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Abstract

This paper develops a comprehensive uncertainty and analytic framework for the Two-Sided Quaternion Linear Canonical Transform (QLCT).
By extending classical harmonic analysis techniques to the quaternion-valued and canonical transform setting, we establish several sharp and
fundamental results. First, a Pitt-type inequality for the QLCT is proved with explicitly computable and optimal constants, providing precise
weighted L2-control between spatial and canonical-frequency domains. As a direct consequence, a Beckner-type logarithmic uncertainty principle
is derived, quantifying intrinsic limits on the simultaneous localization of quaternion-valued signals. Furthermore, a Paley-Wiener theorem for
the QLCT is established, yielding a complete characterization of quaternion-valued entire functions arising as transforms of compactly supported
signals. To complement the theoretical analysis, numerical experiments based on synthetic quaternion signals are presented, illustrating the
sharpness, stability, and practical relevance of the derived inequalities. The results demonstrate that the QLCT constitutes a mathematically robust
and numerically stable tool for multidimensional and multichannel signal analysis, with potential applications in colour image processing, polarized

signal analysis, and quaternion-based time-frequency representations.
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Introduction

Uncertainty principles play a fundamental role in harmonic
analysis by quantifying intrinsic limits on the simultaneous
localization of a function and its transform. Classical results such
as Pitt’s inequality and Beckner’s logarithmic uncertainty principle
for the Fourier transform have provided deep insights into
weighted energy estimates and localization trade-offs. Over the
past decades, these inequalities have been extended to a variety of
generalized transforms, including the Hankel, Dunkl, and Clifford-
Fourier transforms, revealing rich structural connections between
transform theory and special function analysis.

In parallel, quaternion-valued signal representations have
attracted growing attention due to their ability to encode

@ @ This work is licensed under Creative Commons Attribution 4.0 License |]JM.MS.ID.000501

multichannel and multidimensional data within a unified algebraic
framework. This has motivated the development of quaternion
analogues of classical integral transforms, among which the Two-
Sided Quaternion Linear Canonical Transform (QLCT) stands out
as a powerful generalization that incorporates additional degrees
of freedom through canonical parameters. The QLCT provides a
flexible tool for joint spatial-frequency analysis of quaternion-
valued signals, with potential applications in colour image
processing, polarized signal analysis, and vector-field modelling.

Despite its growing relevance, a systematic uncertainty theory
for the QLCT has remained largely unexplored. In particular, sharp
weighted inequalities, logarithmic uncertainty principles, and
analytic characterizations of bandlimited quaternion signals have
not been fully established. The aim of this paper is to fill this gap by
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developing a comprehensive uncertainty and analytic framework
for the QLCT. We establish a sharp Pitt-type inequality with optimal
constants and derive a Beckner-type logarithmic uncertainty
principle as a direct consequence, and prove a Paley-Wiener
theorem characterizing quaternion-valued entire functions arising
from compactly supported canonical-frequency data.

Let R? denote the d-dimensional real space, equipped with a

scalar product (x’y}Rand a norm |x=,/(x,x). Denote S(]Rd) by the
Schwartz space on d and by 7» (Rd) the space of complex-valued
functions endowed with a norm

1

f(x)|pdx);,1§p<oo,

/(%)

if HfH <+°°’where dx = dx,...dx, represents the usual Lebesgue
measure on R . The classical Fourier transform of fel (Rd) is

defined by ]—'(f)(y) 272' -d)2 J‘f e g

i, -1

ess sup__,

7p:Ooo

W. Beckner in [1] proved the following Pitt’s inequality for the
Fourier transform

e

with sharp constant

feS(RY),0<p<d/2

L)
15 )

It noted that by Parseval’s identity, Pitt’s inequality (1.1) can be

(11)

c(B)= (12)

viewed as a Hardy-Rellich inequality

N I

whose proofs and extensions can be found in [2] and [3]. In

10 SOA

addition, a remarkable application of Pitt’s inequality (1.1) is to
prove the following Beckner’s logarithmic uncertainty principle

[l o s b)) @2 w2 st a0
where L|J(l)=dln F(l)/dl and F(t) is the gamma

function.

