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Abstract 
In this research work micro arc oxidation (MAO) is used to modify the AZ31B magnesium alloy surface to improve the degradation and 

corrosion properties in the simulated body fluid. Optimum voltages of 125 V, 200 V and 250 V were selected for MAO in sodium silicates, sodium 
fluoride and borax solution. The resulting surface modification was observed by stereomicroscope and Scanning Electron Microscope. Modified 
surface stability and corrosion resistance were also assessed in simulated body fluid i.e., Ringer’s Lactate at 37 ± 1 ℃ with open circuit potential and 
cyclic polarization. Results showed more uniform and stable MAO coating was obtained at 200 V which shows corrosion resistant than the other 
two coatings.
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Introduction

Magnesium and its alloys are recognized as ultimate suited and 
lightest metallic material for structural and industrial applications 
because of its novel properties as high strength to weight ratio, re-
cyclability, high thermal conductivity and good machinability [1]. 
Because of their conventional applications magnesium and its al-
loys stand out in automobile industry, electronic devices and in 
biodegradable implants as they are nontoxic and biodegradable in 
body environment [2,3]. Due to high reactivity of magnesium, it is 
susceptible to undergo corrosion reaction and develops an unsta-
ble oxide layer hence unable to provide protection to its surface [4].

As a result of interaction with dissimilar metals acquiring elec-
trochemical potential in ionic path, magnesium acts as an anode  
at high potential as it is highly active metal and promote galvanic  
corrosion [5,6]. Intergranular corrosion (IGC) at grain boundaries 
is another form of corrosion in contrast to pitting because it is cru-
cial to identify surface pits due to corrosion products [7,8]. Acute  

 
localized dissolution to metal matrix takes place due to these cor-
rosive pits i.e., pitting is very crucial in orthopedic applications as 
it enhances corrosion and propagates cracks [9]. Evolving hydro-
gen due to corrosion and causes balloon effect when absorbed in 
vivo condition [10]. There are various approaches to enhance the 
biocompatibility and corrosion resistance i.e., adding different al-
loying elements, developing biocompatible, protective and corro-
sion resistance coatings [11]. Surface modification is a well-known 
technique to carry out different challenges associated with metallic 
implants in the highly corrosive environment i.e., human body and 
for enhancement of implants related to corrosion behavior [12]. 
Utilization of biomedical coatings [13], Micro-arc oxidation coating 
(MAO) / Plasma electrolytic oxidation (PEO) [14,15], calcium phos-
phate coatings [16], organic coatings [17], oxide layer development, 
surface texturing and ion beam processing [18]. Inorganic coatings 
offer surprising resistant properties, still they have limitations i.e., 
high temperatures for densification [19,20]. Densification of organ-
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ic and inorganic coatings usually develops at low temperature (300 
°C) which permits the achievement of glassy structures without 
crystallization and altering the microstructure of magnesium alloys 
[21,22]. Micro-arc oxidation (MAO) has been generally utilized to 
develop strong and porous coatings on magnesium and its alloys 
and then widely used as improved corrosion resistant implants. 
MAO is a surface engineering method that shows the capacity to 
improve the adhesion of conclusive top-coat [23,24]. MAO coatings 
on magnesium have tri-layer structure. The top layer consists of 
deep pores and cavities having a permeable nature, middle layer is 
less porous layer, and the bottom layer is a thin obstruction layer. 
To attain high bond strength and enhance mechanical properties, 
these pores are advantageous as they release the residual stresses. 
Distribution of pores, pore density and pore structure are the major 
aspects that determine the capacity of coating to resist corrosion 
[25-27]. During MAO of magnesium alloys the nature and concen-
tration of the alloying elements, applied voltage or current, type of 
electrolyte and microstructures determine the behavior of anod-
ization. At various anodizing current regions and voltages different 
active-passive states are developed i.e., micro-arcing or sparking is 
often seen at higher voltages (above 50 V) and known as plasma 
electrolytic oxidation (PEO) or micro arc oxidation (MAO) [28-30]. 
MAO is considered as a substitute method for surface treatment 
because for magnesium alloys traditional anodization becomes 
uncertain as it did not lower the risk of premature fatigue failure 
which is not acceptable for engineering practices as fatigue strength 
plays an important role for load-bearing applications [31]. Number 
of studies shows that MAO on magnesium alloys concentrated on 
elevating anti-corrosion properties. Chen et al. applied polymer 

coatings over MAO treated AZ31 alloy then used nickel by electro-
less means and they proclaimed enhanced corrosion behavior [32]. 
Gnedenkov et al. utilized polytetrafluoroethylene over MAO layers 
in a scattered manner and reported decreased corrosion rate for 
magnesium alloys [33]. Simancas et al. analyzed different pretreat-
ments with respect to protection against corrosion and proposed 
MAO for application of top-coat [34].  

