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Addition Table – An Unscripted Milieu for Inquiry-
Based Mathematics Teacher Education

Sergei Abramovich* 
School of Education and Professional Studies, State University of New York, Potsdam, USA

Introduction

What is the main purpose of using numeric tables in a mathe-
matics classroom? The author’s experience based on many years 
of interaction with elementary teacher candidates suggests that 
tables are typically used for memorization. They support learning 
of mathematics through scripted instruction [1] by memorizing the 
results of arithmetical operations, usually addition and multiplica-
tion, applied to two integers.  In the digital era, such type of unde-
viating learning emphasizing the primality of procedural skills [2] 
and encouraged in the elementary mathematics classroom under 
the umbrella of drill and practice [3], rarely motivates open-ended 
investigation [4–6] the outcome of which has the potential to go far 
beyond the basic script. Instead, the use of digital tools in the con-
text of numeric tables enables one to resolve the dichotomy of the 
Type I vs Type II technology application [7] by replacing the prag-
matic tradition of drill and practice with an open-ended potential of  
conceptual development. 

 
It appears that the multiplication table is the main numeric table 
used in the schools as the addition table has been rarely mentioned 
by students, in an asynchronous mathematics education graduate 
level course taught by the author, when reflecting on their own past 
studies and present teaching of elementary mathematics. Even in 
a notable book [8] written for a wide readership interested in the 
history and cultural significance of mathematics, one can find only a 
note that “in school we study the abstract multiplication table, that 
is, a table for multiplying one abstract number by another” (p.1) as 
evidence of abstractness of the subject matter. Nonetheless, both 
tables can be seen as the first experience for young children with 
recoding the results of arithmetical operations on two numbers 
(addends and factors, respectively) by using two directions that ta-
bles, in general, afford – horizonal for one thing and vertical for an-
other thing. Such experience, preceding one’s encounter with a big 
mathematical idea enabling students already in grade five to “graph 
points on the coordinate plane to solve real-world and mathe-
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matical problems” [9], has hidden cultural-historical significance. 
Indeed, as mentioned in connection with the rise of spreadsheets 
in industry and education, “the two-dimensional table would arise 
spontaneously in any civilization where a writing surface was used” 
[10]. 

History of mathematics preserved examples of using numeric 
tables as tools of advancing computational ideas. Ahmes, an ancient 
(ca. 1500 B.C.) Egyptian scribe, who may be considered as one of 
the first expositors of mathematics in the history of civilization be-
cause being the author of the oldest presentation of mathematical 
results in a written form [11], is credited with developing a table, 
representing fractions of the form 2/n as a sum of distinct unit frac-
tions. Such table was part of the Egyptian papyrus roll found in the 
19th century by Henry Rhind, a Scottish scholar and collector of 
antiques [12,13]. Michael Stifel, a 16th century German monk and 
mathematician, used a table, known as Stifel’s triangle [14], to re-
cursively compute binomial coefficients. In the 17th century, Blaise 
Pascal, one of the founders of probability theory, constructed his 
famous triangle through recording sample spaces of experiments 
of tossing coins from where one can determine chances of having 
a certain result of an experiment [15].  In the 18th century, Élie de 
Joncourt, a Dutch minister of church and mathematics teacher, used 
the fact that within a numeric table comprised of triangular num-
bers the sum of two consecutive triangular numbers is the square 
of the rank of the larger number (known as the theorem of Theon, 
a Greek mathematician of the 4th century), to compute squares and 
square roots [16]. 

This paper reflects on the author’s work preparing elementa-
ry teacher candidates (some of them are practicing teachers, in-
cluding former undergraduate mathematics majors, working on 
their master’s degree in education) to teach mathematics through 
open-ended problem solving. One of the topics discussed with the 
candidates concerned computer-supported exploration of numeric 
tables through emphasizing more than one way of obtaining an an-
swer. Many candidates see benefits from taking a mathematics ed-
ucation course focusing not only on more than one correct answer 
but on more than one correct solution to a problem [17,18]. With 
the advent of the Common Core State Standards [9] in the United 
States, expecting students to be able “to compare the effectiveness 
of two plausible arguments ... decide whether they make sense ... 
and ask useful questions to clarify or improve the arguments” (p. 
7), teacher candidates do appreciate learning new ways of teaching 
mathematics. As mentioned by one of the author’s students, “I re-
call having found the correct answer using a different approach and 
it not being accepted as it was not the approach we were taught or 
told to use.  It really makes me see how much times have changed 
in our thinking.  I find it great that students are now encouraged 
to know more than one way to solve a problem.” This comment is 
consistent with other recommendations for teachers and standards 
for teaching mathematics [19,20]. 

