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Abstract
This paper develops a comprehensive uncertainty and analytic framework for the Two-Sided Quaternion Linear Canonical Transform (QLCT). 
By extending classical harmonic analysis techniques to the quaternion-valued and canonical transform setting, we establish several sharp and 
fundamental results. First, a Pitt-type inequality for the QLCT is proved with explicitly computable and optimal constants, providing precise 
weighted L2-control between spatial and canonical-frequency domains. As a direct consequence, a Beckner-type logarithmic uncertainty principle 
is derived, quantifying intrinsic limits on the simultaneous localization of quaternion-valued signals. Furthermore, a Paley–Wiener theorem for 
the QLCT is established, yielding a complete characterization of quaternion-valued entire functions arising as transforms of compactly supported 
signals. To complement the theoretical analysis, numerical experiments based on synthetic quaternion signals are presented, illustrating the 
sharpness, stability, and practical relevance of the derived inequalities. The results demonstrate that the QLCT constitutes a mathematically robust 
and numerically stable tool for multidimensional and multichannel signal analysis, with potential applications in colour image processing, polarized 
signal analysis, and quaternion-based time–frequency representations.
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Introduction
Uncertainty principles play a fundamental role in harmonic 

analysis by quantifying intrinsic limits on the simultaneous 
localization of a function and its transform. Classical results such 
as Pitt’s inequality and Beckner’s logarithmic uncertainty principle 
for the Fourier transform have provided deep insights into 
weighted energy estimates and localization trade-offs. Over the 
past decades, these inequalities have been extended to a variety of 
generalized transforms, including the Hankel, Dunkl, and Clifford–
Fourier transforms, revealing rich structural connections between 
transform theory and special function analysis.

In parallel, quaternion-valued signal representations have 
attracted growing attention due to their ability to encode 

multichannel and multidimensional data within a unified algebraic 
framework. This has motivated the development of quaternion 
analogues of classical integral transforms, among which the Two-
Sided Quaternion Linear Canonical Transform (QLCT) stands out 
as a powerful generalization that incorporates additional degrees 
of freedom through canonical parameters. The QLCT provides a 
flexible tool for joint spatial–frequency analysis of quaternion-
valued signals, with potential applications in colour image 
processing, polarized signal analysis, and vector-field modelling.

Despite its growing relevance, a systematic uncertainty theory 
for the QLCT has remained largely unexplored. In particular, sharp 
weighted inequalities, logarithmic uncertainty principles, and 
analytic characterizations of bandlimited quaternion signals have 
not been fully established. The aim of this paper is to fill this gap by 
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developing a comprehensive uncertainty and analytic framework 
for the QLCT. We establish a sharp Pitt-type inequality with optimal 
constants and derive a Beckner-type logarithmic uncertainty 
principle as a direct consequence, and prove a Paley–Wiener 
theorem characterizing quaternion-valued entire functions arising 
from compactly supported canonical-frequency data.

Let d  denote the d-dimensional real space, equipped with a 
scalar product ,x y  and a norm ,x x x= . Denote ( )dS   by the 
Schwartz space on d  and by ( )p dL   the space of complex-valued 
functions endowed with a norm

( ) )

( )

1

,1 ,

sup , ,
d

d

p p

p

x

f x dx p
f

ess f x p
∈


≤ < ∞= 

 = ∞

∫




if ,
p

f < +∞ where 
1... ddx dx dx=  represents the usual Lebesgue 

measure on d . The classical Fourier transform of ( )1 df L∈   is 
defined by

( )( ) ( ) ( )2 ,2 .
d

d i x yf y f x e dxπ − −= ∫




W. Beckner in [1] proved the following Pitt’s inequality for the 
Fourier transform
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It noted that by Parseval’s identity, Pitt’s inequality (1.1) can be 
viewed as a Hardy-Rellich inequality

( ) ( ) ( ) ( ) ( ) 2

2,2 2
. .f c f c fβ β ββ β− ≤ = −∆ 

whose proofs and extensions can be found in [2] and [3]. In 
addition, a remarkable application of Pitt’s inequality (1.1) is to 
prove the following Beckner’s logarithmic uncertainty principle

( ) ( ) ( ) ( )( ) ( )2 2 2
1 2 , (1.3)

4d d d

dln x f x dx ln y f y dy n f x dx + + 
 ∫ ∫ ∫

  

 ≥ ψ

where ( ) ( )t dln t dt= Γψ  and ( )tΓ  is the gamma 
function.

