ( ) ( )2m x i x Rω ω ω ω ω ω− = − Γ + 

    (10)

and this gives the following solution

                                                                   
( ) ( )

( )2

R
x

m i
ω

ω
ω ω ω

=
− − − Γ





         (11)

where we have defined the mobility ( )µ ω as

( ) ( )2

1 .
m i

µ ω
ω ω ω

=
− − − Γ

      (12)

Our next step is to perform Fourier transforms of the kernels 
and for the hydrodynamic kernel we have that

( ) ( )1 1 ,
2hydro

Hi ωω γ
ω

 
Γ = + − 

 


     (13)

Where 
1 .H Hω τ=

for the dielectric kernel, we find

( )
1

D
diel

Di
γω
ωτ

Γ =
+



                (14)

and the total friction is given 

( ) ( ) ( ).hydro dielω ω ωΓ = Γ +Γ  

        (15)

Hereby we have introduced the GLE including both 
hydrodynamic and dielectric friction and the next step is to utilize 
the GLE for investigating a chemical reaction in solution.

Chemical rate constants for MOST systems using 
the generalized Langevin equation

Chemical reaction rates in condensed phase systems are 
significantly influenced by the couplings between the reactive 
coordinate and its influenced. Classical transition state theory 
assumes memoryless (Markovian) dynamics and does not capture 
the complex temporal correlations introduced by realistic solvents. 
We introduce non-Markovian theories by including memory 
kernels that encode frictional retardation effects [10-27]. The GLE 
is a powerful framework for describing such dynamics since it gives 
a systematic and physically grounded framework for modeling 
reaction dynamics in complex environments [10-27].

We begin by formulating the GLE for a one-dimensional reaction 
coordinate q(t) which represents the progress along the reaction 
pathway [10-27]:

( ) ( ) ( ) ( ) ( )' ' ' ,
t

o

dU q
mq t t t q t dt t

dq
γ η= + − + =∫ 

        (16)

where we have that [10-27].

•	 m is the mass of the reacting molecular system along the 
reaction coordinate,

•	 ( )tγ is the memory kernel,

•	 ( )U q is the potential energy surface,

•	 ( )tη is a stochastic force with correlations given by the 
fluctuation-dissipation theorem:

( ) ( ) ( )' ' .Bt t k T t tη η γ〈 〉 = −
	    (17)

We make several assumptions in order to derive reaction rates 
using the GLE [10-27]: 

•	 We use a single, suitably chosen reaction coordinate that 
captures the essential progress of the system along the 
reaction pathway. We assume that the full dynamics of a 
high-dimensional molecular or condensed-phase system is 
projected onto this coordinate. Thereby we have one degree of 
freedom for describing the slow, collective degree of freedom 
governing barrier crossing or conformational transitions. All 
the other degrees of freedom are treated as a thermodynamic 
environment or thermal bath [10,24].

•	 The thermal bath for the fast microscopic degrees of freedom 
(e.g., solvent molecules, intramolecular vibrations, or phonon 
modes) is modeled as a collection of independent harmonic 
oscillators that are linearly coupled to the reaction coordinate. 
By using the harmonic approximation we are able to perform 
an exact integration of the bath dynamics and this gives a 
memory kernel and a fluctuation force acting on the reaction 
coordinate [25].

•	 The potential energy near the reactant minimum is 
approximated as a harmonic well. For modeling the transition 
state, two common approximations are used: an inverted 
harmonic potential to represent the parabolic barrier top, 
or a Morse potential to account for finite barrier height and 
anharmonicity [26,27].

•	 For time t = 0, the system is assumed to be in thermal equilib-
rium within the reactant well. Thereby the initial distributions 
of coordinates and momenta follow the Boltzmann distribution 
and it is restricted to the stable region of configuration space. 
This is standard  initial conditions used in rate theory to for 
thermally activated transitions [24].

•	 The coupling between the system and bath satisfies the 
fluctuation-dissipation theorem (FDT). Therefore we ensure 
that the random (fluctuating) forces and the dissipative 
(memory) kernel are consistent with each other and with 
the bath temperature T. In the absence of external driving 
forces, the FDT guarantees that the system will relax toward 
thermal equilibrium and maintain detailed balance. This is a 
requirement for thermodynamic consistency and is satisfied 
when the bath consists of harmonic oscillators, that for t = 0 
are in thermal equilibrium [10-27].

http://dx.doi.org/10.33552/MCMS.2025.07.000664
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We consider two types of potential energy surfaces: 

i.	 the harmonic potential near the reactant well,

( ) 2 2
0

1 ,
2

U q m qω=
             (18)

ii.	 and the Morse potential to model anharmonicity near the 
transition state:

( ) ( )( )0
2

1 ,a q q
eU q D e− −= −

                 (19)

where eD is the dissociation energy, a the range parameter, and
0q the minimum.

