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Abstract

Short-wave infrared (SWIR) imaging has become an indispensable capability in modern Earth observation, enabling quantitative sensing of

vegetation water content, mineral composition, and a range of dynamic environmental processes. As space-based observation paradigms evolve
toward proliferated satellite constellations, sensor technologies are increasingly constrained not only by performance, but also by scalability, cost,
size-weight-power (SWaP), and manufacturability. Conventional SWIR focal plane arrays (FPAs), predominantly based on InGaAs photodetectors
hybrid-integrated with Si readout integrated circuits (ROICs), provide mature and high-performance solutions but face intrinsic trade-offs related
to heterogeneous integration and I1I-V material economics. This work examines Germanium-on-Insulator (GeOI) photodetector technology as an
emerging and complementary pathway aligned with the system-level requirements of future distributed satellite missions. We summarize recent
progress in GeOl material development and device performance in China and critically assess its current technological status. While most state-
of-the-art GeOI FPAs remain hybrid-integrated at present, advances in high-quality Ge heteroepitaxy on Si establish a credible long-term route
toward monolithic CMOS integration. Rather than positioning GeOI as a universal replacement for existing technologies, this summary highlights
its potential role in enabling low-SWaP, cost-sensitive, and highly integrated SWIR imaging payloads, particularly suited for large-scale satellite

constellations and intelligent on-board processing architectures.
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Introduction

The short-wave infrared (SWIR; ~1.5-3.0 um) spectral band
occupies a unique position in remote sensing, offering sensitivity
to molecular vibrational absorption features that are inaccessible
in the visible and thermal infrared regimes. This spectral capability
underpins a wide range of Earth observation applications, including
vegetation water stress monitoring, mineralogical mapping,

@ @ This work is licensed under Creative Commons Attribution 4.0 License|I]ASC.MS.ID.000527.

atmospheric constituent analysis, biomedical, and environmental
change detection [1-4]. Historically, high-performance SWIR
imaging from space has been dominated by InGaAs-based FPAs,
which combine excellent sensitivity, low dark current, and proven
reliability. These detectors are typically integrated with Si ROICs
via flip-chip bonding, forming hybrid architectures that have
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demonstrated extensive flight heritage in both scientific and
commercial missions. However, the rapid emergence of large-scale
satellite constellations-often comprising hundreds or thousands
of small satellites-has introduced new system-level constraints.
In these scenarios, cost per unit, manufacturability, payload
SWaP, and scalability across large production volumes become
as critical as ultimate detector performance. Within this evolving
landscape, alternative material and integration strategies are being
explored to complement established SWIR technologies. Among
them, GeOl has attracted growing interest due to its compatibility
with Si processing infrastructure and its potential for tighter
integration with CMOS electronics [5-12]. This work focuses on
the GeOl platform, evaluating its current capabilities, development
trajectory, and potential role within future satellite constellation
architectures.

The GeOI Paradigm: Material Platform and System-
Level Alignment

GeOl technology is based on the integration of a crystalline
germanium absorption layer on an insulator substrate, typically

consisting of a Si wafer, a buried oxide (BOX) layer, and a thin Ge
device layer. From a system perspective, this architecture aligns
SWIR photodetection with the Si microelectronics ecosystem,
offering a pathway toward wafer-scale manufacturing and tighter
integration with on-chip electronics. It is important to distinguish
between the current implementation state of GeOl FPAs and
their longer-term vision. At present, most reported GeOl imaging
demonstrations employ hybrid integration with ROICs, similar
to conventional InGaAs FPAs. The fundamental distinction lies in
the material platform itself: high-quality heteroepitaxial growth
of germanium on Si has matured to a level where device-grade
Ge layers can be produced using CMOS-compatible processes.
This progress effectively shifts the remaining challenges from
fundamental material incompatibility toward process optimization,
device engineering, and system integration. From a satellite system
standpoint, GeOl is therefore best viewed not as a disruptive
replacement technology, but as an enabling platform that may
address specific mission profiles where integration density, cost
scaling, and SWaP constraints dominate design considerations
(Figure 1).
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Figure 1: Conceptual schematic of a packaged GeOl SWIR image sensor (reproduced from [13], which is also our previous work, open