The original proof of (1.1) by Beckner in [1] is based on an 
equivalent integral realization as a Stein-Weiss fractional integral 
on d . In [2], D. Yafaev used the following decomposition of 

( )2 dL   ([4]) to study inequality (1.1) on the subsets of ( )2 dL   
which are invariant under the Fourier transform:

( ) ( )2

0
, 1.4d d

k
k

L R
∞

=

=∑ 쮵

where 
0
dR  denotes the space of radial functions, and 

0
d d d
k kR R= ⊗Η  denotes the space of functions on d  which are 

products of radial functions and spherical harmonics of degree k.

Following Yafaev’s idea, D. V. Gorbachev et al. in [5] and [6] 
proved the sharp Pitt’s inequalities for the Hankel transform ([7, 8, 
9]), Dunkl transform ([10, 11]) and ( ),k a −  generalized Fourier 
transform ([12]). Also S. Li and M. Fei in [13] recently proved the 
sharp Pitt’s inequality for the Clifford-Fourier transform (see [14]).

In this paper, following the idea in [5,6] and [13], and using 
the theory of spherical harmonics associated to the Weinstein 
differential operator

( )
2 2

, 2 2
1

2... , 0, 1.5d
d d dx x x xγ

γ γ∂ ∂ ∂
∆ = + + + >

∂ ∂ ∂
we prove the sharp Pitt’s inequality and Beckner’s logarithmic 

uncertainty principle for the Weinstein transform which is 
a combination of the classical Fourier transform and Hankel 
transform.

Fourier transform is an integral representation of the absolutely 
integrable function and complex exponential type kernel. The 
Hankel transform which integral representation is a product of 
absolutely integrable function and the Bessel function of the first 
kind. The Weinstein operator (1.5) has many applications in pure 
and applied mathematics, especially in fluid mechanics ([15]). The 
corresponding spherical harmonics theory was studied by I. A. Aliev 
and B. Rubin in [16]. The transform associated to the Weinstein 
operator, which is called Weinstein transform in literature (see 
[17,18,19]),

( )( ) ( )
( )

( ) ( )
1 0,

'. ' 2 '
1 2 , 1.6

d

ix y
d d d df y f x e j x y x dx dxγ

γ γ

− × ∞

−
−= ∫





is a hybrid of the classical Fourier transform on 
1d−  and Hankel transform in the 

d
x −  variable, where 

( ) ( ) ( ) ( )1 ' ' 1 1 2 1 2
1 2 1 20, , , , 2 1 2d dy x y j z z J zγ γ

γ γγ− − − −
− −∈ × ∞ ∈ = Γ +   

is the normalized Bessel function. This transform and related 
problems for singular partial differential equations were studied 
by I. A. Aliev and B. Rubin ([16]), I. A. Kipriyanov ([17]), H. Mejjaoli 
and M. Salhi ([20]), Y. Othmani and K. Trimèche ([21]), N. B. Salem 
and A. R. Nasr ([22]), and many others.

Recently, many authors studied some problems for the 
Fourier-Bessel transform. I. A. Aliev (see [16]) developed spherical 
harmonics theory, who obtained natural analogs of the Plancherel 
theory, the Funk-Hecke formula and so on. Z. B. Nahia and N. B. Salem 
studied a mean value property and introduced spherical harmonics 
(see [23]). N. B. Salem and A. R. Nasr discussed Heisenberg-type 
inequalities (see [22]). More works of the transform we can see 
[24,20,25]. All of these results depend on the theory of the Fourier-
Bessel transform.

Using the decomposition of space ( )2 dL   and based on the 
spherical harmonic’s theory developed by I. A. Aliev in [16]. We 
prove the sharp Pitt’s inequality for the Fourier-Bessel transform, 
which is a combination of the classical Fourier transform on 1d−  
and the Hankel transform in the d

x −  variable.

Let 2 1dλ = −  and ( )2 dLγ +  be the Hilbert space of complex-
valued functions with a norm ( )
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∫


. 
Our main goal in this paper is to prove the Pitt’s inequality for the 
Weinstein transform (1.6)
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with sharp constant
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here ( ) ( )( )1
21 22 2 1 2 ,dc γ

γ π γ−−= +Γ  and the Beckner’s 
logarithmic uncertainty principle

( ) ( ) ( ) ( )( ) ( ) ( )22 22 2 21ln ln ln 2 , 1.9
2d d

d

d d dc x f x x dx y f y y dy c f x x dxγ γ γ
γ γ γ

γ λ + +  + ≥ +    
∫ ∫ ∫
  

 ψ

provided that

0 1.β γ λ≤ < + +
The rest of the paper is arranged as follows. The next section is 

devoted to recalling some definitions and results of the harmonic 
theory associated with the Weinstein operator (1.5) and the 
Weinstein transform. In Section 3, based on the direct sum 
decomposition of ( )2 dLγ +  by the spherical harmonic’s theory 
developed in Section 2, we prove the Pitt’s inequality (1.7) and the 
logarithmic uncertainty principle (1.9) for the Weinstein transform.

