

ISSN: 2641-2039

Global Journal of Engineering Sciences

DOI: 10.33552/GJES.2019.02.000535

Research Article

Copyright © All rights are reserved by Eluozo SN

Modeling Void Ratio Influences on Shigella Transport in Heterogeneous Grave Depositions

Nwaoburu AO1 and Eluozo SN2*

¹Department of Mathematics, Faculty of Science, Rivers State University, Nigeria

*Corresponding author: Eluozo SN, Department of Civil College of Engineering Gregory University Uturu Abia State, Nigeria.

Received Date: April 24, 2019 Published Date: May 07, 2019

Abstract

The study examined the transport of Shigella in heterogeneous gravel formation, this is to monitored the migration of Shigella in two different ways, monitoring of the contaminants at vertical direction were increase in in concentration with respect to change in depth and monitoring the concentration influenced by variation of gravel porosities, these two dimension were carried out, it was observed that the transport of Shigella in vertical direction experienced exponential growth rate to the optimum level recorded at ninety meters, this can be attributed to deposition of micronutrients that may increase the population rate of Shigella, this increase the concentration of the contaminant to the optimum depth, while that of porosity influences experienced variation of soil consolidation, decrease in porosity where high consolidation is observed experienced high concentration of Shigella, while increase in soil porosity decrease the concentration of Shigella at different location as observed from the study, the predictive values were subjected to model validation, and both parameters developed best fits correlation, the study has express the influenced from variation of soil porosity under fluctuation of soil consolidation in the study. It has also expressed the growth rate of Shigella influenced by variation of micronutrients in the formation; experts will definitely fine this study useful in monitoring and evaluation of microbial transport in soil and water

Keywords: Modeling; Porosity shigella Transport; Sand gravel formation

Introduction

The reaction from 1996 Amendments on Safe Drinking Water Act, including the U.S. Environmental Protection Agency (USEPA) that are the developer of Ground-Water Rule (GWR). This will always protect users of public ground-water supplies from viral contamination [1-6]. Due the fact that total coliform bacteria are normally applied an indicator of the possibility or probable existence of pathogenic contamination from microbial pathogens, several groundwater suppliers applied the absence of coliform as justification for not disinfecting source water. Despite the inherent complications related with the identification of viruses in water, disease epidemics have been attributed to specific episodes of viral pollution in ground water [3-7]. There has been a suggestion as viral indicators. Coliphages are a bacterial virus that is known to infect the coliform bacterial group. Most of these coliphages that are superficially similar to the enteric viruses, they are known to share symmetrical structures, morphologies, and sizes, they also have similar half-lives in natural waters [8-10]. Some coliphages,

precisely infect "male" strains of Escherichia coli (E. coli), or "malespecific" coliphages, they are normally found in human feces, this has been identified in huge numbers in human wastewater [11].

- Outbreaks of viral etiology have been documented in waters that met coliform criteria for drinking purposes [12-16].
- Viruses may be considerably more resilient in the environment than coliforms [17,18].
- The infectious dose of many viral diseases is considerably lower than that observed for enteric bacterial disease [19-21].

Theoretical Backgrounds

Nomenclature:

Shigella Concentration

A(x)void Ratio / Permeability of Soil

Velocity of Flow B(x)

²Department of Civil, College of Engineering Gregory University, Nigeria

 $C-n-[\alpha 1x] = \text{void ratio of soil}$

$$\frac{dc}{dx} + A_{(x)} C_d + B_{(x)} C_d^n = 0 \dots (1)$$

Transform the above Bernoulli's Equation to a linear first order DE gives:

$$\frac{dk}{dx} + (1-n)k = (1-n)B_{(x)}$$

Let I.F =
$$\ell^{-} \alpha x_{1x}$$
(2)

Use I.F to Solve (2) above

Hence, the general Solution becomes:

$$C_d^{1-n} = -\frac{B}{A} + Ce^{-\alpha_1 x}$$
(3)

Materials and Method

Standard laboratory experiment where performed to monitor Shigella using the standard method for the experiment at different formation, the soil deposition of the strata were collected in sequences base on the structural deposition of the lithology at different locations, this samples collected at different location generated variations at different depths producing different Shigella concentration through column experiment, from the pressure flow at different strata, the experimental result were compared with the theoretical values for the validation of the model.

