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Abstract
Short-wave infrared (SWIR) imaging has become an indispensable capability in modern Earth observation, enabling quantitative sensing of 

vegetation water content, mineral composition, and a range of dynamic environmental processes. As space-based observation paradigms evolve 
toward proliferated satellite constellations, sensor technologies are increasingly constrained not only by performance, but also by scalability, cost, 
size-weight-power (SWaP), and manufacturability. Conventional SWIR focal plane arrays (FPAs), predominantly based on InGaAs photodetectors 
hybrid-integrated with Si readout integrated circuits (ROICs), provide mature and high-performance solutions but face intrinsic trade-offs related 
to heterogeneous integration and III-V material economics. This work examines Germanium-on-Insulator (GeOI) photodetector technology as an 
emerging and complementary pathway aligned with the system-level requirements of future distributed satellite missions. We summarize recent 
progress in GeOI material development and device performance in China and critically assess its current technological status. While most state-
of-the-art GeOI FPAs remain hybrid-integrated at present, advances in high-quality Ge heteroepitaxy on Si establish a credible long-term route 
toward monolithic CMOS integration. Rather than positioning GeOI as a universal replacement for existing technologies, this summary highlights 
its potential role in enabling low-SWaP, cost-sensitive, and highly integrated SWIR imaging payloads, particularly suited for large-scale satellite 
constellations and intelligent on-board processing architectures.
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Introduction

The short-wave infrared (SWIR; ~1.5-3.0 µm) spectral band 
occupies a unique position in remote sensing, offering sensitivity 
to molecular vibrational absorption features that are inaccessible 
in the visible and thermal infrared regimes. This spectral capability 
underpins a wide range of Earth observation applications, including 
vegetation water stress monitoring, mineralogical mapping,  

 

atmospheric constituent analysis, biomedical, and environmental 
change detection [1-4]. Historically, high-performance SWIR 
imaging from space has been dominated by InGaAs-based FPAs, 
which combine excellent sensitivity, low dark current, and proven 
reliability. These detectors are typically integrated with Si ROICs 
via flip-chip bonding, forming hybrid architectures that have 
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demonstrated extensive flight heritage in both scientific and 
commercial missions. However, the rapid emergence of large-scale 
satellite constellations-often comprising hundreds or thousands 
of small satellites-has introduced new system-level constraints. 
In these scenarios, cost per unit, manufacturability, payload 
SWaP, and scalability across large production volumes become 
as critical as ultimate detector performance. Within this evolving 
landscape, alternative material and integration strategies are being 
explored to complement established SWIR technologies. Among 
them, GeOI has attracted growing interest due to its compatibility 
with Si processing infrastructure and its potential for tighter 
integration with CMOS electronics [5-12]. This work focuses on 
the GeOI platform, evaluating its current capabilities, development 
trajectory, and potential role within future satellite constellation 
architectures.

The GeOI Paradigm: Material Platform and System-
Level Alignment

GeOI technology is based on the integration of a crystalline 
germanium absorption layer on an insulator substrate, typically 

consisting of a Si wafer, a buried oxide (BOX) layer, and a thin Ge 
device layer. From a system perspective, this architecture aligns 
SWIR photodetection with the Si microelectronics ecosystem, 
offering a pathway toward wafer-scale manufacturing and tighter 
integration with on-chip electronics. It is important to distinguish 
between the current implementation state of GeOI FPAs and 
their longer-term vision. At present, most reported GeOI imaging 
demonstrations employ hybrid integration with ROICs, similar 
to conventional InGaAs FPAs. The fundamental distinction lies in 
the material platform itself: high-quality heteroepitaxial growth 
of germanium on Si has matured to a level where device-grade 
Ge layers can be produced using CMOS-compatible processes. 
This progress effectively shifts the remaining challenges from 
fundamental material incompatibility toward process optimization, 
device engineering, and system integration. From a satellite system 
standpoint, GeOI is therefore best viewed not as a disruptive 
replacement technology, but as an enabling platform that may 
address specific mission profiles where integration density, cost 
scaling, and SWaP constraints dominate design considerations 
(Figure 1).

Figure 1: Conceptual schematic of a packaged GeOI SWIR image sensor (reproduced from [13], which is also our previous work, open 
access by MDPI, 2025).

Foundational Merit: CMOS Compatibility as a System-Level Enabler

Figure 1: Conceptual schematic of a packaged GeOI SWIR image sensor (reproduced from [13], which is also our previous work, open 
access by MDPI, 2025).