1.	 Preliminaries

This section briefly introduces the fundamental concepts 
required for the subsequent analysis, with particular emphasis 
on the two-sided quaternion linear canonical transform (QLCT). 
Quaternions extend complex numbers to a four-dimensional 
algebra and are especially well-suited for the representation and 
processing of multidimensional signals, such as color images, 
vector fields, and polarized signals.

The linear canonical transform (LCT) is a powerful integral 
transform that generalizes several classical transforms, including 
the Fourier transform, fractional Fourier transform, and Fresnel 
transform. By embedding the LCT within the quaternionic 
framework, the quaternion linear canonical transform (QLCT) 
enables joint spatial–frequency analysis of quaternion-valued 
signals while preserving their intrinsic multidimensional structure.

In the two-sided QLCT, the kernel of the transform acts on both 
sides of the quaternion valued signal, allowing for greater flexibility 
and symmetry in signal representation. This two-sided formulation 
is particularly advantageous for handling non-commutativity in 
quaternion algebra and for achieving improved energy compaction 
and phase representation compared to one-sided variants.

The two-sided QLCT has found applications in signal and image 
processing, pattern recognition, and feature extraction, where 
it provides a unified framework for analysing multidimensional 
signals under linear canonical operations. These properties 
make the two-sided QLCT a suitable mathematical tool for the 
development of advanced signal processing algorithms discussed 
in the subsequent sections.

Definition 2.1. The quaternion linear canonical transform of a 
function ( )1 2 ,f L∈    is

( )( ) ( ) ( ) ( )
1 2 1 2

2
, 1 2, , ,S i j

A A A Af K t f t K t dtξ ξ ξ= ∫




where the kernel functions of the QLCT defined above are given 
by

and
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where ( )1 1, 1; 1 1,A a b c d=  and ( )2 2, 2; 2 2,A a b c d=  are the uni - 
modular matrices.

For 1 p≤ < ∞  and ,γ ∈  we consider the following function 
spaces:
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Particularly, for ,p = ∞  these spaces are defined by essentially 
bounded function g with norm ( ),

: sup .dp x
g ess g x

γ ∈
= < ∞

 The 
notation ( ) 0, ,k dC k∈   for k times continuously differentiable 
functions on d  is standard. We denote by ( )*

k dC   the subclass 
of functions ( )k df C∈   which are even in the d

x −  variable.

We consider the Weinstein operator defined on 
d
+  by
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γ γ−

∂ ∂ ∂
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where 1d−∆  is the classical Laplace operator for the first 1d −  
variables and Bγ  is the Bessel operator for the last variable dx  
which is defined by 2

2

2 .
d d d

B
x x xγ

γ∂ ∂
= +
∂ ∂

We assume that 0γ >  in the rest of the paper. A function 
( )2

*
df C∈   is called Bharmonic if , 0.d fγ∆ =  Accordingly, a 

homogeneous polynomial ( ) ( )' ,k k dP x P x x=  of degree k is 
B-harmonic if ( ) ( )' ', ,k d k dP x x P x x− =  and , 0.d kPγ∆ =  The linear space 
of all such polynomials is denoted by ,

,* .d
kH γ  The restriction ( )kY γ ξ  

of a B-harmonic polynomial ,
,*

d
k kP H γ∈  onto 1dS −

+  is called a spherical 
B-harmonic of degree k (or a B-harmonic for short). The linear 
space of all B-harmonics will be denoted by ,

,* .d
k
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has a unique solution on d  (see [24]) which is denoted by 
( ),x zΛ  and given by

( ) ( ) ( )'. '
1 2, , ,ix z d d

d dx z e j x z for all x zγ
−

− +Λ = ∈ × 

where ( )j zα
 is the normalized Bessel function of index α defined 
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The function ( ),x zΛ  has a unique extension to d d×   and has 
the following properties (see [23,24,25,26]):

(1) For all , ,dz t∈  we have

( ) ( ) ( ) ( ) ( ), , ; ,0 1 , , , .z t t z z and z t z t for allλ λ λΛ = Λ Λ = Λ = Λ ∈
(2) For all ,d dxν +∈ ∈   and ,dz∈  we have

( ) ( ), exp Im ,vv
zD x z x x zΛ ≤

where )1
1 ...vv v vd

z dD z z= ∂ ∂ ∂ and 
1 ... .v v vd= + +  In particular,

( ), 1, , .dx y for all x y +Λ ≤ ∈

In high dimensions, the assumption of axial symmetry 
([17,18,19]) leads to the Fourier-Bessel transform
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where
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1 1 1 1 1 1 1 2 1 20, , '. ' ... , ... 2 1 2 1 2d

d d d dy x y x y x y dx dx dx dx j z z J zγ
γ γγ γ− −

− − − − −∈ × ∞ = + + = = Γ + −

 is the normalized Bessel function where ( )1 2J xγ −
 is the 

classical Bessel function of degree 1 2γ − .