Results and Discussion

Results and discussion are presented in tables including graphical representation for Shigella concentration (Tables 1-7).

Table1: Predictive and experimental values of shigella concentration at different depth.

Depth [M]	Predictive Values [Conc. Mg/L]	Experimental Values [Conc. Mg/L]		
3	0.030077637	0.03		
6	0.060155274	0.06		
9	0.090232911	0.09		
12	0.120310548	0.12		
15	0.150388185	0.15		
18	0.180465822	0.18		
21	0.210543459	0.21		
24	0.240621096	0.24		
27	0.270698733	0.27		
30	0.30077637	0.33		
33	0.330854007	0.33		
36	0.360931644	0.36		
39	0.391009281	0.39		
42	0.421086918	0.42		
45	0.451164555	0.45		
48	0.481242192	0.48		
51	0.511319829	0.51		
54	0.541397466	0.54		
57	0.571475103	0.57		
60	0.60155274	0.62		
63	0.631630377	0.63		
66	0.661708014	0.66		
69	0.691785651	0.69		
71	0.711837409	0.71		
74	0.741915046 0.74			
77	0.771992683 0.77			
80	0.80207032 0.84			
83	0.832147957 0.83			
86	0.862225594 0.86			
89	0.892303231	0.89		
90	0.90232911	0.93		

 Table 2: Predictive and experimental values of shigella concentration at different depth.

Depth [M]	Predictive Values [Conc. Mg/L]	Experimental Values [Conc. Mg/L]		
3	0.024625489	0.0246		
6	0.049250977	0.0492		
9	0.073876466	0.0738		
12	0.098501954	0.0984		
15	0.123127443	0.123		
18	0.147752931	0.1476		
21	0.17237842	0.1722		
24	0.197003908	0.1968		
27	0.221629397	0.2214		
30	0.246254885	0.246		
33	0.270880374	0.2706		
36	0.295505862	0.2952		
39	0.320131351	0.3198		
42	0.344756839	0.3444		
45	0.369382328	0.369		
48	0.394007816	0.3936		
51	0.418633305	0.4182		
54	0.443258793	0.4428		
57	0.467884282	0.4674		
60	0.49250977	0.492		
63	0.517135259	0.5166		
66	0.541760747	0.5412		
69	0.566386236	0.5658		
71	0.582803228 0.5822			
74	0.607428717 0.6068			
77	0.632054205	0.6314		
80	0.656679694 0.656			
83	0.681305182 0.6806			
86	0.705930671 0.7052			
89	0.730556159	0.7298		
90	0.738764655	0.738		

 Table 3: Predictive and experimental values of shigella concentration at different depth.

Depth [M]	Predictive Values [Conc. Mg/L]	Experimental Values [Conc. Mg/L]	
3	0.020161645	0.0201	
6	0.04032329	0.0402	
9	0.060484934	0.0603	
12	0.080646579	0.0804	
15	0.100808224	0.1005	
18	0.120969869	0.1206	
21	0.141131513	0.1407	
24	0.161293158	0.1608	
27	0.181454803 0.1809		
30	0.201616448	0.201	
33	0.221778092	0.2211	
36	0.241939737	0.2412	
39	0.262101382 0.2613		
42	0.282263027 0.2814		
45	0.302424671 0.3015		
48	0.322586316 0.3216		