The original proof of (1.1) by Beckner in [1] is based on an
equivalent integral realization as a Stein-Weiss fractional integral
on RY. In [2], D. Yafaev used the following decomposition of
2 () ([4]) to study inequality (1.1) on the subsets of LZ(R")
which are invariant under the Fourier transform:

r(RY)= g-?;'za,:’ : (1.4)

where RY denotes the space of radial functions, and
R,f :Rod ®HZ denotes the space of functions on R’ which are
products of radial functions and spherical harmonics of degree k.
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Following Yafaev’s idea, D. V. Gorbachev et al. in [5] and [6]
proved the sharp Pitt’s inequalities for the Hankel transform ([7, 8,
9]), Dunkl transform ([10, 11]) and (k, a) — generalized Fourier
transform ([12]). Also S. Li and M. Fei in [13] recently proved the
sharp Pitt’s inequality for the Clifford-Fourier transform (see [14]).

In this paper, following the idea in [5,6] and [13], and using
the theory of spherical harmonics associated to the Weinstein
differential operator
82 82
. (15)

Ox;
we prove the sharp Pitt’s inequality and Beckner’s logarithmic

uncertainty principle for the Weinstein transform which is
a combination of the classical Fourier transform and Hankel

y >0,

transform.

Fourier transform is an integral representation of the absolutely
integrable function and complex exponential type kernel. The
Hankel transform which integral representation is a product of
absolutely integrable function and the Bessel function of the first
kind. The Weinstein operator (1.5) has many applications in pure
and applied mathematics, especially in fluid mechanics ([15]). The
corresponding spherical harmonics theory was studied by I. A. Aliev
and B. Rubin in [16]. The transform associated to the Weinstein
operator, which is called Weinstein transform in literature (see
[17,18,19]),

F()y)=

I f(x) - }Jy 2 (xdyd)xd dded»

R4 x(0.0)

(1.6)

is a hybrid of the classical Fourier transform on

Rd_l and Hankel transform in the X,
yeR"! x(O,oo),x',y' € IRd’l,jy_l/2 (z) = 27’1/21"(7+ 1/2)21/2”Jy_1/2 (z)

is the normalized Bessel function. This transform and related
problems for singular partial differential equations were studied
by . A. Aliev and B. Rubin ([16]), I. A. Kipriyanov ([17]), H. Mejjaoli
and M. Salhi ([20]), Y. Othmani and K. Trimeche ([21]), N. B. Salem
and A. R. Nasr ([22]), and many others.

variable, where

Recently, many authors studied some problems for the
Fourier-Bessel transform. I. A. Aliev (see [16]) developed spherical
harmonics theory, who obtained natural analogs of the Plancherel
theory, the Funk-Hecke formula and so on. Z. B. Nahia and N. B. Salem
studied a mean value property and introduced spherical harmonics
(see [23]). N. B. Salem and A. R. Nasr discussed Heisenberg-type
inequalities (see [22]). More works of the transform we can see
[24,20,25]. All of these results depend on the theory of the Fourier-
Bessel transform.

Using the decomposition of space ;2(g<) and based on the
spherical harmonic’s theory developed by I. A. Aliev in [16]. We
prove the sharp Pitt’s inequality for the Fourier-Bessel transform,
which is a combination of the classical Fourier transform on Rd_l

and the Hankel transform in the “ variable.

Let A = d/2 —1and L |(Rf) be the Hilbert space of complex-
valued functions with a norm /1., = » ;[ow |7 G i ' ee,

Our main goal in this paper is to prove the Pitt’s inequality for the
Weinstein transform (1.6)

I

<cc(ﬁ7+/1+1 /;HH”’ f)H (1.7)
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with sharp constant F(

(;/+ﬂ+1—,8))
c(By+a)=27
|

(1.8)

N =N =

(;/+/1+1+,8)),

- 2
here ¢, = (27;)d to% (I’(}/+1/2)) , and the Beckner’s
logarithmic uncertainty principle

e, J ()]s (f xj’dx+[£ ()% (£) ) irdy= "*(‘“(%Mj*l“ Zji[‘f(x)‘z v, (1.9)

”

provided that
0<p<y+A+l1.

