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Introduction

Proteins carry out numerous biological functions inside the cell 
[1] After being synthesized, proteins must fold three-dimensionally 
to become biologically active and perform their functions. Unlike in 
the test tube, where the folding process can occur spontaneously, 
in the biological cell, most proteins require assistance for proper 
folding. Molecular chaperones aid in the proper folding of proteins 
and deter aggregation of improperly folded ones [2] The correctly 
folded proteins are secreted from the cell and function normally in 
the extracellular environment. Under certain conditions, the pro-
teins unfold, at least partially, and at this stage these may be prone 
to aggregation [2,3] This can result in the formation of fibrils and 
other aggregates that accumulate in the tissue. It is highly likely 
that these aggregates, as well as plaques (Figure 1), create various 
pathological conditions such as AD [4] It’s widely accepted that AD 
is a progressive neurodegenerative disorder, which is believed to 
happen due to the accumulation of β-amyloid plaques in the brain 
[2, 5-12].

 

AD is one of the most deadly and devastating neurodegenerative 
diseases and it is the most common form of dementia.  Experts 
suggests that more than 35 million worldwide and approximate-
ly more than 6 million Americans of all ages may have AD. AD is 
currently ranked as the 7th leading cause of the death in USA.  The 
death of brain cells and memory function loss associated with AD 
results from the accumulation of a fragment protein called Aβ pro-
tein in the brain (Figure 2) [13] A particular form of these aggre-
gated Aβ proteins is highly ordered and is known as amyloid fibrils 
[14] Basically, these amyloid fibrils are generated from lower or-
der oligomers which are believed to be toxic mis-folded protein [2]  
The amyloid β-peptide of 40 and 42 amino acid residues, common-
ly known as Aβ(1-40) and Aβ(1- 42) monomers, aggregate into in-
soluble clumps, responsible for synaptic dysfunction in the brains 
of AD patients [10-12] Aβ(1-42) monomer is more susceptible to 
aggregation than Aβ(1-40) monomer and it is the primary compo-
sition of the plaque.
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Figure 1: The typical AD deposits are called plaques and tangles. The microscopic image of the brain tissue taken from an AD patient. The 
42 amino acid long AD peptide constitutes the plaques, and the tangles contain the aggregate of protein Tau and other components.  (Source: 
Eckhard Mandelkow, of the Max Planck research group, Hamburg, Germany).                                  
                                       

Figure 2: Demonstration of the cross-sections of the brain from a normal and an Alzheimer’s Disease (AD) brain, showing affected regions of 
memory and language skills. (Source: Franz Ulrich Hartl, Max Planck research group, Hamburg, Germany).                               
                                       

Protein -folding and AD

A clear understanding of monomer aggregation and plaque 
formation in AD patients requires better understanding of protein 
conformation and folding/mis-folding dynamics, as well as the 
mechanisms at the molecular level. Protein folding/mis-folding in 
biological cells takes place in a highly crowded and confined envi-
ronment. Crowding and confinement may change some physico-
chemical properties of the environment, such as the local viscosity 
of cellular environments [15] Therefore, studies of proteins and 
peptides in a small confined or inert space that mimics the natural 
environment of the biological cell, may be more meaningful both 
for kinetics and structural characterization as well as the aggrega-
tion phenomenon in the extracellular space. The reverse micellar 
environment mimics the crowded conditions that exist in the extra-
cellular spaces in the brain where fibril formation occurs.

Reverse Micelle Encapsulation as a Model System 
for Aggregation Studies

Reverse Micelles (RMs) can be used as a simple model system 
for protein structures and dynamic studies in extracellular spaces. 
RM is defined as a ternary system, consisting of oil, detergent, and 
water complexes, that is crowded and confined like a biological 
membrane (Figure 3) [16-18], The surfactant usually consists of 
hydrophilic head and hydrophobic tail groups. The surfactant head 
groups aggregate around a polar water core, whereas hydrophobic 
tails extend toward the non-polar solvent. The shape of the RMs 
is often assumed to be spherical and their size is directly propor-
tional to the water-to-surfactant ratio (w0= [water]/ [surfactant]). 
The RMs will spontaneously form in the solution when the number 
of surfactant molecules is above the critical micelle concentration 
(CMC). The radius of the RM and the number of water molecules 
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accessible to the peptide can be varied by manipulating the water 
loading capacity [15] The needed confinement geometry can be 
provided by using a RM to confine the peptide, thereby adjusting 

the ratio of the peptides to water in the encapsulation of peptides 
in the micellar water core [19].

Figure 3:  Reverse micelle structure. This figure has been adapted from Kim et al. [18].

Discussion

Over the years, numerous studies have been carried out to un-
derstand amyloid fibril formation in the brains of AD patients in 
connection with protein folding and mis-folding studies, but several 
questions remain unanswered or poorly understood. For example: 

how do the Aβ (1-40) and Aβ (1-42) monomers aggregate? What 
is the probable kinetic mechanism of monomer aggregation, which 
is the prelude to fibril formation? Recent FTIR studies have shown 
that the 40-residue amyloid beta (Aβ) protein forms extended be-
ta-strands in reverse micelles, while an analogue with a scrambled 
sequence does not (Figure 4) [19].

Figure 4: Transmission FTIR spectra of dry fibrils, monomeric Aβ40 in large and small reverse micelles, and Aβ40 with a scrambled amino 
acid sequence (Aβ40scr) in small reverse micelles. The low frequency bands at 1621 cm-1 arise from extended β-structure in fibrils and reverse 
micelles. This Figure has been adapted from Yeung et al. [19].

This result suggests that the Aβ sequence is inherently amyloi-
dogenic, and that its amyloidogenicity is enhanced in a crowded, 
confined membrane-like environment of a reverse micelle [13] This 

result is significant because it suggests that these factors may nu-
cleate or otherwise promote the formation of amyloid fibrils in the 
human brain in AD. Important kinetic questions still remain unan-
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swered, such as: whether or not the β-strand observed by the Aβ(1-
40) monomer is the intermediate to fibril formation, or whether the 
protein folding and unfolding kinetics in the extracellular spaces of 
the brain proceed through several meta-stable intermediates. Is 
protein folding simply just a two-state process?

Previously, Kim et al [20] conducted time-resolved Fluores-
cence Resonance Energy Transfer (FRET) to study the amyloid 
aggregation of Aβ (11-25) proteins (Figure 7). Kim et al [20] hypoth-
esized that the amyloid peptides undergo multi-step conforma-
tional changes during self-assembling, such as random coil(mono-
mers), collapsed coil(multimers), micellar structures, and extended 
β-sheets in fibrils.

The above experimental studies clearly suggest that the protein 
mis-folding and aggregation in confined reverse micellar environ-
ments may be possible reasons for the synaptic disfunction in the 
brain of AD patients.

Conclusion

 In summary, the review article has shed light on amyloid 
β-peptide, Aβ (1-40) and Aβ (1- 42) folding, misfolding and aggre-
gation in connection with Alzheimer’s Disease. The review further 
suggests that the reverse micelle can be used as a simple model 
system, which can mimic the biological and cellular environment 
where protein resides. Protein folding dynamics can be investigat-
ed using RMs to unravel the mystery of this dangerous neurodegen-
erative Alzheimer’s Disease.
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