51 0.342747961 0.3417 54 0.362909606 0.3618 57 0.38307125 0.3819 60 0.403232895 0.402 63 0.42339454 0.4221 66 0.443556185 0.4422 69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963 90 0.604849343 0.603					
57 0.38307125 0.3819 60 0.403232895 0.402 63 0.42339454 0.4221 66 0.443556185 0.4422 69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	51	51 0.342747961 0.3417			
60 0.403232895 0.402 63 0.42339454 0.4221 66 0.443556185 0.4422 69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	54	0.362909606	0.3618		
63 0.42339454 0.4221 66 0.443556185 0.4422 69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	57	0.38307125	0.3819		
66 0.443556185 0.4422 69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	60	0.403232895	0.402		
69 0.463717829 0.4623 71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	63	0.42339454	0.4221		
71 0.477158926 0.4757 74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	66	0.443556185	0.4422		
74 0.497320571 0.4958 77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	69	0.463717829	0.4623		
77 0.517482215 0.5159 80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	71	0.477158926	0.4757		
80 0.53764386 0.536 83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	74	0.497320571	0.4958		
83 0.557805505 0.5561 86 0.57796715 0.5762 89 0.598128794 0.5963	77	0.517482215	0.5159		
86 0.57796715 0.5762 89 0.598128794 0.5963	80	0.53764386	0.536		
89 0.598128794 0.5963	83	0.557805505	0.5561		
	86	0.57796715	0.5762		
90 0.604849343 0.603	89	0.598128794	0.5963		
1.000	90	0.604849343	0.603		

 Table 4: Predictive and experimental values of shigella concentration at different depth.

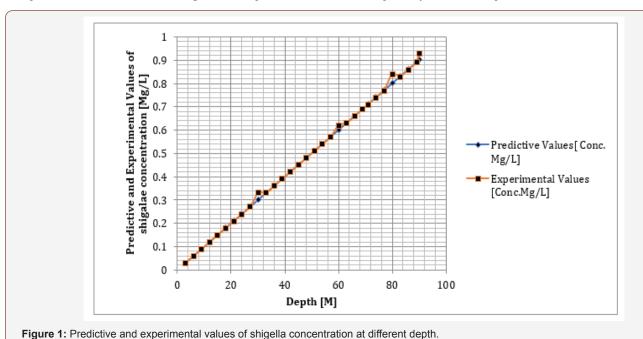
Depth [M]	Predictive Values [Conc. Mg/L]	Experimental Values [Conc. Mg/L]		
3	0.014936114	0.015		
6	0.029872228	0.032		
9	0.044808341	0.045		
12	0.059744455	0.065		
15	0.074680569	0.075		
18	0.089616683	0.093		
21	0.104552797	0.105		
24	0.11948891	0.122		
27	0.134425024	0.135		
30	0.149361138	0.155		
33	0.164297252	0.165		
36	0.179233365	0.183		
39	0.194169479	0.195		
42	0.209105593	0.212		
45	0.224041707	0.225		
48	0.238977821	0.243		
51	0.253913934	0.255		
54	0.268850048	0.275		
57	0.283786162	0.285		
60	0.298722276	0.322		
63	0.31365839	0.315		
66	0.328594503	0.333		
69	0.343530617	0.345		
71	0.353488026	0.355		
74	0.353400026 0.353			
77	0.383360254	0.385		
80	0.398296368 0.423			
83	0.413232481 0.415			
86	0.428168595 0.435			
89	0.443104709	0.445		
90	0.448083414	0.455		

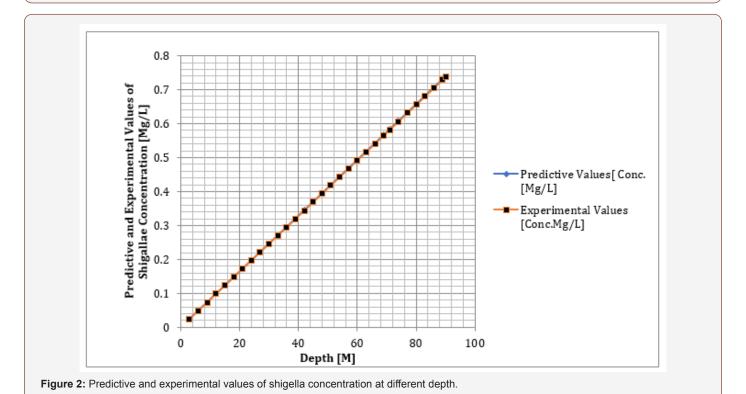
 Table 5: Predictive and experimental values of shigella concentration at different depth.

