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Introduction
Due to having zero band gap in two-dimensional graphene 

shifted the attention towards MoS2, WS2, and similar inorganic 
transition metal-based dichalcogenides. Most of them perform 
indirect to direct band gap crossover form bulk to monolayer make 
them a potential candidate for optoelectronic device applications 
[1-4]. MoS2 is stabilized in 2H semiconducting state, having a band 
gap of 1.9 eV for monolayer and 1.28 eV for bulk [5-6]. Thinnest 
transistor based on MoS2 have been already reported [2]. Based 
on unique excitons, spin and valley properties, MoS2 is considered 
for the next-generation platform for future electronics [7-9]. The 
metastable 1T phase is demanding due to metallicity and shows 
excellent hydrogen evolution activity [10-12]. This qualitative 
metal-semiconducting state in 1T-2H phase transition is promising 
for switchable device applications [13-14]. 

Mechanically exfoliated and chemically synthesized TMDCs are 
investigated primarily for fundamental properties are not suitable 
for large area practical devices [15-16]. Bottom-up synthesis, 
namely chemical vapor synthesis (CVD), molecular beam epitaxy 
(MBE), metal-organic chemical vapor deposition (MOCVD), and 
magnetron sputtering (MS), pulsed laser deposition (PLD) are 
significantly successful producing scalable high quality MoS2 thin 
film. However, the challenges for researchers in theses growth 
methods include contaminations, choice of precursor, proper  
precursor transport and controlled chemical reactions, formation of  

 
byproducts, growth kinetics for layered control synthesis, time, and 
cost. For instant MoS2 growth in CVD has proven to be a versatile 
method. Still, the yield is low, and contamination is moderate due 
to sluggish thermal evaporation and chemical reactions of desired 
precursors [17]. The restriction of the choice of growth substrate is 
limited due to high substrate temperature [18]. Similarly, MOCVD 
uses metal organic gasses like (C2H5)2S and Mo (CO)6 for chemical 
reactions and forms high chemical contaminations level [19]. 
MBE method is highly cost-effective for ultra-high vacuum and 
finds time consuming [20-21]. The most challenging issue is the 
limitation of substrate choice due to lattice miss-match between 
film and substrates. We find magnetron sputtering is simple, clean, 
scalable, low time consuming and low-cost effective but suffer from 
poor crystal quality, rough surface, high energy consumption [22-
23]. Therefore, we look forward for a simple, fast, low cost, highly 
controllable, scalable, and less contaminated universal growth 
solution (Figure 1). 

PLD has several advantages over other growth techniques and 
potentially competent to address all the issues as mentioned earlier. 
PLD is simple, highly manageable, clean, safe, highly efficient, easily 
controllable, scalable and versatile method. Generally, the method 
includes a high vacuum growth chamber, gas flow, optical path and 
a high energy excimer laser. In first step, pulsed laser is focused on 
the target and starts bombarding the surface. Then, the generating 
plasma plume is deposited on a substrate placed on the heater 
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Abstract 
MoS2, a two-dimensional (2D) transition metal dichalcogenides (TMDCs), have attracted significant progress in optoelectronics in recent times. 

Scalable, low-cost growth techniques are not still wholly optimized. This article reviews the growth method to obtain a simple, safe, cost-effective 
and layered controlled crystalline MoS2. Furthermore, we will describe MoS2 based heterostructure synthesis using pulsed laser deposition (PLD). 
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inside the chamber. One can easily optimize the growth kinetics 
controlling mentioned parameters; laser energy, laser pulse rate, 
laser pulse width, substrate temperature, gas flow, pressure, target-

substrate distance, target composition and thickness. Therefore, 
two-dimensional (2D) graphene, MoS2 and other inorganic TMDCs 
are successfully synthesized using PLD. 

 

Figure 1: (a) High resolution transmission electron microscopy image (HRTEM) of MoS2/h-BN heterostructure and (b) and (c) represent 
electron energy loss (EEL) spectra of Mo M4,5, S L2,3, B K and N K edge respectively.

In 2015, Serrao et al. reported MoS2 deposition on several 
substrates; Al2O3 (0001), GaN (0001) and SiC-6H (0001) by PLD 
[24]. Serna et al. successfully deposited stoichiometric scalable 
MoS2 films without additional surface preparation of the substrate 
[25]. Our findings show under slow kinetics provide precise control 
on the thickness of MoS2 down to 1ML [26]. Challenges are initially 
to optimize growth conditions result buckling of MoS2 layers 
and form a polycrystalline film. We solved this issue keeping the 
nucleation temperature at 400°C with laser ablation frequency of 1 
Hz. We observe only nucleation temperature are different for other 
TMDCs, but slow kinetics works well to keep Van der waal layers 
intact with underlying substrate forms crystalline film. Now, one 
could think one step further growing heterostructure in PLD. MoS2 
based multilayered heterostructures have been reported for optical 
and magnetic applications [27-28]. Our HRTEM image shows 
scalable MoS2/h-BN heterostructure on c-plane sapphire in Figure 
1(a). High resolution electron energy loss spectra confirm chemical 
identification of the heterostructure (Figure 1(b) & (c)). 

Conclusion 
In summary, we briefly review the growth method of MoS2 and 

MoS2 based heterostructures. PLD is much effective and significant 
among all simple and fast TMDCs based growth techniques. PLD is 
a promising method to transfer stoichiometric transfer of starting 
materials to substrate. Improvement of PLD day by day makes it 
versatile method. Now challenges one can think further to grow 
horizontal heterostructures inside PLD chamber. 
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