The derivation of the reaction rate constant within transition 
state theory (TST) is without dissipation and the TST rate TSTk is 
given by [10-27]:

0 ,
2

U
TSTk e βω

π
− ∆=         (20)

where U∆ is the barrier height and 0ω is the frequency in the 
reactant well. The inclusion of dissipation gives a transmission 
coefficient k and a modification of the TST rate TSTk

.TSTk kκ= ⋅
	 (21)

Grote and Hynes extended Kramers’ theory to include memory 
effects. Kramers’ theory describes the rate of barrier crossing under 
thermal fluctuations and friction. However, it assumes Markovian 
dynamics with instantaneous friction. Grote and Hynes extended 
this theory by incorporating memory effects using the GLE [10-27]. 
Utilizing the harmonic approximation near the barrier we have that 
near the barrier top ( )0 ,x =  the potential is approximated as:

( ) 2 21 ,
2 bV x m xω≈ −

	 (22)

where bω is the (imaginary) frequency of the unstable mode/
reaction co-ordinate. Therefore, we have the following GLE for a 
chemical reaction

( ) ( ) ( ) ( ) ( )2 ' ' ' .
t

b o
mx t m x t t t x t dt R tω= − Γ − +∫ 

         (23)

Taking the Laplace transform of the GLE gives the following

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 0 bms x s msx mx m x s s s x s R sω− − = − Γ + 

           (24)

and this can be rearranged to					   
	

( ) ( ) ( ) ( )
( ) ( )2 2

0 0
.

b

msx mx R s
x s

m s s sω
+ +

=
− + Γ









        (25)

We note that the poles of ( )x s determine the long-time dynamics 

and are found from the denominator:

( ) ( ) ( )2 2 .bD s m s s sω= − + Γ
	     (26)	

We let s λ= be the pole with Re ( ) 0λ > dominating the barrier 
escape.

The transmission coefficient GHκ modifies the Transition State 
Theory (TST) rate:

0 ,
2

V
GH GH TST

b

k k e βωλκ
ω π

− ∆  = =   
    (27)

where:

• 0ω is the frequency at the bottom of the reactant well.

 •λ  satisfies:

( )2 2.bm mλ λ λ ω+ Γ =

	      (28)

This equation must be solved numerically or analytically for 
specific expressions of ( ).tΓ

For an exponential memory kernel, we have that ( ) 1 ,tt e τγτ − −Γ =
we find the Laplace transform to be given as

( ) .
1

s
s
γ
τ

Γ =
+



         (29)

Thereby we obtain the following equation:

2 2

1 bm mγλ λ ω
λτ

+ =
+     (30)

and this can be solved numerically for λ .

Grote and Hynes extended Kramers’ theory to include non-
Markovian memory effects by analyzing the GLE near the barrier 
top [13]. They found that the resulting rate includes a transmission 
coefficient ,GH bk λ ω= whereλ incorporates the effects of 
frictional memory via the Laplace trans-form of the kernel [13].

The effective barrier frequency bω satisfies:	

( )2 2
‡ ,b b bω ω γ ω ω+ =       (31)

where ‡ω  is the curvature of the inverted potential at the 
barrier top, and ( )γ ω is the Laplace transform of the friction kernel.

The transmission coefficient becomes:

‡

.bωκ
ω

=
	   (32)					   

Hydrodynamic and Dielectric Memory Kernels

The total memory kernel is modeled as a sum of the 
hydrodynamic and dielectric memory kernels:
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( ) ( ) ( ) ,H Dt t tγ γ γ= +
          (33)

with:			

( ) ,H t
t

ςγ
π

=
                  (34)

( ) 0 ,Dt
D t e τγ γ −=

               (35)

where ς  is a hydrodynamic coefficient and Dτ  the dielectric 
relaxation time.

We note that the Laplace transform ( )sγ of the total kernel is 
given by:	

( ) 0 .
1 D

s
ss
γςγ
τ

= +
+



           (36)			 

Solving for bω

We numerically solve the self-consistent equation:

( )2 2
‡ .b b bω ω γ ω ω+ =

             (37)

This can be solved iteratively or graphically for specific 
parameters.

Numerical Example

We take the following parameters:

•	 0ω  = 1 THz

•	 ‡ω  = 0.5 THz

•	 ς = 0.1 kg/s1/2

•	 0γ  = 0.2 kg/s

•	 Dτ  = 0.1 ps

•	 T =300K

Solving the Grote-Hynes equation numerically yields 0.42bω ≈
THz.