As will be shown in the paper, among conceptual, inquiry-based 
activities associated with addition tables is finding the sum of num-
bers in a square size addition table using multiple strategies. Like-
wise, one can find the sums of numbers with special properties 

(e.g., multiples of two or three or four) in the table. Using different 
strategies in mathematical computations can be considered as an 
extension of the concept of triangulation, a scholarly pursuit that 
provides evidence of rigor in education research [21,22], to math-
ematics education [23]. Similarly, rigor in mathematical problem 
solving can be achieved by arriving at the same answer through dif-
ferent problem-solving techniques. As mentioned by the author’s 
another student, “Math has always appealed to me considering 
that a lot of the time there are multiple ways to find an answer. I 
remember learning how to resolve these problems in math class 
and learning multiple ways to do so. I think it is important that we 
teach our students a few alternative approaches to help them truly 
understand. In my opinion, this may give children the idea that they 
can choose which instructional strategies they want to use when 
solving a math problem.” 

In the digital era, when answers to many traditional tasks may 
be just “googled,” there is a need not only to teach mathematics by 
approaching problem solving from different perspectives, but to 
teach through tasks for which each route to the answer has two 
parts – cognitive and computational. In fact, this is how mathe-
matics developed over the centuries – through the joint use of ar-
gument and computation [8]. At the very simple level, even when 
using a calculator, a first-grade student must understand which key 
to press and should have at least some idea of how the answer may 
look like [24]. For example, whereas the calculator keys “+ “and “÷ 
“may look similar, the results of, say, 5+6 and 5÷6 look very differ-
ent. Thus, whereas selecting the right key on a calculator may be 
seen as a cognitive part of adding 5 and 6, pressing the key selected 
yields the computational part of the addition task. Several (more 
challenging) tasks with two such parts will be considered in the 
sections that follow. 

Materials and Methods

Two types of materials have been used by the author when 
working on this paper. The first type is technological; digital and 
tactile tools referred to by mathematics educators in the United 
States as “mathematical action technologies” [25].  In the paper, 
these technologies include computer spreadsheets, computational 
knowledge engine Wolfram Alpha developed by Wolfram Research 
(www.woframalpha.com; accessed on July 23, 2023), Maple [26] – 
mathematics software for education and STEM fields, and virtual 
manipulatives. One of the reasons of using the tools within a single 
problem is to provide the result with computational triangulation 
[23] aimed at avoiding both procedural and conceptual errors.

The second type of materials used by the author included teach-
ing and learning mathematics standards used by countries such as 
Australia [27], Canada [28], England [29], Japan [30], Singapore 
[31], South Africa [32], and the United States [9, 19, 20, 25]. The 
standards uniformly call for integrating mathematical reasoning 
and digital computations when solving problems. As will be shown 
in the paper, the context of addition table provides ample opportu-
nities for such integration. 

Methods specific for mathematics education used in this paper 
include computer-based mathematics education, standards-based 
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mathematics, and problem solving. In particular, those methods 
are conducive to presenting “teacher candidates with experiences 
in mathematics relevant to their chosen profession” [20]. As future 
teachers of mathematics, the candidates learn how to think com-
putationally by “expressing problems in such a way that their solu-
tions can be reached using computational steps and algorithms” 
[28]. The university where the author works is located in Upstate 
New York in close proximity to Canada and many of the author’s 
students are Canadians pursuing their master’s degrees in educa-
tion. This diversity of students suggests the importance of aligning 
mathematics education courses with multiple international per-
spectives on teaching and learning mathematics in the digital era. 

Finally, problem-solving methods and conceptual methodolo-
gy used in this paper follow the TITE (technology-immune/tech-
nology-enabled) framework introduced in [33]. This framework is 
discussed in detail in Section 4. Problems that integrate the TITE 
framework are discussed in Sections 5 and 6.

Using Scripts for Conceptual Development

If a numeric table is to be used for explorations, the addition 
table offers a variety of opportunities for deep inquiry into ele-
mentary mathematics, something that is especially important as a 
research-like mathematical experience for teacher candidates. In 
particular, a deep inquiry into addition table allows one to discov-
er pentagonal numbers [34] representing partial sums of an arith-
metic sequence with the first term one and difference three and 
their connection to trapezoidal numbers [35] representing integers 
through the sums of consecutive counting numbers. Although the 
types of exploratory activities with addition and multiplication 
tables are similar, mathematical concepts that may be uncovered 
within the two tables are both similar and different. For example, 
the sum of four numbers adjacent (vertically and horizontally) to a 
number in the addition table as well as in the multiplication table 
is four times this number. The similarity deals with the symmetry 
of numbers in the tables. One can also use algebra to explain this 
phenomenon by using symbols n and n×m to represent entries in 
the addition and the multiplication tables, respectively. Such unex-
pected discoveries within a pretty mundane context uplift teach-
er candidates’ curiosity about mathematics. As mentioned by an 
elementary teacher candidate, ““Many of the problems we did in 
class or on homework could be solved algebraically but we weren’t 
concerned with algebra. We were concerned with solving it using 
basic reasoning and logic. That class sounds great. It’s very rare for 
someone to like math, but it’s great that the class was able to make 
you feel better about it. The idea of math not being black and white 
and opening students minds up to thinking and having other ideas 
can be a great way to make math welcoming.” 