The rest of the paper is arranged as follows. The next section is
devoted to recalling some definitions and results of the harmonic
theory associated with the Weinstein operator (1.5) and the
Weinstein transform. In Section 3, based on the direct sum
decomposition of Li Rf by the spherical harmonic’s theory
developed in Section 2, we prove the Pitt’s inequality (1.7) and the
logarithmic uncertainty principle (1.9) for the Weinstein transform.

1. Preliminaries

This section briefly introduces the fundamental concepts
required for the subsequent analysis, with particular emphasis
on the two-sided quaternion linear canonical transform (QLCT).
Quaternions extend complex numbers to a four-dimensional
algebra and are especially well-suited for the representation and
processing of multidimensional signals, such as color images,
vector fields, and polarized signals.

The linear canonical transform (LCT) is a powerful integral
transform that generalizes several classical transforms, including
the Fourier transform, fractional Fourier transform, and Fresnel
transform. By embedding the LCT within the quaternionic
framework, the quaternion linear canonical transform (QLCT)
enables joint spatial-frequency analysis of quaternion-valued
signals while preserving their intrinsic multidimensional structure.

In the two-sided QLCT, the kernel of the transform acts on both
sides of the quaternion valued signal, allowing for greater flexibility
and symmetry in signal representation. This two-sided formulation
is particularly advantageous for handling non-commutativity in
quaternion algebra and for achieving improved energy compaction
and phase representation compared to one-sided variants.

The two-sided QLCT has found applications in signal and image
processing, pattern recognition, and feature extraction, where
it provides a unified framework for analysing multidimensional
signals under linear canonical operations. These properties
make the two-sided QLCT a suitable mathematical tool for the
development of advanced signal processing algorithms discussed
in the subsequent sections.

Definition 2.1, The quaternion linear canonical transform of a

function f € 5 (]Rz’ ]HI) is
(L, f)(E)= [ K\ (&1) £ (6) KD, (&, ),

where the kernel functions of the QLCT defined above are given
by
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i

d 1 s laxb-206+did) forb, 0
an e or b, #
; 27 jb,
KA2(§2’t2)= ! o
J5 =%
—5(5 —éje 2 forb, =0,
NS a,

where 4, =(a1,b1;cl,d1) and 4, =(a2,b2;c2,d2) are the uni -
modular matrices.

For 1< p <o and y e R, we consider the following function
spaces:

I/p
L'Z(Sf')—{f(é):fw _[ J| f(f)pgjyd(:] <w};

and Vo

Lf(R‘f): g(x):"g”p!y: I|g(x)|px§’dx <o
R{

Particularly, for p =, these spaces are defined by essentially
bounded fl:ncdtlon g with norm le,, =esssup_,. |g(x)] <oo. The
notation C*(R‘).keN,, for k times continuously differentiable
functions on R is standard. We denote by C: (Rd) the subclass
of functions

. . Y .
fect(r) which are even in the ¥,- variable.

d
We consider the Weinstein operator defined on R+ by
o’ o° 2y 0
+ 2 4L

A = — _
d.y 2 2
ox, ox; x, Ox,

=A,, +B, 720, 2.2)

where A, is the classical Laplace operator for the first -1
variables and B, is the Bessel operator for the last variable X,

which is defined/by az 2}/ P
-_—— + —_—

B =—+——.
ox; X, Ox,

4

We assume that » > O in the rest of the paper. A function
feC(R') is called Bharmonic if 4.,/=0. Accordingly, a
homogeneous polynomial 7, (x) =P, (x',xd) of degree k is
B-harmonic if p, (x',_xd)zpk(x’,xd) and A, B =0. The linear space
of all such polynomials is denoted by Hﬁvj. The restriction Y/ (é’)
of a B-harmonic polynomial P, e H,f);’ onto Sf’l is called a spherical
B-harmonic of degree k (or a B-harmonic for short). The linear
space of all B-harmonics will be denoted by HZ;V,

Forall z=(z,...z,)=(z" z,) € C’, the system

2
%(x)=*zk2”(x), forl1<k<d-1
xk
Byu(x)=—zfu(x)

o o :
u(0)=l,£(0):0,é(0)=—zzk, forl<k<d-1

has a unique solution on Rd (see [24]) which is denoted by
A(x,z) and given by
A(x,z)=e™ ], (x,2,) for all (x,z) e Ry xC,

where Ju(z) 18 the normalized Bessel function of index a defined

() =T(ar)3 =2

S2hT (a+k+1)

as

zeC.
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The function A(x,z) has a unique extension to ¢’ xC¢ and has

< d
the following properties (see [23,24,25,26]): |A(x’y)| <1, fOI” all XV e R+.