The aim of this research is to perform surface modification to 
protect magnesium and its alloys from corrosion in human body 
environments and finding the biocompatibility and effectiveness 
of Micro Arc Oxidation (MAO) at various electrolyte and voltages 
with further coating of fatty acids like stearic acid over Magnesium 
AZ31B alloy. The corrosion protection of these modified surfaces 
can be assessed through electrochemical techniques i.e., open cir-
cuit potential (OCP) and cyclic polarization (CP) potentiodynamic 
in simulated body fluid and temperature at different voltages. Scan-
ning electron microscopy (SEM) and Energy-dispersive X-ray spec-
troscopy (EDX) will provide morphological characterization and 
elemental composition of materials, respectively.

Experimental Method
Material and Surface Preparation

The chemical composition of AZ31B magnesium alloy’s is illus-
trated in Table 1. The sample of dimension 20×10×5 mm2 was cut 
from the cylindrical rod of AZ3B and ground with SiC papers upto 
3500 grit papers. The samples were then degreased with 70 vo.% 
solution of ethanol, then cleaned in de-ionized water by rinsing it 
time and stored in ethanol solution.

Table 1: Chemical composition of AZ31B magnesium alloy (wt.%).

Si Fe Cu Mn Al Zn Ni Mg

0.023 0.0016 0.0031 0.35 2.95 1.11 0.009 Bal

Micro-Arc Oxidation Process

Figure 1: Schematic diagram of Micro-arc oxidation experimental setup.
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The micro-arc oxidation electrolytic bath was prepared in 
de-ionized water by using the analytical grade chemicals of Merck 
with the composition illustrated in Table 2. The pH and conductivi-
ty of the electrolytic bath was 11.5 and 2.1 mS/cm respectively. The 

stainless steel 316L container was used as a cathode and high volt-
age was applied through specially designed DC power supply. The 
schematic diagram is shown in Figure 1.

Table 2: Composition of electrolytic bath of Micro Arc Oxidation.

Na2SiO3 (g-L-1) NaF (g-L-1) SDS* (g-L-1) TiO2 (g-L-1) Borax (g-L-1)

20 10 0.05 30 5

* Sodium dodecyl sulfate (SDS)

Three voltages i.e., 125 V, 200 V and 250 V were applied on the 
surface of anode (AZ31B sample) for 10 minutes with continued 
air purging. The MAO samples were then cleaned in de-ionized wa-
ter to remove residual salts several time and then stored in ethanol 
solution.

Characterization of MAO coating

The MAO samples were analyzed by stereomicroscope to check 
the smoothness or uniformity of the surface modification. The 
Scanning Electron Microscopy (SEM) and Elemental Dispersive 
Spectroscopy (EDS) for the morphology of MAO sample. The Open 
Circuit Potential (OCP) and Cyclic Polarization (CP) measurement 
to find the electrochemical behavior in simulated body fluid Ring-
er’s Lactate solution at 37±1 ℃. The hydrogen evolution behavior 
of the MAO samples was investigated by Potentio-dynamic Polar-
ization (PDP) Test in simulated body fluid and to evaluate the corro-
sion rate. To find the pitting susceptibility in the MAO sample Cyclic 
Polarization (CP) was conducted.

Results and Discussion 

Stereo microscopy

Figure 2 shows the stereomicrograph images before and after 
micro-arc oxidation (MAO) treatment on AZ31B magnesium alloy 
surface. The results show that MAO significantly change the mor-
phology and topography of the magnesium alloy. As the voltages 
during the MAO changes, the uniformity as well as topography 
also changes. As in Figure 2 (b), when MAO was performed at 125 
V a thin partial layer formed with precipitations on the surface of 
AZ31B sample. When the voltage was further increased to 200 V, 
a uniform layer thick layer was formed with constant immersion/
exposure time. When the voltage increases to 250 V, the thick but 
non-uniform layer formed on the AZ31B sample with clusters of 
precipitates formed on the surface. The layers formed on the three 
samples were porous in nature and it was observed that porosity 
increases with the increase in the applied voltage.