Another similarity deals with almost the same number of per-
fect squares within both tables of the same size, although squares 
are typically associated with multiplicative structures. For exam-
ple, each of the 10×10 tables have 16 squares and the number of 
squares in both the 9×9 tables and the 6×6 tables (Figures 1 and 2) 
differ by one. The distinction between the tables deals with differ-
ences between multiplicative and additive structures where multi-
plication is seen as repeated addition and addition is not limited to 

repeating addends. For example, in the 6×6 addition table (Figure 
1) the number 7 appears six times and it is absent in the 6×6 mul-
tiplication table (Figure 2). Both tables were generated by Wolfram 
Alpha – a computational knowledge engine available free on-line 
(https://www.wolframalpha.com/). These visual recognitions can 
be put in the context of die rolling to suggest that it is not possible to 
cast 7 when rolling one die and when rolling two dice the likelihood 
to cast 7 is the highest. In terms of rolling two dice, the likelihood to 
cast the sum (the product) of 7 is 1/6=0.666... (zero). Recognition of 
those differences may be considered as the first step towards using 
scripts for epistemic development rather than for pure memoriza-
tion. These theoretical observations can be confirmed experimen-
tally (Figure 3) by rolling two dice, say, 2000 times, and finding that 
an experimental likelihood to cast 7 is 0.1625, the result being close 
to the theoretical one, 0.666... Reflecting on using Wolfram Alpha 
in the context of dice rolling, one of the teacher candidates noted, 
“We can use Wolfram Alpha to construct a sample space of an ex-
periment of rolling two dice by typing in “sample space for rolling 
two dice”. After typing this in the box, Wolfram Alpha generates the 
probability and the results. With these results shown below, we can 
then use Wolfram Alpha to create an addition table that shows the 
sample space of rolling two dice.”

These are just few examples of using a numeric table (a script) 
for conceptual development supported by computation. In other 
words, when one, after recognizing in a script what is displayed be-
comes curious about the display, then, in the spirit of Dewey’s [36] 
distinction, “Recognition deals with already mastered; observation 
is concerned with delving in the unknown” (p. 252), the recognition 
is likely to result in the observation. In mathematics teacher educa-
tion, an observation in that sense may be associated with findings 
that are new to teacher candidates, like seeing the 6×6 addition ta-
ble as a sample space for rolling two six-sided dice. This prompts 
the next question about ways of finding a sample space for rolling 
three such dice. This question was among the prompts of a discus-
sion forum of the course demonstrating how Wolfram Alpha, when 
asked for a “sample space of rolling three dice,” generates 216 tri-
ples of numbers appearing on the six faces of three dice. An import-
ant aspect of a discussion forum in an asynchronous course is to 
include cognitive prompts the answers to which can be developed 
computationally. That is, to motivate the joint use of cognitive and 
computational means in the study of elementary mathematics.

TITE Problem Solving 

The concept of technology-immune/technology-enabled (TITE) 
problem was introduced elsewhere [33] as an extension of the Type 
II (using technology as a conceptual tool) vs. Type I (memorization 
followed by drill and practice) technology applications educational 
framework [7]. In order to benefit from this framework in the con-
text of mathematics, a student has to be proficient in dealing with 
tasks that are still cognitively challenging despite (or perhaps be-
cause of) the available power of symbolic computations and graph-
ic constructions. A TITE problem cannot be automatically solved by 
software (thus, it is immune from the direct use of technology), yet 
the role of software in solving the problem remains critical (thus, 
its solution is enabled by technology) because, as mathematics ed-
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ucators in Japan [30] believe, especially “in complex calculations, 
the effectiveness of learning can be enhanced by using computation 
tools” (p. 149). Similarly, Canadian [28] educators argue that “stra-
tegic use of technology ... can extend and enrich teachers’ instruc-
tional strategies ... and foster the development of mathematical 
reasoning” (p. 93). Computational tools in Australia [27] “enhance 
the potential for teachers to make mathematics interesting to more 
students” (p. 9). In Singapore [31], appropriate uses of such tools 
“develop positive attitudes towards mathematics” (p. 22), some-

thing that in England [29] enables students to “solve problems ... 
with increasing sophistication”. The above expectations are both TE 
and TI ones for they require teachers’ both cognitive and computa-
tional contribution to mathematics education. Indeed, in the words 
of educators in South Africa [32], “mathematics teachers, and not 
ICT tools, are the key to quality education” (p. 78). So, as voices of 
educators around the world suggest, the TITE teaching framework 
is of critical importance in the modern-day mathematics classroom.

Figure 1: A 6×6 addition table.

Figure 2: A 6×6 multiplication table.