Depth [M]				
3	0.009059211	0.009		
6	0.018118422	0.018		
9	0.027177633	0.027		
12	0.036236844	0.036		
15	0.045296055 0.045			
18	0.054355266	0.054		
21	0.063414477	0.063		
24	0.072473688	0.072		
27	0.081532899	0.081		
30	0.090592109	0.091		
33	0.09965132	0.099		
36	0.108710531	0.108		
39	0.117769742	0.117		
42	0.126828953 0.126			
45	0.135888164 0.135			
48	0.144947375 0.144			
51	0.154006586 0.153			
54	0.163065797 0.162			
57	0.172125008	0.171		
60	0.181184219	0.182		
63	0.19024343 0.189			
66	0.199302641 0.198			
69	0.208361852	0.207		
71	0.214401326 0.213			
74	0.223460537 0.222			
77	0.232519748 0.231			
80	0.241578959 0.242			
83	0.25063817 0.249			
86	0.259697381 0.258			
89	0.268756591	0.267		
90	0.271776328	0.275		

 Table 6: Predictive and experimental values of shigella concentration at different depth.

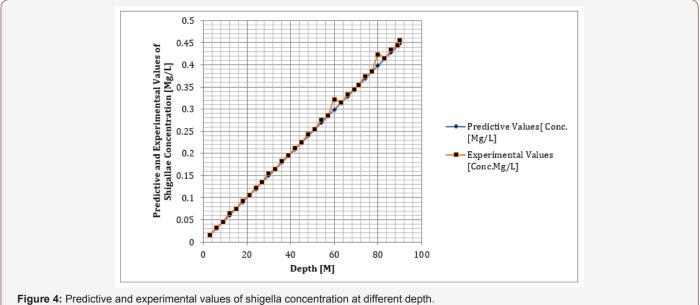
Depth [M]	Predictive Values [Conc. Mg/L]	Experimental Values [Conc. Mg/L]	
3	0.005494689	0.0054	
6	0.010989378 0.0108		
9	0.016484068 0.0162		
12	0.021978757	0.0216	
15	0.027473446	0.0273	
18	0.032968135	0.0324	
21	0.038462824 0.0378		
24	0.043957514 0.0432		
27	0.049452203 0.0486		
30	0.054946892 0.0542		
33	0.060441581	0.0594	
36	0.06593627	0.0648	
39	0.07143096	0.0702	
42	0.076925649	0.0756	
45	0.082420338	0.0812	
48	0.087915027	0.0864	

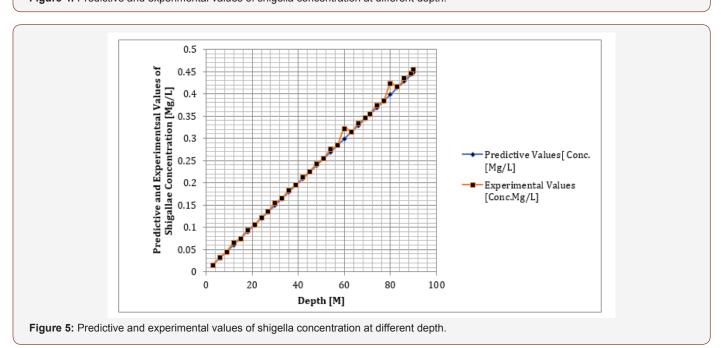

0.093409716	0.0918
0.098904406	0.0972
0.104399095	0.1026
0.109893784	0.1082
0.115388473	0.1134
0.120883162	0.1188
0.126377851	0.1242
0.130040978	0.1278
0.135535667	0.1332
0.141030356	0.1386
0.146525045	0.1443
0.152019734	0.1494
0.157514424	0.1548
0.163009113	0.1602
0.164840676	0.1621
	0.098904406 0.104399095 0.109893784 0.115388473 0.120883162 0.126377851 0.130040978 0.135535667 0.141030356 0.146525045 0.152019734 0.157514424 0.163009113


 Table 7: Variation of shigella concentration at different depth.