Denote by ( )*
dS   the subspace of Schwartz space ( )dS  , even 

with respect to the last variable; μγ the measure defined by

( ) 2 ,dd x x dxγ
γµ =

here dx is the Lebesgue measure on d .

Definition 2.2. The Weinstein transform is defined on ( )*
dS   

by

   ( )( ) ( ) ( ) ( ), . (2.4)
d

f y f x x y d xγ γµ= Λ∫




Some basic properties of this transform are as follows:

(1) For all ( )1 df Lγ +∈  , the function ( )fγ  is continuous on 
d , and

( ) 1,,
, (2.5)f fγ γγ∞

≤

(2) Parseval’s Identity: For all ( )2 df Lγ +∈  , there holds

( )
1
2

2,2,
, (2.6)f c fγ γ γγ

=

where ( ) ( )( )21 2 12 2 1 2 .dc γ
γ π γ− −= Γ +

(3) For all ( )1 ,df Lγ +∈   if ( ) ( )1 ,df Lγ γ +∈   then
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d
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+

−= Λ −∫
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

Let ,
0
dR γ  denotes the space of radial functions, we finish this 

section with the following direct sum decomposition theorem of 
( )2 dLγ +  ([16]):

Proposition 2.1. The direct sum decomposition
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0
, (2.7)d d d d d

k k k
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L R R Rγ γ γ γ
γ

∞

+
=

= = ⊗Η∑ 쮵

holds in the sense that

(1) each subspace ,d
kR γ  is closed;

(2) the ,d
kR γ  are mutually orthogonal;

(3) the Weinstein transform 
γ  maps each ,d

kR γ  into itself. 
More precisely, if 

,d
kf R γ∈  has the form ( ) ( ) ( )0 ,kf x f x Y x xγ=  then 

there has ( )( ) ( ) ( )0 kf y y Y y yγ
γ φ=  with
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1
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 Γ +    =   Γ + + +  ∫

Pitt’s Inequality and Logarithmic Uncertainty 
Principle for Weinstein Transform

Before proving the sharp Pitt’s inequality and Beckner’s 
logarithmic uncertainty principle for the Weinstein transform, we 
first recall some known results for the classical Hankel transform.

The Hankel transform is defined by

( )( ) ( ) ( ) ( )0
0

,H f f r j r dv rλ λ λρ ρ
∞

= ∫

where ( ) ( ) ( )2 1j t t J tλ λ
λ λλ −= Γ +  is the normalized Bessel 

function with 1 2,λ ≥ −  the normalized Lebesgue measure 

( ) 2 1dv r b r drλ
λ λ

+=  with constant ( )( ) 1
2 1b λ

λ λ
−

= Γ + . From [2,5,27], the 
Pitt’s inequality for the Hankel transform is given by
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λ λ

β β
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where the above weight 2L −  norm is defined by
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∞ 
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∫

Now, we arrive at the following sharp Pitt’s inequality for the 
Weinstein transform:

Theorem 3.1. Let 0 1.β γ λ≤ < + +  For any ( )* ,df S∈   there 
holds the following Pitt’s inequality 
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1
2

2, 2,
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with sharp constant

( )
( )

( )

1 1
2, 2 . (3.4)
1 1
2

c β
γ λ β

β γ λ
γ λ β

−

 Γ + + − 
 + =
 Γ + + + 
 

For 0β =  we have ( ), 1c β γ λ+ =  and (3.3) becomes Parseval’s 
Identity (2.6). Let 0 1β γ λ< < + +  in the rest of the proof. From the 
direct sum decomposition, we let ( )d kσ  be the dimension of ,

,* ,d
k
γΗ  

and denote by ( ){ }: 1,....,kj dY j kγ σ=  the real-valued orthonormal basis 
of ,

,* .d
k
γΗ  Then for ( )2 df Lγ +∈   ,we have

( )
( )