Figure 3: Experiment of casting 7 when rolling two fair dice.
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An important aspect of the TITE idea is that when the TI part 
precedes the TE part of problem solving, depending on a problem, 
there are at least two outcomes available: an error in the TI part 
(e.g., mistakenly selecting the “÷” key on a calculator when adding 
two numbers) would either be neglected or recognized through the 
action of the TE part. That is why, checking the result of symbolic 
computations in a special case, the accuracy of which is semi-evi-
dent (the so-called base clause), should be included in a TITE prob-
lem solving. Likewise, a TI activity may follow a TE one and while 
the latter would have no error, the former may lead to erroneous 
interpretation of the results of the latter (e.g., interpreting even 
slightly different experimental chances of casting 7 on two dice 
as a computational error). Another important aspect of the TITE 
idea deals with its duality in a sense that whereas the TE part may 
inform the TI part, the latter, without conceptual understanding 
of the former, may lead desired generalization astray (see Section 
9 below). At the same time, a TI part can be used to improve the 
efficiency of a TE part, which, in turn, supports the advancement 
of another TI part when one attempts to generalize (see Section 8 
below). 

A TITE problem solving often requires intervention of the 
“more knowledgeable other” [37] capable of initiating “inquiry 
about inquiry” [38]. Indeed, often students’ findings might belong 
to hidden mathematics curriculum [39] which, by representing 
“biologically secondary information ... requires direct, explicit in-
struction” [40]. Sometimes, in the context of TITE problem solving, 
such direct instruction may include proving different statements 
that some teacher candidates might either doubt or be interested in 
from a teaching perspective. In particular, the importance of using 
different reasoning strategies is indicative of triangulation ensuring 
agreeable rigor in proof. Specific examples of TITE tasks discussed 
with and carried out by teacher candidates will follow.

A TITE Problem Discussed in an Asynchronous 
Mathematics Education Course

A downside of an asynchronous mathematics methods course 

is the difficulty in teacher-students communication and the chal-
lenge of motivation. How can teacher candidates be motivated to 
embark on a TITE problem solving when communication is lim-
ited to written directions and references to pages of a textbook? 
The lack of face-to-face communication can be substituted by the 
discussion forum in which the candidates are asked motivational 
questions (prompts) and reflect on each other responses. In or-
der to motivate exploration of the addition table, the teacher can-
didates were given a spreadsheet-based addition table (Figure 4) 
designed to calculate (in cell G17) the sum of numbers in the ta-
bles within the range [1,10]. The programming of such a spread-
sheet can be found at https://www.worldscientific.com/world-
scibooks/10.1142/9601#t=suppl – the supplementary site to the 
book [41, Chapter 2, Figure 2.16] in which the spreadsheet is in-
cluded. As a result, the number sequence

2, 12, 36, 80, 150, 252, 392, 576, 810, 1100 _ (1) 

was generated by the spreadsheet and recorded by the candidates. 
Whereas there are TI methods of finding closed formula for this se-
quence, especially when one might have an idea of how the answer 
should look like [24], this route was not the intent of the activities. 
Instead, the candidates were introduced to the Online Encyclopedia 
of Integer Sequences (OEIS®, http://oeis.org/, accessed on July 23, 
2023), a rich source of mathematical information not all of which is 
grade appropriate for elementary teacher candidates. In particular, 
using this source does require certain competence in managing the 
abundance of information provided online [42]. Thus, the candi-
dates were asked to collect only relevant information (if any) about 
this sequence. Whereas the candidates did find this sequence in the 
OEIS®, no reference to addition table was found there. 

As an alternative, several terms of sequence (1) were entered 
into the input box of Wolfram Alpha. The tool recognized the se-
quence and provided (Figure 5) its closed form

 an=n3+n2 _ (2)

Figure 4: Using spreadsheet to find the sequence of the sum on numbers in addition tables.
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which can be checked with the 2×2 table when n = 2 (a special case of a TE part of the problem solving) yielding 12 (Figure 4,5). 
Figure 5: Using Wolfram Alpha for generalization.

Unlike the OEIS®, Wolfram Alpha does not provide possible in-
terpretations of numeric sequences. This motivated the candidates 
to explore ways of finding the sum of numbers in the n×n addition 
table using different reasoning techniques. That is, in one of the 
course assignments a TITE problem was formulated as follows: 
Find the sum of numbers in the (Wolfram Alpha generated) 6×6 ad-
dition table using different methods and generalize your findings 
to the n×n table.

