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Introduction
The Least Squares Monte Carlo (LSMC) method was first 

proposed by Longstaff and Schwartz [1] to price the American 
option, since then it has been applied in different industries 
from banking [2] to energy sector [3]. In the last decade, there 
is an increasing demand for sophisticated risk modeling [4]. To 
overcome the computational complexity of those models, the 
proxy techniques have gain popularity in both risk management 
practice and research over the last decade [5]. The idea of proxy is 
to approximate the original model with less features to reduce the 
computational complexity while keeping sufficient accuracy. Among 
the various proxy techniques, LSMC is a state-of-the-art approach. 
However, the polynomial of LSMC is still too complicated in multi-
dimensional problems. There are several works that discussed 
how to further improve the computational speed of LSMC. AS.Chen 
and PF Shen [6] studied the computational complexity of LSMC. 
A.R. Choudhury [7] parallelized the LSMC algorithm for American 
option pricing. Another method to speed up LSMC is focusing on 
Monte Carlo simulation itself, using techniques such as Quasi-
Monte Carlo to make LSMC more efficient [8]. 

The Application of LSMC in Risk Management
Solvency Capital Requirement (SCR) of Solvency II requires the 

computation of the economic capital, the minimum capital giving 
the insurance company a 99.5% survival probability over a one-
year horizon via a full probability distribution forecast [9,10].

The SCR at level α=99.5% can be computed as
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ACt is the available capital at time t:
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ANAVt is the adjusted net asset value, Xt is the profit due to in-
force business and Yt is the market conditions at time t.

There is generally no closed-form solution, due to the very com-
plex interactions between X and Y. Nested Monte Carlo (MC) Simu-
lation [11] is usually need for SCR computing. To estimate AC1, we 
simulate multiple paths of Ys (outer scenarios), for each path of Ys 
we simulate multiple paths of Xi (inner scenarios). Then the average 
of present value of Xi is the estimation of EQ. However, Nested Monte 
Carlo is extremely time and computer memory consuming. Imag-
ine we have 100,000 policies, for each policy simulate 10,000 outer 
scenario and 1,000 inner scenarios, each scenario takes 0.001 sec-
ond, then it would take 32 years to finish the simulation! (Figure 1).

A popular approach in actuarial practice to overcome the 
time consuming of nested Monte Carlo is using LSMC. Since 
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  is a function of Y, it can be 

approximated by a polynomial:
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The idea is instead of using thousands of inner scenarios to find 

its expected present value PV(X1) at time t=1, we train a least square 
polynomial regressor to approximate it with much fewer inner sce-
narios and for each outer scenario. The errors tend to offset one an-
other with enough data points. This ends up with an approximator 
highly accurate and significantly reduced the computing time.
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Figure 1: Split-up of scenarios in the nested Monte Carlo simulation.

Distributed Regression for LSMC Speedup
When it comes to multi-factor risks modeling approximation, 

the multi-dimensional polynomial would be extremely complicat-
ed. This would make the regression slow or not possible to finish 
within reasonable time.

To over the computational complexity of multi-risk factor 
LSMC, we propose distributed regression for LSMC. The idea of 
distributed regression is fairly simple: instead of running the re-
gression on one computer, we distribute the regression task to mul-
tiple computers (usually using cloud computers), then average the 
regressed coefficients to get the final regression equation. In this 
way the computing time can be significantly reduced. We can math-
ematically prove this simple idea can actually obtain the optimal 
regression results [12].

There are several advantages of distributed regression: First, 
the computing time for the traditional least square regression is 
O(n3), where n is number of observations in data. While for distrib-
uted regression, it’s O(n3/m2), where m is the number of distributed 
computers. If we distributed the regression task to 10 computers, 
we could reduce to computing time to 1% of the original regres-
sion, 50 computers to 0.04%. Second, distributed regression can 
protect the data privacy, because very little or no communication is 
required when computing from distributed computers. Therefore, 
almost no data exchanged happened between different data plat-
forms. If we have policy data stored in different platforms and we 
don’t want to share the data across, we can use distributed regres-
sion to obtain the regression coefficients from each platform then 
average the coefficients to get the total regression equation.

We propose the following distribute regression algorithm for 
LSMC:

•	 Step 1: Suppose the conventional LSMC requires n∙K out-
er scenarios. We have K worker computers and 1 master computer 
in our distributed system. Each worker computer generates n outer 

scenarios ( )i
sY  and for each outer scenario simulate 1 inner scenar-

io Xi. In this way, we obtain n pairs of local training data ( ( )i
sY , Xi). 

•	 Step 2: Each worker computer run the least squares 

algorithm on the local data ( ( )i
sY , Xi) to get the coefficients ck of the 

polynomial to fit the function [ ]1
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•	 Step 3: Each worker computer sends its fitted coefficients 
ck to the master computer. The master computer averages the co-

efficients 
1

K
kk

C
C

K
== ∑  and output this as the final coefficients of 

the fitting polynomials. There is no data communication between 
the computers, only the trained coefficients are sent. This protects 
the data privacy.

•	 Step 4: Scale this algorithm with more worker comput-
ers to find the optimal number of computers in terms of computing 
speed and cost.

There are several advantages using distributed regression to 
accelerate the LSMC. 1) The current parallel algorithms for LSMC 
require the parallel computing of the big matrix inverse, while 
using distributed regression we only need compute the small ma-
trix inversion for each chunk of data. 2) When comes to multi-risk 
modeling, the amount of the outer scenarios would be huge that no 
single computer can handle it. For a N risk-factor problem, it will 
require 10000N outer scenarios if we simulate 10,000 outer sce-
narios for each risk-factor. If we use distributed regression, each 
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computer only needs processes a smaller chunk of data assigned. 
3) This divide-and-conquer type distributed learning method can 
also be applied to speed up other algorithms like clustering, tree-
based method, deep learning etc. 4) Easy to be scaled on distributed 
framework like Map-reduce, or Spark [13].
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