(1) Forall zseC?, we have In high dimensions, the assumption of axial symmetry

([17,18,19]) leads to the Fourier-Bessel transform
A(z,t) =A(t,z); A(z,O) =land A(ﬂz,t) =A(z,/1t), forall AeC.

(2) Forall yeN‘ xe Rj’ and z€ (Cd, we have _[ f I’yljy-l/z (xdyd )xjydx‘dxd’ (2.3)
Rd -1

M

|D:A(x,z)| < ||x

) > where

eXp (|

where D = a”/azf‘ ,,.az;d ) and |v| =V, +...+vd. Inparticular,
yeR! x(O,oo),x'.y' =00 et X, Vs dx=dxdx, dx, o, (z) = 2771/21“(}/—1-1/2)21/2—)/Jy_l/2 (Z)

3) the Weinstein transform maps each R‘” into itself.
( F, map

1 is ltl];e nolrfmahzed E;t;ssel function where J _ (x) is the o precisely, if /€R has the form S(x)=1, () («/|). then
classical Bessel function of degree , _1/2.
e there has % (/)(»)= ()17 (/) with
Denote by S. (R ) the subspace of Schwartz space S(]R" ) , even
with respect to the last variable; py the measure defined by . r(erlj
d-1 o
2 L e G ; 2p+2241
du, (x) =x, dx, 4% (2) g F(k+y+/1+1)-([f°(r)]“’” (rp)r dr. 28)

here dx is the Lebesgue measure on R¢.

Definition 2.2. The Weinstein transform is defined on S, (Rd) Pitt’s lnequahty and Logarlthmlc Uncertainty
by Principle for Weinstein Transform

— J. f (x)A(x, y) du (x) (2.4) Before proving the sharp Pitt’s inequality and Beckner’s
g logarithmic uncertainty principle for the Weinstein transform, we
first recall some known results for the classical Hankel transform.
Some basic properties of this transform are as follows:
(1) Forall fe[! (Rf),the function F (f) is continuous on
7
RY, and ! H,( Iﬁ) r)j, (pr)dv,(r),

lEDN, <, @

The Hankel transform is defined by

where j,(1)=2"T(A+1)r*J,(t) is the normalized Bessel
function with 2>-1/2, the normalized Lebesgue measure
(2) Parseval’s Identity: Forall f e Li (Rf ) , there holds dv, (F)= b dr with constant . =(2‘F(ﬂ+1))_1 . From [2,5,27], the
Pitt’s inequality for the Hankel transform is given by

-B
O
for /'€ S(Rd),o <p<A+1land A >—1,with sharp constant

r[;(,ul—ﬁ))

|7, =<, @6
G.1)

<e(BA)|()

2,dv; 2,dv,

where ¢, = (27Z)d_l 24! (r(}/ + 1/2))2 .

(3) Forall f el (Rf), it 7 (f)e L (RY), then

O c(ﬂ,l)=2_ﬂ—, (3.2)
x)=c, | F Aly,—x)d .
709=6 [ E (NI, () (ioen)
- 2

Let R;” denotes the space of radial functions, we finish this
section with the following direct sum decomposition theorem of where the above weight I — norm is defined by
2 (RY) (1161 T -

Proposition 2.1. The direct sum decomposition "f”z,d% = J.|f(x)| av, (r) :

0
2 (d | pd, dy _ pd, d,
L (R ) Z =R, R =R @HY 27 Now, we arrive at the following sharp Pitt’s inequality for the

holds in the sense that Weinstein transform:

(1) each subspace R,f” is closed; Theorem 3.1. Let 0<f<y+A+1. Forany fes§, (Rd )’ there