Without having experience in finding the sum of numbers in a 
table other than adding numbers one by one, the candidates needed 
directions of how to do that. One way of finding the sum of numbers 
in the addition table discussed with the teacher candidates was to 

add the numbers in each row (column, recognizing the symmetry in 
the table) by noting that the sum of numbers in the row (column) 
of, say, rank three is (3+1) +(3+2) +⋯+(3+6). Generalizing to the 
row (column) of rank m in the n×n addition table, n ≥ m, yields the 
sum (m+1) +(m+2) +⋯+(m+n). This understanding was a TI part of 
the problem. A TE part was to use Wolfram Alpha to find the sum. 
Such computations resulted in the sum n(2m+n+1)/2 (Figure 6). 
The next computational step was to add the sums across n rows 
(columns) of the table by using Wolfram Alpha. The result shown 
in Figure 7 confirms formula (2) found by Wolfram Alpha using dif-
ferent strategies.

Other Ways of Finding the Sum
Figure 7:  Adding the sums of numbers in the rows of the addition table.

Figure 6: Finding the sum of numbers in the mth row of an addition table.

The second way of finding the sum of numbers in the addition 
table is to note that in each row, the sums of numbers equidistant 
from the borders of the table are the same. For example, in the 3rd 

row of the table of Figure 1 such (three) sums are 4 + 9, 5 + 8, and 
6 + 7, each of which is equal to 13=6+2×3+1, where 6 and 3 are, 

respectively, the size of the table and the row considered. General-
izing to row m and n×n table, such sums are equal to n+2m+1 and 
each row has n/2 sums (when n is odd, the number in the middle 
of the row partners with itself). This, once again, requires a TE part 
which, with the help of Wolfram Alpha (Figure 7), carries out the 
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summation across n rows to get 2
1

(2 1) ( 1)
2

n

m

n m n n n
=

+ +
= +∑ con-

firming earlier symbolic computations.

The third way shared with the candidates was to add numbers 
along the top left – bottom right diagonals and noting that due to 
the symmetry of the table the diagonals located at the same dis-
tance from the main diagonal (which contains consecutive even 
numbers) include identical numbers. These sums are consecutive 
multiples of the size of the table increased by one that vary from 
one to the size of the table decreased by one. For example, in the 
table of Figure 1 such (repeated) sums are 7, 14, 21, 28, 35, with 42 
being the single sum of numbers located on the main diagonal. Gen-
eralizing to the addition table of size n and outsourcing symbolic 
computations of the sum of numbers in the table to Wolfram Alpha 
(a TE part shown in Figure 8) confirms already known result:

2(n+1) (1+2+⋯+n)-2(1+2+⋯+n) =2n(1+2+⋯+n) =n2 (n+1).

A teacher candidate noted that there is a fourth way of finding 
the sum of numbers in the addition table as the same is true for 
adding numbers along the top right – bottom left diagonals being 
parallel to the diagonal with identical numbers (the size of the table 
increased by one).

Finally, the fifth way shared with the candidates by the author 
was to find the sum of numbers in the gnomons of the table. The 
first step in finding the sum required a TI part – to express the sum 

of numbers in the gnomon of, say, rank six in the addition table and 
then generalize the sum to rank n. The numbers in the vertical and 
horizontal parts of the gnomon repeat each other until they meet 
in the cell when equal numbers are added. Therefore, the sum of 
numbers in the gnomon of rank 6 can be written in terms of this 
rank as follows 

2 × ( 7 + 8 + 9 + 1 0 + 1 1 ) + 2 × 6 = 2 × ( 6 + 7 + 8 + 9 + 1 0 + 1 1 ) 
=2×[6+(6+1)+(6+2)+(6+3)+(6+4)+(6+(6-1))]

and then generalized to rank n to have the sum 2[n+(n+1)+(n+2)…
+(n+(n-1))].

The second step involved a TE part that was outsourced to Wol-
fram Alpha by entering into its input box the command “2sum(n+k) 
for k=0 to n-1”. As a result (Figure 9), the program yields the equal-
ity 1

0
2 ( ) (3 1)n

k
n k n n−

=
+ = −∑ . One can develop a table of values of the 

expression (3 1)
2

n n −  to have (Figure 10) the sequence of numbers 1, 
5, 12, 22, 35, 51, ..., known as pentagonal numbers – partial sums of 
the arithmetic sequence with the first term one and the difference 
three. At the same time, the sum n+(n+1)+(n+2)+⋯+[n+(n-1)]  of 
n consecutive integers starting from n is a trapezoidal representa-
tion of the number  

(3 1)
2

n n −
 . To complete the finding of the sum of 

numbers in the n×n addition table by adding numbers included in 
n gnomons, the Wolfram Alpha was used again (Figure 11), thereby, 
confirming formula (2) obtained with the earlier uses of the tool.

Figure 8: Adding the sums of numbers in the corresponding diagonals of the addition table.

Figure 9: Finding the sum of numbers in the gnomon of an addition table.
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Figure 10: Recognizing pentagonal numbers as building blocks of the addition table.

Figure 11: Finding the sum of numbers in an addition table through gnomons.