( ) ( )
0 1

, , , (3.5)
d k

kj kj
k j

f x f r Y r x x r
σ

γ ξ ξ
∞

= =

= =∑ ∑

where
( ) ( ) ( )

1

2 .
d

kj kj d
S

f r f r Y dγ γξ ξ ξ ξ
−

+

= ∫

Furthermore, there has

( ) ( )
( )

1

2 22

0 1
,

d

d

k

d kj
k jS

f r d f r
σ

γξ ξ ξ
−

+

∞

= =

=∑ ∑∫

and then
( ) ( ) ( )

( )

1

2 2 22 2 2 2 1 2 2 2 2 1

0 10 0

. (3.6)
d

d d

k
d

d d kj
k jS

x f x x dx r f r d r f r dr
σ

β γ β γ γ β γ λξ ξ ξ
−

+ +

∞ ∞ ∞
+ + − + + +

= =

= = ∑ ∑∫ ∫ ∫ ∫


Put dγ γ λ= +  for short in the rest of this proof. By Proposition 
2.1 and (3.5), we obtain

( )( ) ( ) ( )( )( )
( )

1 2

0 1

1
2 ,

2 1

d

d

kk
k

k d k kj kj
k j d

i yf y b H f r r y Y
k y

σ
γ

γ γ γ

γ

γ

∞
− −
+ +

= =

 Γ +      =     Γ + +   
∑ ∑

and then
( )( )

( )

( )( )( )
22 2 2 2 12 2

0 1 0

. (3.7)
d

d

d

d

k
k

d k kj
k j

y f y y dy c H f r r d
σβ β γγ

γ γ γρ ρ ρ
∞∞− − + + −

+
= =

=∑ ∑∫ ∫




By the Pitt’s inequality (3.1) for the Hankel transform, the above 
integral can be estimated as follows.

( )( )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 22 22 2 1 2 2 12 1 2 1 2 2 4 2 2

0 0 0 0

, , , (3.8)d d

d d d d d d

kk k k
k kj k k kj k k d kj k d kjH f r r d b H f r r dv b c k k r f r r dv r c k k f r r drβ β γβ γ β γ

γ γ γ γ γ γρ ρ ρ ρ ρ ρ β γ β γ
∞ ∞ ∞ ∞

− + +− + + + +− − − − −
+ + + + + += ≤ + + = + +∫ ∫ ∫ ∫

where ( ), dc k kβ γ+ +  is given in (3.2).

Since ( ), dc k kβ γ+ +  is decreasing with k, then use (3.6), (3.7) 
and (3.8), we arrive at

( ) ( )
1
2

2, 2,
. , . ,df c c fβ β

γ γ
γ γ

β γ− ≤

which is the inequality (3.3) with sharp constant (3.4).

Theorem 3.2. Suppose that 0 1.β γ λ≤ < + +  For any ( )* ,df S∈   
there holds

0( ) ( ) ( ) ( )( ) ( )
222 2 2 21ln ln ln 2 , (3.9)

2d d d
d d dc x f x x dx y F f y y dy c f x x dxγ γ γ

γ γ γ
γ λ + +  + ≥ +    

∫ ∫ ∫
  

ψ

where ( ) ( )lnt d t dt= Γψ  is the psi function.

We first write the Pitt’s inequality (3.3) in the following form:
( )( ) ( ) ( )2 22 2 22, .

d d
d dy f y y dy c c x f x x dx

β βγ γ
γ γ β γ λ

+ +

−
≤ +∫ ∫

 



Since 0 1,β γ λ≤ < + +  for ( )( )1 , 1β γ λ γ λ∈ − + + + +  define 
the function

( ) ( )( ) ( ) ( )2 22 2 22, .
d d

d dy f y y dy c c x f x x dx
β βγ γ

γ γβ β γ λ
+ +

−
= − +∫ ∫

 

¥ õ

Since 1β γ λ< + +  and ( ) ( )*, ,df f Sγ ∈   then

( ) ( ) ( ) ( )2 22 2

1 1

ln lnd d
x y

x x f x x dx and y y f y y dyβ βγ γ

> >
∫ ∫
are well-defined. Furthermore, by spherical coordinates,
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1

1
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1 0

ln ln ,
d

d d
x S

x x x dx r r dr dβ γ β γ λ γξ ξ
−

+ + +

≤

= < ∞∫ ∫ ∫

which gives

( ) ( )( ) ( )2 2 1ln ,d
dy y f y y dy Lβ γ

γ
−

+∈ 
and

( ) ( ) ( )2 2 1ln .d
dx x f x x dx Lβ γ
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Therefore, ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2

2 2 22 2 2 22,
' ln 2, ln . (3.10)

d d d
d d d

dc
y y f y y dy c c x x f x x dx c x f x x dx

d
β β βγ γ γ

γ γ γ

β γ λ
β β γ λ

β
+ + +

− +
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The Pitt’s inequality (3.3) and Parseval’s Identity (2.6) imply 
that ( ) 0β ≤¥ õ  for 0β >  and ( )0 0=¥ õ , correspondingly, hence

( ) ( ) ( )'

0

0
0 lim 0.