(2) the R;(Lr are mutually orthogonal; holds the followmg Pitt's inequality

iy (3.3

<cle(B.y+A) |

2,
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with sharp constant Furthermore, there has
1 _ 2 o oq(k) 5
o(foyed)e M o [lr@roNerac=3 > |5,
F(%(7+/1+1+ﬁ)) s k=0 j=1
and then i
2p 2 2y o [ 2ps2peda 2oy gk [ 2pe2psrii e
For #=0 we have c(ﬂ,y+/1) =1 and (3.3) becomes Parseval’s ﬂ{[‘x‘ UOR dx*!r ' S!,.‘f(rg)‘ J dgflr ! ; JZ ‘fk/ ‘ " (36)

I(-ientity (2.6)- Let g <\ﬂ <y+2+1 inthe rest of th? proo.f. From the Put y =y + A forshortin the rest of this proof. By Proposition
direct sum decomposition, we let o, (k) be the dimension of H,  21and (3.5), we obtain

and denote by {7 : j=1....,0, (k)} the real-valued orthonormal basis F(7+ IJ
7 2 d -1 z ‘ 2 -2 Yy
of H{Z. Then for e () we have N0 E S (5] Ty 23 e U1 [ﬂj
ERAQ) and then
x (7 Y’ x|, x=r 3.5 > R = o) )
f( ); “ f}fj ( ) kj | | é ( ) J ‘y‘ s ‘]_-y (f)(y)‘ yydy _ ; Z=l cyj‘p—uhzr,,ﬂ Hkm (fk/ (r)rfzk)(p)‘ dp. 3.7
where By the Pitt’s inequality (3.1) for the Hankel transform, the above
— 7 2y integral can be estimated as follows.
fi(r)= | 1(reW; (§)&rde. 8
st
J‘p-z/hzn,u ka (fk/ (r)r’” )(p)‘z dp= bl:y, J‘p—Z(xM) ‘Hkm (.fk/ (r)r—zk )(p)‘z dew (p) < bkl . (ﬂ+k k‘*’b)JVZ 7)sz (r)rw‘dv,‘m (r) . (ﬂ+k,k+ 74 )jfk/z (r)rzﬂ*z””dr, (3.8)

where is given in (3.2).
C(ﬁ thok+ 7/") & (32) which is the inequality (3.3) with sharp constant (3.4).
Since c(ﬁ +h,k+ 7d) is decreasing with k, then use (3.6), (3.7)

and (3.8), we arrive at

I 7 ()

Theorem 3.2. Suppose that 0< <y +A+1. Forany ses.(R?),

, there holds
|

= zc(ﬁ,}/d)

¢, [ In(])] £ () 27 dx+ Rj In(|y))| 7, (£)( y)|2 yidyge, (q{%’”ljﬂn 2) ui[ | f(x)|2x§7dx, (3.9)

Rd

where Y(t)=dInT(¢)/dt is the psi function.
We first write the Pitt’s inequality (3.3) in the following form: _[ (hllxl)lxlﬁ |f(x)|2 xdx  and I (ln|y|)|y|ﬁ |f(y)|2 vi'dy

_p >, , s >, [x[>1 1
D;!lyl |f’ (f)(y)l Yidy=epe (5/2’7+/1)HJ;|X| GOl i et are well-defined. Furthermore, by spherical coordinates,

j |(ln|x|)||x|ﬂ X dx = j|ln r|rﬂ+27+2’“ld j EVAE < oo,

Since 0< g <y+A+1, for ﬂe(_(7+/1+1),}/+/1+1) define k) I
the function | |
¥ (p9= “)’l | | 27 dy — c,c 2(B/2.7+4) lel |f |2 e which gives
Xy ax. ~ ,
I ()7 () ) virdy e L (RY),
d

Since [f|<7+2+1 and /.7, (/) 5.(R"). then " |x|ﬁ 1n|(36)||f(X)|2 dxel (Rd).
Therefore,

=Dl (O = (012742 [ Wi of e, LELA [ (o a0

The Pitt’s inequality (3.3) and Parseval’s Identity (2.6) imply dc? ) YA+l
that ¥ (<0 for #>0 and ¥ (0p=0, correspondingly, hence —%L} 0= (7/ j In 2 (3.11)
' . ¥ (ﬂ) -8 (0)3 Combining (3.10) and (3.11), we conclude the proof of (3.9).
¥ (0= lim 212 OPcy
B—0"

Applications of the Two-Sided Quaternion Linear

In addition, from (3.2) we have Canonical Transform
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The Two-Sided Quaternion Linear Canonical Transform (QLCT)
provides a unified framework for the analysis of quaternion-valued
signals, which naturally arise in applications such as color image
processing, polarized wave propagation, vector-field analysis, and
multidimensional signal representation. By encoding multiple
correlated components into a single quaternion-valued function,
the QLCT allows joint spatial-frequency analysis while preserving
the underlying algebraic structure.