Soil porosity	0.23	0.25	0.27	0.3	0.35	0.4
3m	0.03008	0.02463	0.02016	0.01494	0.00906	0.00549
6m	0.06016	0.04925	0.04032	0.02987	0.01812	0.01099
9m	0.09023	0.07388	0.06048	0.04481	0.02718	0.01648
12m	0.12031	0.0985	0.08065	0.05974	0.03624	0.02198
15m	0.15039	0.12313	0.10081	0.07468	0.0453	0.02747
18m	0.18047	0.14775	0.12097	0.08962	0.05436	0.03297
21m	0.21054	0.17238	0.14113	0.10455	0.06341	0.03846
24m	0.24062	0.197	0.16129	0.11949	0.07247	0.04396
27m	0.2707	0.22163	0.18145	0.13443	0.08153	0.04945
30m	0.30078	0.24625	0.20162	0.14936	0.09059	0.05495
33m	0.33085	0.27088	0.22178	0.1643	0.09965	0.06044
36m	0.36093	0.29551	0.24194	0.17923	0.10871	0.06594
39m	0.39101	0.32013	0.2621	0.19417	0.11777	0.07143
42m	0.42109	0.34476	0.28226	0.20911	0.12683	0.07693
45m	0.45116	0.36938	0.30242	0.22404	0.13589	0.08242
48m	0.48124	0.39401	0.32259	0.23898	0.14495	0.08792
51m	0.51132	0.41863	0.34275	0.25391	0.15401	0.09341
54m	0.5414	0.44326	0.36291	0.26885	0.16307	0.0989
57m	0.57148	0.46788	0.38307	0.28379	0.17213	0.1044
60m	0.60155	0.49251	0.40323	0.29872	0.18118	0.10989
63m	0.63163	0.51714	0.42339	0.31366	0.19024	0.11539
66m	0.66171	0.54176	0.44356	0.32859	0.1993	0.12088
69m	0.69179	0.56639	0.46372	0.34353	0.20836	0.12638
71m	0.71184	0.5828	0.47716	0.35349	0.2144	0.13004
74m	0.74192	0.60743	0.49732	0.36842	0.22346	0.13554
77m	0.77199	0.63205	0.51748	0.38336	0.23252	0.14103
80m	0.80207	0.65668	0.53764	0.3983	0.24158	0.14653
83m	0.83215	0.68131	0.55781	0.41323	0.25064	0.15202
86m	0.86223	0.70593	0.57797	0.42817	0.2597	0.15751
89m	0.8923	0.73056	0.59813	0.4431	0.26876	0.16301
90m	0.90233	0.73876	0.60485	0.44808	0.27178	0.16484

Figures 1-7 explain the behavior of the system in terms of growth rate of Shigella in heterogeneous grave depositions, the figures experienced linear trend under exponential condition, the transport of the microbes observed increase with respect to depth, but the concentration were observed in different rates, the simulation express the behavior of Shigella migration in gravel deposition, these condition were expressed from various figures as it explained the influence of heterogeneous structure of the formation to be insignificant from the observed effect on the rate of concentration, because it express linear growth rate to the optimum depth, increase in concentration with respect to increase in depth were observed from all the figures, the experimental values


compared favorably well with the predictive values, the optimum rate of concentration recorded at ninety meters, but the rate of concentration varies based on the porosity depositions of gravel in the study location, figure seven observed the rate of porosity variation with respect to variation of concentration in different depositions and locations, the figure experienced consolidation of porosity variation in the lithe structures of the formation, thus the concentration observed increase at high consolidation of the porosity, but suddenly decrease in concentration were it experienced decrease in consolidation thus high increase in porosity of the formation. The figure explained the influenced from soil porosity in various deposition of the formation.



Citation: Nwaoburu AO, Eluozo SN. Modeling Void Ratio Influences on Shigella Transport in Heterogeneous Grave Depositions. Glob J Eng Sci. 2(2): 2019. GJES.MS.ID.000535. DOI: 10.33552/GJES.2019.02.000535.

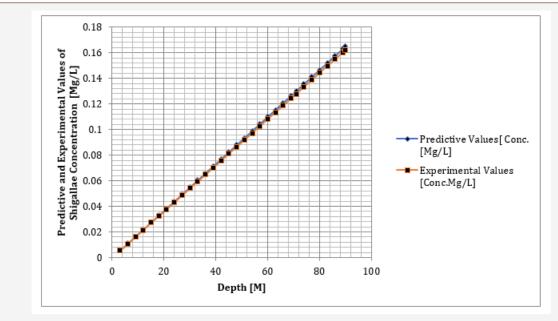


Figure 6: Predictive and experimental values of shigella concentration at different depth.