Figure 2: Representative device structures of (a) GeOI and (b) InGaAs photodetector technologies, highlighting the differences in material 
platforms and integration approaches commonly adopted in SWIR focal plane arrays for satellite imaging applications [15,16].
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The primary advantage of the GeOI platform lies less in a 
singular detector performance metric and more in its alignment 
with CMOS manufacturing and integration paradigms. The presence 
of the BOX layer provides effective electrical isolation from the 
Si substrate, suppressing parasitic leakage paths and supporting 
low-noise operation. More strategically, the use of Si-compatible 
substrates and process flows opens a route toward co-fabrication 
of photodetectors and electronics within a unified technological 
framework. Such compatibility has important implications 
for future satellite payloads. Monolithic or near-monolithic 
integration can reduce interconnect parasitics, lower assembly 
complexity, and potentially improve robustness in vibration- and 
radiation-prone environments. At the same time, it is essential 
to recognize that mature InGaAs technologies continue to evolve 
and will remain indispensable for missions requiring maximum 
sensitivity and proven heritage. In this context, GeOI should be 
regarded as complementary, addressing application spaces where 
manufacturability and integration outweigh the need for absolute 
performance optimization (Figure 2). The Ge/GOI technology has 
been demonstrated in laboratory-scale SWIR imaging and small-
format array prototypes [14].

Device-Level Progress and Development Trajectory

Over the past decade, GeOI photodetector research has 
progressed from proof-of-concept devices to increasingly 
application-relevant demonstrations. Key advances include:

a)	 Responsivity enhancement: Resonant-cavity-enhanced 
and waveguide-integrated GeOI photodiodes have achieved 
responsivities exceeding 0.8 A/W at 1.55 µm, in resonant or 
waveguide-enhanced configurations, approaching those of 
established SWIR detectors despite thinner absorption layers.

b)	 Spectral range extension: The incorporation of GeSn alloys 
has enabled cutoff wavelength extension beyond ~2.0 µm, at the 
expense of increased material complexity, broadening access to 
longer-wavelength SWIR features relevant to geological and 
environmental sensing [17-19].

c)	 Functional integration: Demonstrations of Ge avalanche 
photodiodes (APDs) and waveguide-coupled devices indicate 
the platform’s suitability for more complex photonic and 
optoelectronic integration [20,21].

These developments collectively enhance the credibility of GeOI 
as a SWIR detector platform. Nevertheless, most demonstrations 
remain at the component or small-array level, and further work is 
required to translate these advances into large-format FPAs with 
uniform performance and space-grade reliability. In the foreseeable 
future, hybrid-integrated GeOI FPAs are likely to precede fully 
monolithic implementations, which represent a longer-term 
engineering objective. A comparative analysis of key characteristics 
is summarized in Table 1.

Alternative SWIR Detector Technologies for Satellite 
Applications

The maturation of monolithic GeOI technology could enable 
shifts in satellite system design aligned with the trends of 

constellation proliferation and intelligent payloads. The cost 
structure implied by wafer-scale CMOS integration may lower 
the barrier to incorporating SWIR sensing on small satellites, 
facilitating large-scale constellations for high-temporal-resolution 
monitoring. Beyond economics, the intimate co-location of 
detectors and Si electronics is transformative, paving the way for 
embedded on-chip processing (e.g., real-time feature extraction, 
compression, or decision-making) and enabling intelligent sensors 
that perform analysis at the edge. The reduced SWaP footprint also 
invites novel instrument concepts, such as compact multi-spectral 
imagers or SWIR-based inter-satellite links. Realizing this potential 
requires overcoming significant, non-trivial challenges. Material 
optimization for wafer-scale, low-defect Ge layers is ongoing, with 
the ~4% lattice mismatch between Ge and Si requiring sophisticated 
strain engineering to minimize threading dislocations that degrade 
performance [22,23]. The co-optimization of photonic and 
electronic process modules within a unified CMOS flow is a complex 
task requiring specialized PDKs. Furthermore, key detector metrics 
such as dark current density and quantum efficiency, particularly 
at wavelengths beyond 1.8 µm, still require further improvement 
to match the benchmark set by mature InGaAs technology. Novel 
technologies, such as, quantum wells, quantum dots, etc, should be 
well explored [24,25]. Finally, as with any new space technology, a 
rigorous qualification phase for radiation hardness and long-term 
reliability remains an essential and demanding step towards flight 
readiness.

Conclusion

Germanium-on-Insulator technology represents a promising 
and complementary pathway within the broader SWIR detector 
landscape, particularly aligned with the integration, scalability, and 
SWaP constraints of future satellite constellations. While current 
GeOI FPAs largely rely on hybrid integration, ongoing progress 
in material growth and device engineering establishes a credible 
roadmap toward tighter CMOS integration over the longer term. 
Rather than supplanting mature technologies such as InGaAs, 
GeOI expands the design space available to system architects by 
addressing application scenarios where cost scaling, integration 
density, and manufacturability are dominant considerations. 
Continued advances in materials, process integration, and space 
qualification will ultimately determine the extent to which 
GeOI-based SWIR sensors contribute to next-generation Earth 
observation and satellite communication systems.
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