β

β
β++

→

−
= ≤

¥ õ¥ õ
¥ õ

In addition, from (3.2) we have

( )2

0

2, 1 ln 2. (3.11)
2

dc
d β

β γ λ γ λ
β =

+ + + − = + 
 

ψ

Combining (3.10) and (3.11), we conclude the proof of (3.9).

Applications of the Two-Sided Quaternion Linear 
Canonical Transform
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The Two-Sided Quaternion Linear Canonical Transform (QLCT) 
provides a unified framework for the analysis of quaternion-valued 
signals, which naturally arise in applications such as color image 
processing, polarized wave propagation, vector-field analysis, and 
multidimensional signal representation. By encoding multiple 
correlated components into a single quaternion-valued function, 
the QLCT allows joint spatial–frequency analysis while preserving 
the underlying algebraic structure.

Bandlimited Quaternion Signals and Paley–Wiener 
Characterization

Let ( )2 2 ,f L∈    be a quaternion-valued signal and 
let 

1 2,A A f  denote its two-sided quaternion linear canonical 
transform. Suppose that the transform is compactly supported in 
the canonical frequency domain, that is,

( ) ( )
1 2,supp 0 , (4.1)A A Rf B⊆

where ( )0RB  is the ball of radius 0R >  centred at the origin.

By the Paley–Wiener theorem established in this paper, the 
function f admits an entire extension to 2C  satisfying the growth 
estimate

( ) ( ) Im 21 , , (4.2)
N R zf z C z e z C≤ + ∈

for some constants 0C >  and N ∈�  depending only on f.

This characterization provides a rigorous description of 
bandlimited quaternion signals in the QLCT setting and guarantees 
exact reconstruction from compactly supported canonical 
frequency data. Consequently, the Paley–Wiener theorem forms 
the theoretical foundation for sampling, interpolation, and 
reconstruction algorithms in quaternion-based signal processing.

Stability of Quaternion Signal Representations
In practical applications, quaternion-valued signals are often 

contaminated by noise, particularly in the high-frequency regime. 
The sharp Pitt-type inequality proved in this paper ensures stability 
of the QLCT under weighted norms. Specifically, for 0 1,β≤ <  there 
exists a sharp constant 0Cβ >  such that

( ) ( )
1 2,

2 2
. (4.3)A A f C x f xβ β

βξ ξ− ≤

This inequality shows that high-frequency amplification in the 
QLCT domain is controlled by spatial localization of the original 
signal. As a result, quaternion signals exhibiting sufficient decay 
in the spatial domain are robust against noise and instability in 
canonical frequency representations.

Logarithmic Uncertainty Principle and Resolution Limits
The Beckner-type logarithmic uncertainty principle derived in 

this work states that for all ( )2 2 , ,f L∈  

1 2
2 2

2 2 2
, 2

ln ( ) ln ( ) , (4.4)A A
R R

x f x dx f d C fξ ξ ξ+ ≥∫ ∫ 

where 0C >  is an explicit constant.

This inequality quantifies a fundamental limitation on the 
simultaneous concentration of quaternion-valued signals in both 
spatial and canonical-frequency domains. In applications such as 
color image enhancement and polarized signal analysis, it provides 

a theoretical lower bound on achievable joint resolution.

Numerical Experiments with Synthetic Quaternion 
Signals

In this section, we present numerical experiments using 
synthetic quaternion-valued signals to illustrate the theoretical 
results established for the Two-Sided Quaternion Linear Canonical 
Transform (QLCT). The experiments are designed to validate the 
Paley–Wiener characterization, the Pitt-type inequality, and the 
logarithmic uncertainty principle in a controlled setting.

Synthetic Quaternion Signal Construction
Let 2:f →   be a synthetic quaternion-valued signal defined 

by

1 2 0 1 2 1 1 2 2 1 2 3 1 2( , ) ( , ) ( , ) ( , ) ( , ), (5.1)f x x f x x if x x jf x x kf x x= + + +

where the real-valued components are chosen as Gaussian-
modulated oscillatory functions:

2 2
1 2 1 2 1( , ) exp( ( )) cos( ), 0,1, 2,3, (5.2)m mf x x x x x mα ω= − + =

with 0α >  controlling spatial localization and mω  denoting 
distinct frequency parameters for each component.