Regarding different problem-solving techniques, one teacher 
candidate noted, “Although it can be confusing for students who 
struggle with math, I think it is important for students to learn mul-
tiple ways of doing it. Students will gravitate toward the approach 
that best fits where they are at after being taught several strategies 
that will help them in understanding different ways to solve prob-
lems. It is our responsibility to challenge them to think more effec-
tively by pushing them just a little bit further”.

Using Different Proof Techniques

One teacher candidate asked the question: How can one explain 

that the fractional expression (3 1)
2

n n −    represents an integer? This 
question opened a window to discuss (within a forum) mathemat-
ical proof using different reasoning techniques. Note that contribu-
tion to the online forum is not limited in time and, unlike the case 
of a face-to-face class, a “more knowledgeable other” can spend as 
much time as needed to answer questions. One technique is pretty 
straightforward: proving that one of the numbers n and 3n – 1 is 
even and another is odd. Indeed, if n is an even number, then the 
product n(3n-1) is divisible by two; if n is an odd number, then 3n 
is also an odd number and 3n – 1 is an even number implying that, 
once again, the product n(3n-1) is divisible by two. 

Figure 12: Maple-based mathematical induction proof.

Another reasoning technique deals with the method of mathe-
matical induction which requires one to demonstrate that if n(3n-
1) is divisible by two, then (n+1)[3(n+1)-1] is also divisible by two. 
This transition from n to n + 1, often referred to as the demonstra-
tive phase of the method of mathematical induction [43], although 
can be demonstrated by paper-and-pencil, can be outsourced to 
Maple. As shown in Figure 12, setting P(n)=n(3n-1), the program 
computes P(n+1)-P(n)=6n+2 (the “%” symbol in Maple means “the 
latter”). Put another way, P(n+1)=P(n)+2(3n+1).The last relation 

demonstrates that assuming P(n)  to be divisible by two, implies 
divisibility by two of P(n+1). Therefore, as P(1)=2 is divisible by 
two, so is P(2), and P(3) and so on, i.e., P(n)  is divisible by two for 
all integer values of  n. The candidates were advised that although 
the above two proofs are very different – whereas the generality 
of the first one was demonstrated by comparing parities of two 
factors for the same value of n, the generality of the second one 
was demonstrated by the fact that the parity of the product stays 
the same because the transition from n to n+1 adds even number. 
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This is another confirmation that zero is an even number as adding 
zero not only does not change the parity of a number but does not 
change the very value of a number as well. A similar problem is to 
prove that the fractional expression (2 1)

2
n m n+ + , obtained as the sum 

of numbers in the mth row of the n×n addition table, is in fact an 
integer for all integer values of m and n.

From Addition Table to the History of Mathematics

Using the addition table, an interesting historical connection 
was included in the discussion forum. As mentioned in [19], the 
history of mathematics provides teacher candidates with mathe-
matical ideas that deserve to “be woven into existing mathematics 
courses” (p. 61). There is a famous problem associated with Galileo 
Galilei – an Italian scholar, the father of many scientific develop-
ments of the 17th century – who was asked by an experienced gam-

bler as to why when rolling three dice the number ten appears more 
often than the number nine [44,45]. The question might have been 
asked because each number can be partitioned in three unordered 
positive integers in six ways, as shown in Figure 13. The command 
(entered into the input box of Wolfram Alpha), including a linear 
three-variable equation to solve in integers and the inequalities 7 > 
x ≥ y ≥ z > 0, represents a TI part of exploring this famous historical 
problem. The inequalities, demonstrating one’s understanding of 
the context involved, do improve the efficiency of computations. In-
deed, one can check that in the absence of the inequalities Wolfram 
Alpha would not produce such a lucid result. In turn, the efficiency 
of computations enables one to see that in the case of 10 there are 
three partitions with different addends and three partitions with 
two equal addends, thus making the total of 27 ordered partitions 
of 10. 

Figure 13: Partitioning the numbers 9 and 10 in the context of rolling three dice.

Partitioning of the numbers 9 and 10 in three integers not great-
er than six can be done with manipulatives as shown in Figure 14. A 
somewhat abstract symbolism of the triples of integers making up 
the numbers 9 and 10 through different and repeating addends can 
be visually enhanced by an alternative tactile manipulative repre-
sentation in which the mutual properties of addends are presented 
in less abstract form. The system used in partitioning with concrete 
materials mirrors an apparent algorithm by Wolfram Alpha. In Fig-
ure 14, one finds all partitions of 10 (or 9) in the non-decreasing or-
der starting with the largest addend, 6; then one gradually reduces 
the largest addend by one until the reduction is not possible to keep 
the order chosen. Using two technological approaches to partition-
ing integers serves two goals: mediating the abstraction of digital 
partition by the concreteness of tactile partition and providing tri-
angulation of partitioning towards bringing more rigor to activities.   