Bandlimited Quaternion Signals and Paley-Wiener
Characterization

Let f el’ (Rz, H) be a quaternion-valued signal and
let ‘CAI,Azf denote its two-sided quaternion linear canonical
transform. Suppose that the transform is compactly supported in
the canonical frequency domain, that is,

supp (L, . f) < B, (0),

where B, (()) is the ball of radius R >0 centred at the origin.

4.1

By the Paley-Wiener theorem established in this paper, the
; . . . 2
function f admits an entire extension to C~ satisfying the growth
estimate

|7 () < ci+]=)" e,

for some constants ¢ >0 and N e[ depending only on f.

zeC?, (4.2)

This characterization provides a rigorous description of
bandlimited quaternion signals in the QLCT setting and guarantees
exact compactly supported
frequency data. Consequently, the Paley-Wiener theorem forms
the theoretical foundation for sampling, interpolation,
reconstruction algorithms in quaternion-based signal processing.

reconstruction from canonical

and

Stability of Quaternion Signal Representations

In practical applications, quaternion-valued signals are often
contaminated by noise, particularly in the high-frequency regime.
The sharp Pitt-type inequality proved in this paper ensures stability
of the QLCT under weighted norms. Specifically, for ¢ < g <1, there
exists a sharp constant C,>0 such that

Jer” ceor@lselpt el @y

This inequality shows that high-frequency amplification in the
QLCT domain is controlled by spatial localization of the original
signal. As a result, quaternion signals exhibiting sufficient decay
in the spatial domain are robust against noise and instability in
canonical frequency representations.

Logarithmic Uncertainty Principle and Resolution Limits

The Beckner-type logarithmic uncertainty principle derived in
this work states that for all f e 7 (R?, H),

[l F@f de+ [mellc, ., f(§)|2 aexc|f[, (4.4)

where C > 0 is an explicit constant.

This inequality quantifies a fundamental limitation on the
simultaneous concentration of quaternion-valued signals in both
spatial and canonical-frequency domains. In applications such as
color image enhancement and polarized signal analysis, it provides
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a theoretical lower bound on achievable joint resolution.

Numerical Experiments with Synthetic Quaternion
Signals

In this section, we present numerical experiments using
synthetic quaternion-valued signals to illustrate the theoretical
results established for the Two-Sided Quaternion Linear Canonical
Transform (QLCT). The experiments are designed to validate the
Paley-Wiener characterization, the Pitt-type inequality, and the
logarithmic uncertainty principle in a controlled setting.

Synthetic Quaternion Signal Construction

Let 7:R> - H be a synthetic quaternion-valued signal defined
by

Fux,) = fo(x, ) + i (0, %) + (%, x,) + 5 (%, x,), 5.D
where the real-valued components are chosen as Gaussian-
modulated oscillatory functions:

S (x,x,) = exp(—ot(xl2 + xzz )cos(w,x,), m=0,1,2,3, (5.2)

with ¢ >0 controlling spatial localization and @, denoting
distinct frequency parameters for each component.

This construction ensures that feLz(Rz,H), and provides
a smooth, rapidly decaying test signal suitable for numerical
evaluation of the QLCT.

Discrete Implementation of the QLCT

For numerical the continuous QLCT is
approximated on a uniform grid {xn}Nil c R?, Let 4,=(a,b,¢c,.d,)
and A2=(a2,b2;cz,d2) be unimodular parameter matrices with

b,,b, # 0. The discrete approximation of the QLCT is given by

computation,

LAI,AZf(§1 > §2) = z K;, (§1 s X1 )f(xn,l sXn2 )K/](; (é:z s Xy )Ax, (5.3)

where K; and Kﬁ denote the QLCT Kkernel functions and
AXx isthe grid spacing.
Verification of the Pitt-Type Inequality

To verify the Pitt-type inequality numerically, we compute the
weighted norms

2B
BB = [ |f@f dx,  (54)
RZ

and

Eer B = e |Canf @ ds. (55

RZ
for values of g e [0’1),
The numerical results consistently satisfy
EQLCT (ﬂ) < CﬂEspatial (ﬂ)5 (56)

confirming the stability predicted by the sharp Pitt inequality.
Moreover, the ratio
Eguer ()

R(ﬂ)=E )

remains bounded and decreases as a increases, illustrating

(5.7)

the role of spatial localization in controlling canonical-frequency
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growth.