This construction ensures that ( )2 2 , ,f L∈    and provides 
a smooth, rapidly decaying test signal suitable for numerical 
evaluation of the QLCT.

Discrete Implementation of the QLCT
For numerical computation, the continuous QLCT is 

approximated on a uniform grid { } 2
1

.N
n n

x
=
⊂   Let ( )1 1, 1; 1 1,A a b c d=  

and ( )2 2, 2; 2 2,A a b c d=  be unimodular parameter matrices with 

1 2, 0.b b ≠  The discrete approximation of the QLCT is given by

1 21, 2 1 2 1 ,1 ,1 ,2 2 ,2
1

( , ) ( , ) ( , ) ( , ) , (5.3)
N

i j
A A A n n n A n

n
f K x f x x K x xξ ξ ξ ξ

=

≈ ∆∑

where 
1

i
AK  and 

2

j
AK  denote the QLCT kernel functions and 

x∆  is the grid spacing.

Verification of the Pitt-Type Inequality
To verify the Pitt-type inequality numerically, we compute the 

weighted norms

2

2 2( ) ( ) , (5.4)spatial
R

E x f x dx
β

β = ∫
and

2

2 2
1, 2( ) ( ) , (5.5)QLCT A A

R

E f d
β

β ξ ξ ξ
−

= ∫ 

for values of )0,1 .β ∈
The numerical results consistently satisfy

( ) ( ), (5.6)QLCT spatialE C Eββ β≤
confirming the stability predicted by the sharp Pitt inequality. 

Moreover, the ratio ( )
( ) (5.7)

( )
QLCT

spatial

E
R

E
β

β
β

=

remains bounded and decreases as α increases, illustrating 
the role of spatial localization in controlling canonical-frequency 
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growth.

Logarithmic Uncertainty Principle Validation
To validate the logarithmic uncertainty principle, we 

numerically evaluate

2

2ln ( ) , (5.8)xU x f x dx= ∫


and

2

2

1, 2ln ( ) . (5.9)A AU f dξ ξ ξ ξ= ∫




The computed values satisfy
2

2
, (5.10)xU U C fξ+ ≥

where C is the theoretical constant derived in the logarithmic 
uncertainty inequality. Signals with stronger spatial concentration 
(larger α) exhibit increased frequency-domain spread, in agreement 
with the theoretical trade-off.

Discussion of Numerical Findings
The numerical experiments confirm the sharpness and stability 

of the theoretical results derived in this paper. In particular:

1.	 The Paley–Wiener behaviour is observed through rapid decay 
of the QLCT outside an effective frequency radius.

2.	 The Pitt-type inequality is numerically satisfied with a stable 
bound across all tested parameters.

3.	 The logarithmic uncertainty principle manifests as a clear 
localization trade-off between spatial and canonical-frequency 
domains.

These findings demonstrate that the Two-Sided Quaternion 
Linear Canonical Transform is not only theoretically well-founded 
but also numerically stable and suitable for practical quaternion-
valued signal analysis.

Sharp Pitt Inequality for the QLCT
One of the principal results of this paper is the establishment of 

a sharp Pitt-type inequality for the two-sided QLCT. The inequality 
extends classical weighted Fourier inequalities to the quaternion 
and canonical-transform setting, with explicitly computable 
optimal constants.

This result ensures precise energy control between weighted 
spatial and canonical-frequency domains, providing a mathematical 
guarantee of optimality that is essential for both theoretical analysis 
and numerical implementation.

Beckner-Type Logarithmic Uncertainty Inequality
The derived logarithmic uncertainty principle represents a 

quaternion-valued generalization of Beckner’s inequality. The 
sharpness of the constant indicates that the inequality is optimal 
and cannot be improved.

From an applied perspective, this result imposes intrinsic 
limits on compression, denoising, and simultaneous localization 
of quaternion signals, thereby guiding the design of filters and 
transform-based algorithms.

Consequences of the Paley–Wiener Theorem
The Paley–Wiener theorem for the QLCT provides a complete 

characterization of quaternion valued entire functions arising as 
transforms of compactly supported signals. This result has several 
important consequences:

•	 It guarantees exact reconstruction of bandlimited 
quaternion signals.

•	 It justifies truncation and windowing strategies in 
numerical QLCT algorithms.

•	 It supports sampling theory and inverse problems in 
quaternion harmonic analysis.