Figure 2: Stereomicrograph of AZ31B magnesium alloy (a) as received and after micro-arc oxidation (b) 125 V (c) 200 V (d) 250 V.
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Scanning electron microscope

Figure 3 shows the SEM images after MAO treatment, on the 
AZ31B magnesium alloy with different applied voltage for constant 
immersion time. During MAO, many chimps and porosity formed 
on the surface of the oxide coating. The porosity is of different 
nature depending on the applied voltage. Due to the high voltage 

during MAO process, the sparking occurs on the AZ31B samples 
which formed sintered oxide coating with micro-pores. Those mi-
cro-probes entrapped the oxygen bubbles formed due to external 
air purging in the MAO electrolytic bath. Those entrapped oxygen 
bubbles increase the porosity in the MAO oxide coatings [35]. The 
mechanism of the MAO process explained with the help of schemat-
ic diagram in Figure 4.

Figure 3: SEM photographs of AZ31B magnesium alloy after micro-arc oxidation (a) 125 V (b) 200 V (c) 250 V.
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Figure 4: Schematic diagram of the formation of the oxide layer during Micro-Arc Oxidation process.

When the applied voltage was 125 V, non-homogenous oxide 
layer was developed as shown in Figure 4a. Partial oxide coating de-
veloped on the AZ31B sample, maximum surface area was unaffect-
ed. This is because for the certain composition of the electrolytic 
bath this was the low applied voltage. The oxide coating developed 
has pores and clusters of precipitation. The thickness of the oxide 
was ~ 6 to 8 μm. When the applied voltage increases to 200 V, the 
oxide coating develop has uniformity in it which support the fact 
that with the increase in the voltage homogeneity was developed 
on the AZ31B samples and also the oxide layer thickness increases 
to ~ 15 to 17 μm. With further increase in the applied voltage in-
creases, the coating thickness of oxide layer increases to ~ 18 to 22 
μm but again oxide layer become non-uniform. The cluster formed 

were large in size which decrease the contact with the surface.

Electrochemical Properties

Open circuit potential (OCP): Figure 5 shows the free poten-
tial or open circuit potential (OCP) of bare, and MAO treated AZ31B 
in the simulated body fluid i.e., Ringer’s Lactate. The bare AZ31B 
has an OCP value of – 1.560 V vs Ag/AgCl, the potential remains 
stable after one hour in the Ringer’s Lactate solution which shows 
that no side reaction or film formation on the bare sample during 
the testing. On MAO sample developed at 125 V applied voltage, the 
potential shifted towards more negative reduction value of – 1.592 
V vs Ag/AgCl, which shows that due to MAO treatment the surface 
become more active and susceptible to more dissolution.
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Figure 5: OCP trends of bare and MAO treated AZ31B magnesium alloy.

At 200 V, the potential shifted towards less negative reduction 
potential value of about – 1.539 V vs Ag/AgCl which was due to the 
uniform oxide formation. While at 250 V, the potential again shifted 
towards negative reduction potential value of about – 1.557 V vs 
Ag/AgCl.

Cyclic Polarization: Figure 6 shows the cyclic polarization 
curves of AZ31B before and after MAO treatment in Ringer Lactate 
solution. The kinetic parameters calculated from the Tafel fitting on 
the forward scan of the polarization curve are illustrated in Table 3. 
βa is the anodic slope, βc is the cathodic slope, icorr is the corrosion 

current density and Ecorr is the corrosion potential. The increase in 
the βa value reflects that less or slow kinetics of dissolution or an-
odic reaction. The βa value of the bare AZ31B is 85.60 mV/decade 
which increases to 89.60 mV/decade after MAO at 125 V. With the 
increase in the MAO applied voltage to 200 V, the βa value further in-
creases to is 96.60 mV/decade which confirm that due to the MAO 
coating the dissolution or anodic reaction decreases. The decrease 
in the βc value reflects that more or fast kinetics of deposition or ca-
thodic reaction. After the MAO process, the AZ31B samples shows 
decreases in the βc value confirms the fast reduction reaction on 
the surface.

Table 3: Kinetic parameters of bare and MAO treated AZ31B magnesium alloy.

Sample Beta A (mV/dec) Beta C (mV/dec) icorr (mA/cm²) Ecorr (V) Corrosion Rate (mpy) Chi Squared         × 10-12

AZ31B 85.6 200.3 30.9 −1.34 26.62 612.3

AZ31B-125V 89.6 197.9 141 −1.51 121.4 910.7

AZ31B-200V 96.6 128.8 70.9 −1.47 61 514.5

AZ31B-250V 94.5 144.3 11.8 −1.34 10.18 230.5
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Figure 6: Cyclic Polarization curves of bare and MAO treated AZ31B magnesium alloy.

Conclusion

•	 With the increase in the voltage in the optimized electrolyte, 
the oxide layer thickness increases up to ~22 μm thickness.

•	 At high voltage of 250 V clusters formation of the ceramic ox-
ide layer and porosity increases.

•	 The high voltage of 250 V shows improved corrosion resis-
tance as compared to bare AZ31B substrate.
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