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Introduction

During the last decades, nanopore single-molecule analysis has 
shown great potential in detection of DNA [1-3], RNA [4], proteins [5-
8], polymers [9], organic molecules [10-11], and chemical reactions 
[12-13], and has been further extended to high-throughput nucleic 
acid sequencing. The detection of drug interactions [14] is crucial to 
evaluate the effect and safety of drugs, and it is also an indispensable 
part in the process of drug development and clinic treatment [15]. 
Over the past few years, the nanopore worked as a new platform 
for the discovery of drug interactions. Nanopore sensor, with the 
advantages of simple operation, speed and portability, can allow 
single molecule to pass through.

Discussion

a) Direct detection of small molecule drugs using nanopore 
technology

Applied to nanopore, Li-Qun Gu and Hagan Bayley were 
first to propose stochastic sensing to detect drug molecules, 
including Promethazine and Imipramine [16]. The paper shows 
that stochastic sensing of drug molecules can be procured from 
a-haemolysin by equipping the channel with an internal, non-
covalently molecule adapter which mediates channel blocking by 
the drug molecule. Through hybrid a-hemolysin protein pore and  

 
the channel blocking characteristics, another interesting paper was 
reported by Tudor Luchian [17]. This work can distinguish between 
antibiotic molecules of different size and charge, belonging to the 
b-lactam family, including ampicillin, amoxicillin and azlocillin.

b) Detection of nucleic acid-small molecule interactions 
using nanopore technology

Most studies of interactions between nucleic acid and small 
molecules has accomplished by monitoring changes in nanopore 
current patterns of nucleic acids or binding with drug molecules. 
Yao et al. performed nanopore-based detection of DNA-doxorubicin 
(Dox) drug interactions using a-HL pores [18]. The DNA-Dox 
adduct showed a distinctive electronic signal pattern compared to 
original DNA. In contrast to the hairpin DNA event, DNA-Dox adduct 
generated prolonged events with a 10-fold longer duration. This 
result suggests that the nanopore sensor can be used to examine 
interactions between anticancer drug and DNA, and can be applied 
to functional analysis and Pharmacological analysis. Recently, 
our research group investigated DNA shearing action caused by 
bleomycin, accompanied by detection of bleomycin with high 
selectivity and ultra-low detection limit [19]. A dumbbell-based 
DNA probe based on the nanopore current signal was designed, 
which can produce blockage current signals. however, the addition 
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of BLM-Fe (II)would make the dumbbell DNA probe undergo an 
irreversible strand break, resulting and releasing the short-chain 
oligonucleotide fragment, which lead to the disappearance of the 
blockage event. Soon afterwards, a new method related to DNA 
oxaliplatin adduct was proposed [20], which enables real-time 
monitoring of DNA oxaliplatin condensation process. Specifically, 
signals with specific current characteristics are observed during 
this process. Typical high-frequency signals were obtained by 
recording the resulting designed DNA sequences. Furthermore, the 
generation of these signals was confirmed to be independent of the 
homologous adducts. Suggesting that DNA oxaliplatin adducts can 
serve as potential sensors to detect oxaliplatin lesions and multiple 
types of molecules.

Conclusions

Taken together, nanopore could be a promising platform for 
the ultrasensitive, label-free and single-molecule analysis for drug 
interactions and screening research. Through nanopore technology, 
we can accurately and efficiently evaluate drug interactions, 
providing an important reference for drug development and disease 
diagnosis and treatment. There are still some challenges and urgent 
problems to be solved in the application of nanopore technology 
in drug interaction detection. For example, the preparation method 
and stability of nanopore need to be further improved to improve 
the accuracy and reproducibility of detection. Meanwhile, the 
application of nanopore technology in large-scale screening of drug 
interactions needs to be further explored. Finally, we suggest that 
single-molecule-based nanopore applications would be useful for 
high-throughput screening in drug discovery. In future, nanopore 
technology open up a new path for single-molecule-level drug 
discovery, which will provide guidance for drug discovery and 
pharmacological research.
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