Then:

0.42 0.84,
0.5

κ = =
          (38)

and the rate constant is:					  

 

10.84 1 .
2

Uk e β

π
− ∆= ⋅ ⋅ ⋅

  (39)

For another case, we simulate the system using the following 
parameters:

•	 1, 1bm ω= =

•	 1, 0.5, 1D Dγ γ τ= = =

and solving the Grote-Hynes equation numerically we find for 
this case:

10.63 1.59.
0.63GH GHω κ≈ ⇒ = ≈

	 (40)

We have derived the chemical rate constant in a system 
with non-Markovian dynamics using the GLE framework and 
incorporating both hydrodynamic and dielectric memory effects 
into the friction kernel. Thereby, we obtained corrections to TST via 
the Grote-Hynes theory. These corrections are crucial in molecular 
systems embedded in polar solvents or viscous media, especially 
for photoisomerization reactions in MOST applications.

We expect that future work may explore multidimensional 
GLE systems, non-linear friction kernels, or stochastic embedding 
methods to simulate dynamics directly [10-27].

Numerical Solver for GH Equation

Using a numerical root-finding algorithm (e.g., Newton-
Raphson or bisec-tion), we solve:

( )2 21 0bm
ω ω ω ω+ Γ − =

        (41)

with:					  

						     ( ) ( )1
1 .

12
H D

D

i
i

ω γω γ
ω ωτ

 =
Γ = + +   + 


      (42)

Simulating GLE Trajectories

To simulate trajectories, we discretize the GLE:

( ) ( )
0

' ,
n

n n n j j n
j

mx V x t t x t R
=

= − Γ − ∆ +∑ 

       (43)

using synthetic random force samples Rn with appropriate 
correlation. The numerical integration can be done with a predictor-
corrector scheme or fractional Langevin integrators.

Conclusion and Outlook

For efficient solar energy storage, molecular systems capable 
of photoin-duced energy capture and long-term thermal stability 
have gained significant attention including systems such as 
norbornadiene–quadricyclane, azobenzenes, and dihydroazulenes. 
For these systems the conversion of photon energy into chemical 
energy followed by controlled release depends on the dynamics of 
conformational and electronic transitions in molecular systems in 
condensed phases.

We have presented a rigorous theoretical framework needed 
for describing the dynamics of energy storage and release in 
MOST systems including solvent interactions, slow environmental 
relaxation, and memory effects. The GLE provides a natural and 
powerful tool for capturing these features by incorporating both 
deterministic and stochastic components of friction and noise that 
are non-Markovian in nature.

http://dx.doi.org/10.33552/MCMS.2025.07.000664


Citation: Kurt V Mikkelsen*.  Chemical Rate Constant Using the Generalized Langevin Equation with Hydrodynamic and Dielectric 
Memory in Relation to Molecular Solar Thermal Energy Storage. Mod Concept Material Sci. 7(3): 2025. MCMS. MS.ID.000664. 
DOI: 10.33552/MCMS.2025.07.000664

Modern Concepts in Material Science                                                                                                                                  Volume 7-Issue 3

Page 7 of 7

The influence of the solvent spans a wide range of timescales, 
from ultrafast inertial and librational motions to slow collective 
reorganizations, rotational diffusion, and long-range hydrodynamic 
interactions. Markovian approaches based on the Langevin 
equation model solvent friction as instantaneous with white-
noise stochastic forces and deltafunction damping. Thereby, these 
methods neglect the complex temporal correlations often exhibited 
by real environments.

On the other hand the GLE method extends this framework by 
including a memory kernel ( )tΓ , that takes care of time-delayed 
frictional effects. The GLE method is particularly well suited for 
modeling dynamical processes in polar solvents, structured fluids, 
and complex media where one encounters significant memory 
effects due to phenomena such as dielectric relaxation, hydrogen 
bonding, and hydrodynamic coupling.

The method presented will be used for investigations of MOST 
systems where energy is stored in metastable photoisomers 
formed by light-induced transitions along with energy release over 
activation barriers. It is clear that both the rate of thermal back-
conversion and the stability of the high-energy form are strongly 
modulated by solvent dynamics. Furthermore, at the transition 
state frictional forces due to solvent response significantly affect 
the effective barrier crossing rate.

For molecular solar thermal systems and other energy storage 
technologies GLE models provide information that can be used 
for predicting how solvation dynamics affect energy storage 
lifetimes and efficiency. In our future work we will combine GLE-
based theory with atomistic simulation and enhance our ability to 
engineer high-performance molecular switches.
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