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Mini Review

In the era of rapid advancement in transformative technologies, 
including especially artificial intelligence (AI), big data, advanced 
semiconductor chips, and the growing popularity of electric vehi-
cles (EVs), there are enormous demands for and consumptions of 
energies, which are accompanied by the heat generation as a trou-
bling or even in some cases prohibitive byproduct. Thus, in equally 
high demand are enabling thermal management (TM) technologies 
for the effective heat transport and dissipation, which are depen-
dent on materials of high thermal conductivity (TC), including met-
als such as aluminum and copper and some carbon-based materi-
als. For example, various combinations of aluminum and graphite  

 
are used for cooling the batteries in many EVs. However, graphite 
and even aluminum could become fuels at high temperatures, and 
their high electrical conductivity (EC) might disqualify their uses 
as thermal interface materials (TIMs) in chips and other devices. 
In this regard, isoelectronic with graphite and also of a similar lay-
ered structure is hexagonal boron nitride (h-BN), nicknamed white 
graphite, whose decoupled thermal and electric transport proper-
ties (high TC but no EC) are uniquely suited for TM applications. In-
deed, h-BN nanosheets (BNNs, Figure 1) and their polymeric com-
posites are being actively investigated, with some major advances 
already achieved [1-25].
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Abstract
Hexagonal boron nitride (h-BN) and graphite are isoelectronic, so are their nanosheets, and they are both highly thermally conductive. However, 

h-BN derived nanosheets (BNNs) are electronically insulating, thus ideally suited for polymeric nanocomposites of high thermal conductivity but 
no electrical conductivity for a variety of critical thermal management needs. Highlighted here are advances in the development of polymer/BNNs 
composites and devices, excellent opportunities for further improvements, and also technical and other challenges, especially with the growing 
applications of 3D printing techniques. 
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Figure 1: Single-layer graphene (left) versus hexagonal boron nitride (h-BN) nanosheet (right). Their comparison in nanosheets of multiple 
layers is similar, except for the stronger inter-layer interactions in h-BN.

Few-layer BNNs are mostly produced from the exfoliation of 
h-BN, for which the vigorous sonication of h-BN in isopropanol 
(IPA) as a preferred solvent has been popular [24-26]. Further im-
provements in the exfoliation efficiency and in the quality of the 
resulting BNNs, characterized by their larger aspect ratios and 
smooth surfaces, could be achieved by adding aqueous ammonia 
to IPA for the sonication [25, 27]. However, the inter-layer force is 
significantly stronger in h-BN than in graphite, making the exfo-
liation of h-BN more difficult and the resulting BNNs not as well 
defined nanosheets as their carbon counterparts. Beyond the com-
monly employed vigorous sonication, other processing tools and/
or conditions might be explored for the right level of shear forces to 
produce BNNs of better qualities and in higher yields. 

BNNs as planar nanofillers are anisotropic in thermal trans-
port, with much higher in-plane TC than cross-plane TC. Therefore, 
more popular have been their uses in polymeric nanocomposite 
films designed for high in-plane TCs. Wet casting has been a conve-
nient method for the fabrication of polymer/BNNs composite films, 

in which the filler BNNs are driven to align in the film plane, thus 
the observed high in-plane TC values [20, 28, 29]. For example, the 
dispersion of BNNs into polyethylene (PE) for PE/BNNs composite 
films resulted in monotonically increasing in-plane TCs with higher 
BNNs loadings (Figure 2) [29]. The crosslinking in the composite 
films could apparently enhance the TC performance significantly 
(Figure 2) [29]. A more effective strategy for further in-plane align-
ment of BNNs in composite films, such as those of poly (vinyl alco-
hol) (PVA) as the matrix polymer, is to apply the needed shear force 
with mechanical stretching of the films, resulting in substantially 
higher in-plane TCs (Figure 3) [20, 30]. As might be expected, the 
enlarged in-plane TCs associated with the more effective in-plane 
alignment of BNNs in the composite films are at the expenses of 
cross-plane TCs in the same films, generally with the cross-plane/
in-plane TC ratios lowered to less than 10%, which could serve as 
an indicator of how well the filler BNNs in composite films are in-
plane aligned. Among other shear force induced alignment meth-
ods for polymer/BNNs composite films of enhanced in-plane TCs is 
mechanical extrusion of the films [14, 31].