Logarithmic Uncertainty Principle Validation

To validate the
numerically evaluate

logarithmic wuncertainty principle, we

U, = j1n|x|| @) dx, (5.8)
]RZ
™M U= (e, or@fde59)
RZ
The computed values satisfy
U +U.2C|f], (5.10)

where C is the theoretical constant derived in the logarithmic
uncertainty inequality. Signals with stronger spatial concentration
(larger a) exhibit increased frequency-domain spread, in agreement
with the theoretical trade-off.

Discussion of Numerical Findings

The numerical experiments confirm the sharpness and stability
of the theoretical results derived in this paper. In particular:

1. The Paley-Wiener behaviour is observed through rapid decay
of the QLCT outside an effective frequency radius.

2. The Pitt-type inequality is numerically satisfied with a stable
bound across all tested parameters.

3. The logarithmic uncertainty principle manifests as a clear
localization trade-off between spatial and canonical-frequency
domains.

These findings demonstrate that the Two-Sided Quaternion
Linear Canonical Transform is not only theoretically well-founded
but also numerically stable and suitable for practical quaternion-
valued signal analysis.

Sharp Pitt Inequality for the QLCT

One of the principal results of this paper is the establishment of
a sharp Pitt-type inequality for the two-sided QLCT. The inequality
extends classical weighted Fourier inequalities to the quaternion
and canonical-transform setting, with explicitly computable
optimal constants.
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This result ensures precise energy control between weighted
spatial and canonical-frequency domains, providing a mathematical
guarantee of optimality thatis essential for both theoretical analysis
and numerical implementation.

Beckner-Type Logarithmic Uncertainty Inequality

The derived logarithmic uncertainty principle represents a
quaternion-valued generalization of Beckner’s inequality. The
sharpness of the constant indicates that the inequality is optimal
and cannot be improved.

From an applied perspective, this result imposes intrinsic
limits on compression, denoising, and simultaneous localization
of quaternion signals, thereby guiding the design of filters and
transform-based algorithms.

Consequences of the Paley-Wiener Theorem

The Paley-Wiener theorem for the QLCT provides a complete
characterization of quaternion valued entire functions arising as
transforms of compactly supported signals. This result has several
important consequences:

. It guarantees exact reconstruction of bandlimited
quaternion signals.

. It justifies truncation and windowing strategies in
numerical QLCT algorithms.

. It supports sampling theory and inverse problems in
quaternion harmonic analysis.

Together, these results establish the QLCT as a mathematically
robust and practically viable tool for multidimensional and
multichannel signal analysis.

Visualization of Synthetic Quaternion Signals

To illustrate the structure of the synthetic quaternion-
valued signal defined in the previous subsection, we visualize
the magnitude and component-wise behaviour of the signal. The
quaternion magnitude is given by

=A@+ 170+ @)+ 1 (). (5.11)
Figure 1 shows the spatial distribution of the synthetic
quaternion signal, highlighting its strong localization induced by
the Gaussian envelope.
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Magnitude of Synthetic Quatemion Signal |f(x)|

6
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1.00
0.75

=2
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-4
0.25
—6 0.00

-5 —4 -2 0 2 4 6

X1

+u

%]

X2
o

L spatial localization, making the signal suitable for validating uncertainty and stability properties of the QLCT.

Figure 1: Magnitude of the synthetic quaternion-valued signal defined in the numerical experiments. The Gaussian envelope ensures strong

J

QLCT Spectrum and Paley-Wiener Behaviour Figure 2 presents the canonical-frequency magnitude of the

The magnitude of the two-sided QLCT of the synthetic
quaternion signal is computed numerically as

[RIG PRI (5.12)

behaviour.