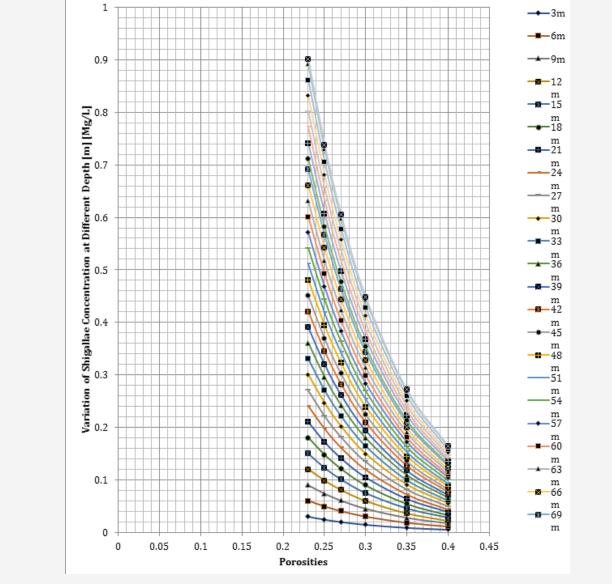


Figure 7: Variation of predictive values of Shigella concentration influenced by depositions of the formations.

Conclusion

The study expresses the effect of porosities in various depositions of gravel, the transport of Shigella were monitored to determine the effect of porosity on the deposition and transport of the microbes in such heterogeneous gravel formation. The study expresses the variation of soil porosity in different condition monitored in the system, the transport rate was from three to ninety meters depth, linear trend was observed in the study, but with different concentration. Monitoring the effect of porosity on the migration of Shigella on variation of porosity with respect to concentration is based on the rate of the formation consolidation. decrease in soil porosity generated higher concentration at three meters, but when the porosity of the soil experienced decrease in it consolidation thus high porosity, decrease in concentration were observed, despite exponential growth rate were the optimum concentration were recorded at ninety meters, when the concentration were monitored in terms of variation influences of porosity, the concentration experienced lower concentration recorded at [0.40] while the highest concentration were observed at porosity rate of [0.23] these has explained the behavior of the transport in two dimension increase in concentration based on increase in depth, this could be attribute to deposition of micronutrients, while high to low concentration are based on the influences from variation of soil porosity in gravel depositions. The study has expressed the behavior of Shigella in terms of transport were micronutrient are deposited, it has also explained the influenced from variation of soil porosity in Shigella depositions on gravel formations.

Acknowledgement

None.

Conflict of Interest

No conflict of interest.

References

- U.S. Environmental Protection Agency (2001a) Ambient water-quality criteria for bacteria-1986: Washington, D.C., Office of Water Regulation and Standards, 17p.
- Eluozo SN, Nwaoburu AO (2013) Mathematical Model to Monitor the deposition of Void ratio and Dispersion of Phosphorous Influenced in salmonella Growth Rate in Coarse and Gravel Formation in Borikiri, Rivers State of Nigeria. American Journal of Engineering Science and Technology Research 1(4): 59-67.
- 3. Eluozo SN, Nwaoburu AO (2013) Mathematical Model to Predict Adsorption Rate of Potassium Influenced by Permeability in Lateritic and Silty Formation in Coastal Area of Eagle Island, Port Harcourt, Niger Delta of Nigeria. International Journal Sustainable Energy and Environment 1(5): 111-119.
- Eluozo SN, Nwaoburu AO (2013) Modeling the Deposition Adsorption Rate of Carbon Influenced by Porosity in Semi Confined Bed in Okirika, Rivers State of Nigeria. International Journal of sustainable Energy and Environment 1(5): 103-110.
- Eluozo SN, Nwaoburu AO (2013) Mathematical Model to Predict the Migration of Cryptosporidium in Homogeneous Formation in Obio-