Foundational Merit: CMOS Compatibility as a System-Level Enabler
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Figure 2: Representative device structures of (a) GeOl and (b) InGaAs photodetector technologies, highlighting the differences in material
platforms and integration approaches commonly adopted in SWIR focal plane arrays for satellite imaging applications [15,16].
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The primary advantage of the GeOl platform lies less in a
singular detector performance metric and more in its alignment
with CMOS manufacturing and integration paradigms. The presence
of the BOX layer provides effective electrical isolation from the
Si substrate, suppressing parasitic leakage paths and supporting
low-noise operation. More strategically, the use of Si-compatible
substrates and process flows opens a route toward co-fabrication
of photodetectors and electronics within a unified technological
framework. Such compatibility has important implications
for future satellite payloads. Monolithic or near-monolithic
integration can reduce interconnect parasitics, lower assembly
complexity, and potentially improve robustness in vibration- and
radiation-prone environments. At the same time, it is essential
to recognize that mature InGaAs technologies continue to evolve
and will remain indispensable for missions requiring maximum
sensitivity and proven heritage. In this context, GeOI should be
regarded as complementary, addressing application spaces where
manufacturability and integration outweigh the need for absolute
performance optimization (Figure 2). The Ge/GOI technology has
been demonstrated in laboratory-scale SWIR imaging and small-
format array prototypes [14].

Device-Level Progress and Development Trajectory

Over the past decade, GeOl photodetector research has
progressed from proof-of-concept increasingly
application-relevant demonstrations. Key advances include:

devices to

a) Responsivity enhancement: Resonant-cavity-enhanced
and waveguide-integrated GeOl photodiodes have achieved
responsivities exceeding 0.8 A/W at 1.55 pm, in resonant or
waveguide-enhanced configurations, approaching those of
established SWIR detectors despite thinner absorption layers.

b)  Spectral range extension: The incorporation of GeSn alloys
has enabled cutoff wavelength extension beyond ~2.0 pm, at the
expense of increased material complexity, broadening access to
longer-wavelength SWIR features relevant to geological and
environmental sensing [17-19].

c¢) Functional integration: Demonstrations of Ge avalanche
photodiodes (APDs) and waveguide-coupled devices indicate
the platform’s suitability for more complex photonic and
optoelectronic integration [20,21].

These developments collectively enhance the credibility of GeOl
as a SWIR detector platform. Nevertheless, most demonstrations
remain at the component or small-array level, and further work is
required to translate these advances into large-format FPAs with
uniform performance and space-grade reliability. In the foreseeable
future, hybrid-integrated GeOl FPAs are likely to precede fully
monolithic implementations, which represent a longer-term
engineering objective. A comparative analysis of key characteristics
is summarized in Table 1.

Alternative SWIR Detector Technologies for Satellite
Applications

The maturation of monolithic GeOl technology could enable
shifts in satellite system design aligned with the trends of
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constellation proliferation and intelligent payloads. The cost
structure implied by wafer-scale CMOS integration may lower
the barrier to incorporating SWIR sensing on small satellites,
facilitating large-scale constellations for high-temporal-resolution
monitoring. Beyond economics, the intimate co-location of
detectors and Si electronics is transformative, paving the way for
embedded on-chip processing (e.g., real-time feature extraction,
compression, or decision-making) and enabling intelligent sensors
that perform analysis at the edge. The reduced SWaP footprint also
invites novel instrument concepts, such as compact multi-spectral
imagers or SWIR-based inter-satellite links. Realizing this potential
requires overcoming significant, non-trivial challenges. Material
optimization for wafer-scale, low-defect Ge layers is ongoing, with
the ~4% lattice mismatch between Ge and Sirequiring sophisticated
strain engineering to minimize threading dislocations that degrade
performance [22,23]. The co-optimization of photonic and
electronic process modules within a unified CMOS flow is a complex
task requiring specialized PDKs. Furthermore, key detector metrics
such as dark current density and quantum efficiency, particularly
at wavelengths beyond 1.8 um, still require further improvement
to match the benchmark set by mature InGaAs technology. Novel
technologies, such as, quantum wells, quantum dots, etc, should be
well explored [24,25]. Finally, as with any new space technology, a
rigorous qualification phase for radiation hardness and long-term
reliability remains an essential and demanding step towards flight
readiness.

Conclusion

Germanium-on-Insulator technology represents a promising
and complementary pathway within the broader SWIR detector
landscape, particularly aligned with the integration, scalability, and
SWaP constraints of future satellite constellations. While current
GeOl FPAs largely rely on hybrid integration, ongoing progress
in material growth and device engineering establishes a credible
roadmap toward tighter CMOS integration over the longer term.
Rather than supplanting mature technologies such as InGaAs,
GeOl expands the design space available to system architects by
addressing application scenarios where cost scaling, integration
density, and manufacturability are dominant considerations.
Continued advances in materials, process integration, and space
qualification will ultimately determine the extent to which
GeOl-based SWIR sensors contribute to next-generation Earth
observation and satellite communication systems.
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