Note that the addition table of Figure 1 used as the sample space 
of rolling two dice clearly demonstrates why different orders of ad-

dends must be considered. The table and the classic story from the 
17th century mathematics may serve as examples of why “it is im-
portant for students to understand when order matters” [28]. The 
strategy of permuting three addends (towers) making up (counting 
to) ten was explained to teacher candidates in a tactile way for the 
cases 10 = 2 + 2 + 6 and 10 = 1 + 3 + 6 as shown in Figure 15.  In the 
case of 9, there are three partitions with different addends, two par-
titions with two equal addends and one partition with identical ad-
dends, thus making the total of 25 ordered partitions. This explains 
why the number 10 appears more often than the number 9. The 
candidates were familiarized with the classic quotation that the use 
of technology “immensely extends the possibilities of behavior by 
making the results of the work of geniuses available to everyone” 
[46]. One can see that technology includes both digital and physical 
tools allowing the meaning of the word everyone used by Vygotsky 
in describing the value of the instrumental act [46] to be extended 
to the earliest level of mathematics education limited to counting 
and comparing objects. 
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Figure 14: Confirming Wolfram Alpha computations using manipulatives.

Figure 15: Creating ordered partitions of ten in three repeating and different addends.

To continue explorations, teacher candidates were asked to ex-
plore this historical problem experimentally for the pair of smaller 
numbers, 5 and 6, using manipulatives and a spreadsheet (Figure 
16).  The experiment demonstrated that just as when rolling three 
dice the number 10 appears more often than the number 9, the 
number 6 appears more often than the number 5 although manip-
ulatives demonstrated a different number of partitions in the ad-
dends, both unordered and ordered. That is, TE activities motivated 
further advancement of TI thinking by the candidates who, in the 
spirit of Dewey [36] tried to move from recognition to observation 
by conjecturing that the larger number (out of two consecutive) al-

ways have more chances to be casted when rolling three dice. The 
spreadsheet-based experimental verification with other pairs of 
consecutive integers did not provide a definitive result like in the 
case of 5 and 6. This required a theoretical clarification. It turned 
out that the number 11 (just as the number 10) has 27 ordered par-
titions in three addends (Figure 17). This combination of reasoning 
and computation provided a counterexample to the emerging con-
jecture that the larger the number (out of two consecutive ones in 
the range [3,18], the more often it appears when rolling three dice. 
The use of counterexamples in the teaching of mathematics was an-
other topic of discussion in this asynchronous course .

Figure 16: Experimental chances of casting five and six when rolling three dice.
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Figure 17: Partitioning 11 in three addends.

Finding the Sum of Even Numbers in an Addition 
Table 

The spreadsheet shown in Figure 4 can be easily modified (by 
setting the content of cell I1 at 2) to display only even numbers in 
an addition table. Consequently, the question about the sum of all 
even numbers in the addition table can be explored computational-
ly. Teacher candidates developed the sequence 2, 6, 20, 40, 78, 126, 
200, 288, 410, 550, representing the sum of even numbers in addi-
tion tables the size of which varied in the range [1, 10]. However, 
entering this sequence in the input box of Wolfram Alpha did not 
result in any information. At the same time, OEIS® produced a result 
which included the term (-1)n indicating that the formula for the 
sum sought depends on whether the size of the table is an even or 
odd number. That is, in an odd size addition table, the sum of even 
numbers is expressed by one formula, and in an even size table – by 
another formula. This shows how without conceptual understand-
ing of the context involved, the intent to generalize may lead learn-
ers of mathematics astray. 

Now, understanding the context, one can enter the sequence 
2, 20, 78, 200, 410 into the input box of Wolfram Alpha to get 
a(n)=2n(2n2-2n+1). Entering sequence 6, 40, 126, 288, 550 into the 
input box of Wolfram Alpha yields b(n)=2n2 (2n+1).

Conclusion

This paper was written as a reflection on asynchronous teach-
ing of a mathematics education content and methods course at the 
master’s level. The coursework included, among other things, tech-
nology-enhanced homework assignments and discussion forums 
motivated by prompts designed to launch discussions on a variety of 
topics. Technology tools used in the course included spreadsheets, 
Wolfram Alpha, Maple, and virtual manipulatives. The course work 
focused on the use of technology-immune/technology-enabled 
problems grounded into interplay between cognitive and compu-

tational approaches to mathematics. One topic of the course work 
included explorations with numeric tables associated with two ba-
sic arithmetical operations – addition and multiplication. The main 
didactic idea behind this topic was to demonstrate how a mundane 
and rarely used in the classroom teaching addition table can serve 
as a cognitive milieu capable of providing teacher candidates with 
research-like experience in elementary mathematics and its ped-
agogy using technology. This experience included understanding 
that any use of digital technology requires conceptual understand-
ing of mathematics behind basic algebraic skills needed to prepare 
things to be computed by software. The prompts were connected 
to homework assignments emphasizing multiple ways of solving 
a problem. In particular, it was shown that the addition table can 
be used in the classroom to advance many important ideas of ele-
mentary mathematics – symmetry, recursion, partition, permuta-
tion, probability – that in the presence of technology tools can be 
revealed towards providing teacher candidates with experience of 
open-ended inquiries into the subject matter. As mentioned by an 
elementary teacher candidate, “Wolfram Alpha helps elementary 
aged students solve problems by giving them support to develop 
reasoning skills based on logic. Wolfram Alpha can be used to help 
students learn about numeric tables, which leads to an abundance 
of activities for fostering mathematical reasoning skills using a nu-
meric approach and this will lead into a better understanding and 
level of comprehension for algebra.”   