Figure 2: TC values of the PE/BNNs (circle), and crosslinked PE/BNNs (triangle) composite films at different loadings of BNNs. (From 
reference 29).
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3D printing has emerged to represent an effective and versatile 
fabrication method for nanocomposites and related devices. Nat-
urally it has been employed for the preparation of polymer/BNNs 
composite films for in-plane thermal transport purposes. Some of 
the more popular printing methods are limited to or more suitable 
for composite films of relatively low loadings of BNNs, offering ad-
vantages over simple wet casting in terms of more versatile and con-
trollable fabrications, though in terms of in-plane TC performances 
the potential for major improvements seems limited. There are also 
other printing methods capable of preparing films with high load-
ings of BNNs, somewhat analogous to a more controlled extrusion 

method. Nevertheless, 3D printing should in principle be majorly 
advantageous for the fabrication of composite films and structures 
in which the filler BNNs are cross-plane aligned for high cross-plane 
thermal transport [32-35], because such composite configurations 
are pretty much beyond the capability of conventional wet casting. 
Illustrated in Figure 4 is a representative 3D printing fabrication of 
films (3.2 mm in thickness) in which the filler BNNs are cross-plane 
aligned in the embedded rod structures, with the observed TCs in-
creasing linearly with loadings of BNNs (Figure 4) [32]. However, 
the TC of only 1.5 W/mK at >20 wt/% loading of BNNs leaves a lot 
of room for improvements.

Figure 3: Observed thermal diffusivity values at different loadings of BNNs in PVA/BNNs nanocomposite films as fabricated (circle) and 
mechanically stretched (×2: diamond; and ×3: triangle). Shown in the inset are photos of as-fabricated and stretched films with 10% loading 
of BNNs. (From reference 20).

Figure 4: Upper: Thick film of polydimethylsiloxane (PDMS) embedded with the through-film-plane aligned BN rods. Lower: The observed 
dependence of the through-film-plane thermal conductivity on the BN loading. (From reference 32).
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In fact, the need for major performance improvements rep-
resents a general challenge for 3D printing of polymer/BNNs com-
posites designed for TM applications. For such a challenge, specifi-
cally developed and implemented printing strategies and protocols 
are in demand for addressing the critical issues associated with the 
challenge. The aimed improvements include:

(i)	 To make the printed structures more dense via reducing 
voids and porosity and enhancing the interfacial bonding be-
tween the polymer matrix and filler BNNs. For example, the 
voids and structural discontinuities could be minimized by im-
proving the filler dispersion, optimizing the viscosity of feed-
stocks, adjusting various printing parameters (layer height, 
hatching space, printing speed, temperature, etc.), and applying 
suitable post-processing techniques such as annealing or infil-
tration to densify the printed parts.

(ii)	 To push for the uniform dispersion of BNNs within the 
polymer matrix during the feedstock preparation and the sub-
sequent printing process. Strategies for the uniform dispersion 
include the use of BNNs that are surface functionalized with 
molecules fully compatible with the matrix polymer, the selec-
tion of suitable solvents or dispersing agents, and the energetic 
shear mixing.

(iii)	 To reduce and minimize the anisotropy and discontinu-
ities arising from the layer-by-layer deposition in the printing.

(iv)	 To reach high filler loading, for which the associated high 
viscosity in the feedstock might impede the homogeneous flow 
and deposition during printing, thereby reducing processabil-
ity and uniformity. Several mitigation strategies could be ap-
plied by balancing the filler content with rheological properties 
(leveraging non-Newtonian shear-thinning flow behavior in 
the fabrication process), using hybrid filler systems, adjusting 
printing temperature, and adding dispersing agents or rheol-
ogy modifiers to maintain processability while preserving the 
desired mechanical or functional properties.

(v)	 To enable the fabrication of the composites in special form 
factors, especially ultra-thin films in which BNNs are cross-film-
plane aligned for thermal transport needs in some high-end 
electronic devices, as most commercially available systems are 
not designed for such fine structures that require high preci-
sion. Nevertheless, there are promising developments in the 
relevant research field that are applicable to the printing of the 
ultra-thin films, including strategies for the precise control over 
deposition methods, the vat photopolymerization process with 
two-photon excitation, micro-extrusion, inkjet printing, and 
electrohydrodynamic printing.

In summary and conclusion, polymer/BNNs composites in 
various form factors engineered for high in-plane or cross-plane 
TCs but electrically insulating have shown great promises. Further 
rapid and broad developments of these materials and their derived 
devices for much improved performances, driven by the critical 
thermal management needs in some of the most exciting current 
and emerging technologies, may be envisaged.
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