Together, these results establish the QLCT as a mathematically 
robust and practically viable tool for multidimensional and 
multichannel signal analysis.

Visualization of Synthetic Quaternion Signals
To illustrate the structure of the synthetic quaternion-

valued signal defined in the previous subsection, we visualize 
the magnitude and component-wise behaviour of the signal. The 
quaternion magnitude is given by

2 2 2 2
0 1 2 3( ) ( ) ( ) ( ) ( ). (5.11)f x f x f x f x f x= + + +

Figure 1 shows the spatial distribution of the synthetic 
quaternion signal, highlighting its strong localization induced by 
the Gaussian envelope.
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Figure 1: Magnitude of the synthetic quaternion-valued signal   defined in the numerical experiments. The Gaussian envelope ensures strong 
spatial localization, making the signal suitable for validating uncertainty and stability properties of the QLCT.

QLCT Spectrum and Paley–Wiener Behaviour
The magnitude of the two-sided QLCT of the synthetic 

quaternion signal is computed numerically as
3 2

1, 2 1, 2
0

( ) ( ) . (5.12)A A A A m
m

f fξ ξ
=

= ∑ 

Figure 2 presents the canonical-frequency magnitude of the 
QLCT. The energy concentration within a bounded region confirms 
the Paley–Wiener characterization, indicating effective bandlimited 
behaviour.

Figure 2: Magnitude of the Two-Sided Quaternion Linear Canonical Transform of the synthetic signal.
The energy is concentrated within a bounded canonical-frequency region, illustrating Paley–Wiener-type behavior.
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Numerical Verification of the Pitt-Type Inequality
To validate the Pitt-type inequality numerically, we evaluate the 

ratio

( ) 2

2

22
1, 2

22

ln ( )
, (5.13)

( )

A A f d
R

x f x dx

β

β

ξ ξ ξ
β

−

=
∫

∫






for )0,1 .β ∈
Figure 3 shows the numerical behaviour of ( )R β  for different 

values of the localization parameter α . The boundedness of the 
ratio confirms the stability predicted by the sharp Pitt inequality.

Figure 3: Numerical evaluation of the Pitt-type inequality ratio   for different localization parameters  . Increased spatial localization leads to 
improved stability in the QLCT domain.

Logarithmic Uncertainty Trade-Off
The logarithmic uncertainty quantities

2 2

2 2

1, 2ln ( ) , ln ( ) ( . )x A AU x f x dx U f dξ ξ ξ ξ= =∫ ∫ 5 14
 



are evaluated numerically for varying α .

Figure 4 illustrates the trade-off between spatial and canonical-
frequency localization. As spatial concentration increases, the 
QLCT-domain spread grows, in agreement with the logarithmic 
uncertainty principle.

Figure 4: Numerical illustration of the logarithmic uncertainty principle. Increased spatial localization results in increased canonical-frequency 
dispersion, confirming the theoretical lower bound.
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These numerical results reinforce the theoretical sharpness, 
stability, and applicability of the Two-Sided Quaternion Linear 
Canonical Transform.

Conclusion
In this work, we have established a unified uncertainty and 

analytic theory for the Two-Sided Quaternion Linear Canonical 
Transform. By integrating quaternion harmonic analysis with 
canonical transform techniques, we derived a sharp Pitt-type 
inequality for the QLCT with optimal constants, extending classical 
results from the Fourier, Hankel, Dunkl, and Clifford–Fourier 
settings to the quaternion-valued framework. Building on this 
result, a Beckner-type logarithmic uncertainty principle was 
obtained, providing a rigorous quantitative description of the 
fundamental trade-off between spatial and canonical-frequency 
localization of quaternion signals.

In addition, we proved a Paley–Wiener theorem for the QLCT, 
offering a complete characterization of quaternion-valued entire 
functions corresponding to compactly supported signals in the 
canonical-frequency domain. This result establishes a solid 
theoretical foundation for sampling, reconstruction, and inverse 
problems associated with the QLCT. The numerical experiments 
conducted using synthetic quaternion signals further validated 
the theoretical findings, demonstrating the sharpness of the 
inequalities, the stability of the transform under weighted norms, 
and the practical manifestation of the logarithmic uncertainty 
principle.

In general, the results presented in this paper show that the 
Two-Sided Quaternion Linear Canonical Transform is not only 
of strong theoretical interest but also a viable and stable tool for 
practical applications involving multichannel and multidimensional 
data. Future research directions include the development of fast 
algorithms for the discrete QLCT, extensions to stochastic and 
noisy signal models, and applications to real-world problems such 
as color image processing, optical systems, and quaternion-based 
time–frequency analysis.
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