One of the benefits of the discussion forum of an asynchronous 
course is that the instructor’s comments to students’ responses to 
prompts are not limited by the time constraints typical for the face-
to-face and the synchronous course modalities. Such benefits can 
be described in terms of a non-invasive [47] or minimally invasive 
[48] teaching aimed at augmenting mathematical knowledge of 
teacher candidates. Such approach to teaching through contribu-
tions to a forum by the “more knowledgeable other” makes it pos-
sible to demonstrate the unfolding intricacy of elementary mathe-
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matics if this “other” is ready to go beyond traditional content and, 
by doing so, to reveal some useful methods of teaching the subject 
matter. The approach shows how the diversity of teaching methods 
enhanced by the use of technology stems from the knowledge of 
content and how one’s appreciation of such diversity opens new 
windows to the teaching of extended content. The need for extend-
ing content is often due to professional obligation of a teacher to 
answer questions by curious students. 

It was shown in the paper that exploring the addition table us-
ing digital tools motivates teacher candidates’ interest in “evidence 
of proof, the recognition of new phenomena, their reproduction 
and utilization, [and thereby] undoubtedly place it [mathematics] 
among the experimental sciences” [49]. Educational computing el-
evates interplay between experiment and theory to a higher cogni-
tive level and it may be supported by a spreadsheet and Wolfram 
Alpha, often used as mutually complimentary tools [41]. One such 
experiment associated with an addition table is to use a spread-
sheet as a generator of random numbers in computing experimen-
tal probabilities of casting a certain sum through rolling dice. Mak-
ing sense of this experiment requires conceptual understanding of 
experimental probability which, unlike theoretical probability, does 
not produce exactly same numeric values of likelihood of an event 
through various experiments. This issue if reflected in the TITE 
framework when a TI part involves the interpretation of the results 
of a TE part. 

The historical problem associated with Galileo Galilei has 
unique features demonstrating how real life (gambling was very 
popular in the 16th–17th centuries Europe giving rise to the theo-
ry of probability) affected the development of mathematical ideas. 
Indeed, the pair of numbers 9 and 10 is not just an example to 
demonstrate the importance of order in mathematics. Rather, the 
pair is unique in the context of rolling three six-sided dice leading to 
a mathematical problem offered to (and solved by) one of the major 
scholars of the Early Modern Period. The inclusion of this problem 
in noteworthy historical [44] and educative [45] publications on 
the theory of probability is testament to its classic nature. One can 
use Wolfram Alpha to try other pairs of numbers in the range [3,18] 
to see that the challenge brought to the attention of Galilei does not 
occur for other pairs.     

Historical connections can be used in mathematics teacher edu-
cation for applying a subject matter knowledge to real-life problems 
[50]. The genesis of this idea can be traced back to the writings of 
Dewey [51] who emphasized the importance of educational activ-
ities that include “the development of artistic capacity of any kind, 
of special scientific ability, of effective citizenship, as well as pro-
fessional and business occupations” (p. 307). Such activities bring 
to light the notion of collateral learning – an educational phenome-
non, which does not result from the immediate goal of the tradition-
al curriculum and “may be and often is much more important than 
the spelling lesson or lesson in geography or history ... [emphasiz-
ing the importance of students’] desire to go on learning” [52, p. 
49]. The use of virtual manipulatives as a hands-on triangulation 
of Wolfram Alpha’s computations provided teacher candidates with 
collateral learning of how one can integrate the tactile, the cogni-

tive, and the computational when the immediate goal of the activi-
ties was to interweave history and content of mathematics. 

An asynchronous mathematics content and methods course is 
a relatively new educational enactment of teaching the subject mat-
ter to teacher candidates. Despite a number of negative affordanc-
es of teaching mathematics education courses online [53], teacher 
preparation over the Internet have become increasingly popular 
around the world, especially since the time of COVID-19 pandemic. 
The author’s intent of writing this paper was to share some positive 
affordances of the new teaching modality by highlighting the use 
of technology, both digital and tactile, in the context of asynchro-
nous mathematics teacher education in which the concept of TITE 
problem solving was used as agency of inquiry into the addition 
table – an underused tool of the modern-day pedagogical efforts 
“to connect the mathematical practices to mathematical content in 
mathematics instruction” [9].                                                                                            
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