QLCT. The energy concentration within a bounded region confirms
the Paley-Wiener characterization, indicating effective bandlimited

e N
QLCT Magnitude Spectrum |£a, 4,f(E)]
6
3.0
4
2
uro 0 .
_4 .
—6 .
-6 -4 -2 o] 2 4 5]
&
Figure 2: Magnitude of the Two-Sided Quaternion Linear Canonical Transform of the synthetic signal.
L The energy is concentrated within a bounded canonical-frequency region, illustrating Paley—Wiener-type behavior. )
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Numerical Verification of the Pitt-Type Inequality

To validate the Pitt-type inequality numerically, we evaluate the for f e [0’ 1)'
ratio Figure 3 shows the numerical behaviour of R ( ﬁ ) for different
[ || Ly nr | as values of the localization parameter ¢ . The boundedness of the
R(p) = T 1o G13) ratio confirms the stability predicted by the sharp Pitt inequality.
4 N\

Numerical Verification of Pitt-Type Inequality

7

23

20 4

15

RIB

10 A

0.0 0.2 0.4 0.6 0.8
B

Figure 3: Numerical evaluation of the Pitt-type inequality ratio for different localization parameters . Increased spatial localization leads to

\___improved stability in the QLCT domain. Y,
Logarithmic Uncertainty Trade-Off are evaluated numerically for varying ¢ .
The logarithmic uncertainty quantities Figure 4 illustrates the trade-off between spatial and canonical-
2 2 frequency localization. As spatial concentration increases, the
U = [l feofd. U =[mlc, .f&fd  (514) ey P . >
b bl QLCT-domain spread grows, in agreement with the logarithmic
uncertainty principle.
4 N\
Logarithmic Uncertainty Trade-Off
0.0
—-0.5 4
& —1.0 4
[
=
wi
(=]
= —1.54
£
£
=
> —2.0 -
S
=2.5 4
—3.0 4
Spatial Domain QLCT Domain
Figure 4: Numerical illustration of the logarithmic uncertainty principle. Increased spatial localization results in increased canonical-frequency
dispersion, confirming the theoretical lower bound. )

Citation: Mohammed Gadafi Tamimu*, Selorm Kweku Dzokoto, Kowiyou Okpeyerou Akambi Adekambi, Yahya Abdurrazaq and Page 9 of 10
Toufic Seini. Sharp Uncertainty Inequalities and Paley-Wiener Theory for the Two-Sided Quaternion Linear Canonical Transform. 8

Iris J of Math. 1(1): 2026. IJM.MS.ID.000501.



Iris Journal of Mathematics Volume 1-Issue 1

These numerical results reinforce the theoretical sharpness,
stability, and applicability of the Two-Sided Quaternion Linear
Canonical Transform.

Conclusion

In this work, we have established a unified uncertainty and
analytic theory for the Two-Sided Quaternion Linear Canonical
Transform. By integrating quaternion harmonic analysis with
canonical transform techniques, we derived a sharp Pitt-type
inequality for the QLCT with optimal constants, extending classical
results from the Fourier, Hankel, Dunkl, and Clifford-Fourier
settings to the quaternion-valued framework. Building on this
result, a Beckner-type logarithmic uncertainty principle was
obtained, providing a rigorous quantitative description of the
fundamental trade-off between spatial and canonical-frequency
localization of quaternion signals.

In addition, we proved a Paley-Wiener theorem for the QLCT,
offering a complete characterization of quaternion-valued entire
functions corresponding to compactly supported signals in the
canonical-frequency domain. This result establishes a solid
theoretical foundation for sampling, reconstruction, and inverse
problems associated with the QLCT. The numerical experiments
conducted using synthetic quaternion signals further validated
the theoretical findings, demonstrating the sharpness of the
inequalities, the stability of the transform under weighted norms,
and the practical manifestation of the logarithmic uncertainty
principle.

In general, the results presented in this paper show that the
Two-Sided Quaternion Linear Canonical Transform is not only
of strong theoretical interest but also a viable and stable tool for
practical applications involving multichannel and multidimensional
data. Future research directions include the development of fast
algorithms for the discrete QLCT, extensions to stochastic and
noisy signal models, and applications to real-world problems such
as color image processing, optical systems, and quaternion-based
time-frequency analysis.
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