- Akpor, Rivers State of Nigeria. International Journal Applied Chemical Science Research 1(6): 83-94.
- Eluozo SN, Nwaoburu AO (2013) Modeling the Transport of Arsenic on Pore Fluid and Solid Surface in Heterogeneous Soil Formation, Niger Delta of Nigeria. World Journal of Science and Technology Research 1(6): 124-134.
- Craun GF, Mc Cabe LJ, Hughes JM (1976) Waterborne disease outbreaks in the US-1971-1974: Journal of the American Water Works Association 68: 420-424.
- Hejkal TW, Keswick B, La Belle RL, Gerba CP, Sanchez Y, et al. (1982) Viruses in a community water supply associated with an outbreak of gastroenteritis and infectious hepatitis: Journal of the American Water Works Association 74(6): 318-321.
- Herwaldt BL, Craun GF, Stokes SL, Juranek DD (1992) M & O outbreaks of waterborne disease in the United States 1989–1990: Journal of the American Water Works Association 84(4): 129-134.
- 10. Divizia M, Gnesivo C, Bonapasta RA, Morace G, Pisani G, et al. (1993) Virus isolation and identification by PCR in an outbreak of hepatitis A: Epidemiological investigation: Water Science Technology 3(4): 199-203.
- 11. Beller M, Ellis A, Lee SH, Drebot MA (1997) Outbreak of viral gastroenteritis due to a contaminated well: International consequences: Journal of the American Medical Association 278(7): 563-568.
- Eluozo SN (2013) Effect of formation characteristics on hydraulic conductivity in unconfined bed in Etche Rivers State of Nigeria: Scientific Journal of Pure and Applied Science 2(1): 2322-2956.
- 13. Eluozo SN, Ademiluyi JO, Nwaoburu AO (2011) Model Development Approach to Predict the Behaviour of E. coli Transport on Stationary Phase in Khana, Deltaic Environment of Rivers State, Nigeria. International Journal of Current Research 3(7): 140-145.
- 14. Eluozo SN (2012) Mathematical Model to Predict Klebsiella Pneumonae Transport influenced by Porosity and Void Ratio in Shallow Aquifers. ARPN Journal of Earth Science 1(2): 1-5.
- 15. Havelaar AH (1986) F-specific RNA bacteriophages as model viruses in water treatment processes: Bilthoven, The Netherlands, Rijksinstituut voor Volksgezondheid, Milieuhgyiene, Ph.D dissertation-A Havelaar, 462p.
- 16. Kukkula M, Maunula L, Silvennoinen E, Von Bonsdorff C (1999) Outbreak of viral gastroenteritis due to drinking water contaminated by Norwalk-like viruses: Journal of Infectious Diseases 180(6): 1771-1776.
- 17. Eluozo SN, Ademiluyi JO (2013) Establishment of Porosity and Permeability Model Correlation to Validate E. coli Transport to Groundwater Aquifers; Rivers State of Nigeria; International Journal of Engineering and Technology, Science Publishing Corporation 2(1): 17-24.
- 18. Eluozo SN (2013) Dispersion influence from Void Ratio and Porosity on E. coli Transport in Homogeneous Formation in Coastal Area of Degema, Rivers State of Nigeria: Scientific Journal of Environmental Science 2(1): 10-18.
- 19. Eluozo SN, Nwaoburu AO (2013) Mathematical Model to Predict Transient Flow Influenced by Compressible Fluid in Non-Homogeneous Anisotropic Aquifer in Deltaic Environment. Sjournals: Engineering Science and Technology, pp. 1-9.
- 20. Eluozo SN, Nwaoburu AO (2013) Mathematical Modeling and Simulation to Predict the transport of Diplococcic in Homogeneous Unconfined Aquifer in Port Harcourt Metropolis, Niger delta of Nigeria International Journal of Materials, Methods and Technology 1(5): 103-115.
- 21. Eluozo SN, Nwaoburu, AO (2013) Model Evaluation to Predict Nitrogen Depositions influenced by Porosity and Cadmium Inhibition in Coastal area of Port Harcourt. American Journal of Engineering Science and Technology Research 1(8): 128-140.