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Simulation of Adiabatic Gasification of Corn Straw 
using Air-Steam Blends as an Oxidizing Agent
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Introduction
The current and growing consumption of energy and the 

increase of toxic NOx, SOx and greenhouse gases produced from 
the combustion of fossil fuels, are problems that require effective 
solutions that meet the energy needs of society in a sustainable 
manner. Fuel biomass, which includes energy crops and a wide 
range of municipal, agricultural and animal waste, serves as 
renewable resources for energy conversion processes in thermal 
energy conversion processes such as complete combustion and 
gasification. The use of biomass in the above mentioned processes 
does not increase the concentration of CO2 in the atmosphere 
because biomass is a carbon neutral fuel resource. For combustion 
processes, it is advisable to use biomass with high calorific value 
and low ash content. Biomass with low calorific value results in 
poor and unstable combustion whereas biomasses with high ash 
content cause problems in burners and boilers due to the slag and 
dirt produced. Complete combustion and gasification of biomass 
with air have been deeply studied during the last decades [1-16].

The biomass gasification is a thermal process to produce 
syngas which can be an alternative solution since biomass is a  

 
neutral fuel in the production of CO2 [10]. Additionally, biomass can 
also be used as fuel in combustion processes for power generation; 
however, these processes usually occur at high temperatures that 
favor the formation of NOx and SOx [17-19]. The use of biomass 
(energy crops, agricultural and municipal waste, etc.) as fuel in 
gasification processes for power generation not only alleviate the 
high demand for energy but also avoids pollution caused by fossil 
fuels and inadequate management of waste. 

Materials & Methods
The biomass samples of corn straw were analyzed under 

ultimate and proximate analysis. Thus, preparation was performed 
under the ASTM D2013 standard for proximate analysis, which 
were carried out under the following standards: (ASTM D3302), 
(ASTM D3175/D7582), (ASTM D4239), (ASTM D3172), (ASTM 
2492), (ASTM D5865). The elemental analysis of carbon, hydrogen, 
and nitrogen (ASTM D5373) as follows: (ASTM 2492), (ASTM 
D3174-12 / D7582-15). The results of these analyses are shown in 
Table 1.
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Abstract 
Due to the increase of consumption in the world of energy and the pollution caused by fossil fuel combustion processes, it is 

necessary to generate new technologies for the use of alternative fuels, allowing to reduce the dependence on fossil fuels such as oil, 
gas and coal. In general, the combustion processes of fossil fuels produce greenhouse gases which increase the temperature of the 
environment and the deterioration of the ozone layer. Chemical equilibrium was used to estimate the species produced by adiabatic 
gasification with different air-vapor mixtures. By running the NASA CEA software (chemical equilibrium with applications), a 
thermochemical simulation was performed under two parameters: the equivalence ratio (ER) defined as stoichiometric air/air 
supplied to the reactor (1.5-6) and the steam-fuel ratio (0-1). Thus, the syngas composition showed the following ranges: CO (0% 
-14.7%), H2 (0% - 36.7%), CH4 (0% -4.3%), CO2 (17% -22.7%). The calorific value of the gases and the energy conversion power 
were also calculated with the composition of the gases. Then, The Higher Heating Value (HHV) was calculated whose values aim to 
conclude that syngas generated can be classified as a poor fuel gas since the HHV ranged between 1992 kJ/SATP m3-7537 kJ/SATP 
m3.
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Table 1: Proximate and Ultimate analysis on a dry basis.

Volatile material (%) 74.5

Fixed Carbon (%) 16.4

Ash 9.1

C (%) 48

H (%) 5

O (%) 43.5

N (%) 0.5

Empirical CH1.44 O0.78 N0.0103S0.0027

Formula  

HHV (MJ/kg) 16

LHV (MJ/kg) 14.7

 Then the software CEA (Chemical equilibrium and applications) 
provided by NASA was used to estimate the adiabatic composition 
of the species produced (about 150 species). This software makes 
use of chemical equilibrium libraries to calculate the molar fractions 
of the species generated by the process.

Results & Discussion
The empirical equation and the enthalpy of biomass formation 

can be determined using mass conservation and proximate and 
ultimate analysis. The results and the simulation parameters are 
presented in Table 1 and Table 2 respectively.

Table 2: Operating conditions for the model.

Parameters

Fuel Corn Straw

Pressure (atm) 1

Air Temperature (ºC) 25

Vapor Temperature (ºC) 100

ER 1,5-6

SF 0-1

The dry basis molar fraction vs. ER of the species produced and 
studied during the process is presented in Figure 1.

Figure 1: Effect of ER on the production of combustible gases. 
S:F=0.6.

Figures 2 & 3 show the effect of ER and SF in the production of 
CO2 and CO respectively. The CO2 curves show a similar behavior 
for any SF value, but for ER values range (1-3), CO2 concentration 
tends to decrease and for ER between 3-6, the production of CO2 

increases. The CO curves keep a similar shape for any SF, but for ER 
values from 1.5 to 2.5 they have a higher slope than that of those 
curves for ER values ranging (2.5-6).

Figure 2: Effect of ER and SF on the production of CO2.

Figure 3: Effect of ER and SF on the production of CO.

Figure 4: Effect of ER and SF on H2 production.

The inflection points in Figure 2 indicate that for any ER points 
the effect of temperature on CO2 production begins to be more 
important than the CO yield. The reaction C + O2 → CO2 is favored at 
low temperatures while the reaction C + 1/2 O2 → CO is important 
at high temperatures [10]. Figure 4 shows the effect of ER and SF 
on the production of H2. Increasing the ER for constant SF values, 
means more H atoms available for the C vapor reactions. As a result 
of this, H2 production is increased while CO production tends to 
decrease especially at high ER. By increasing the SF maintaining 
the ER constant, the production of CO2 and H2 increases but the 
production of CO decreases. This is due to the fact that by increasing 
SF the gasification process occurs in an environment rich in H2O that 
favors the reactions that produce mixtures rich in H2 and CO2. It can 
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be observed that the production of H2 is more sensitive to changes 
of ER than that of SF. The calorific value of the gases is presented in 
Table 3 as a function of the ER and SF. As the ER increases, the HHV 
of the gases increases because of the increase of the production of 
H2, CO, and CH4. The gases produced at high SF are rich in H2 which 
makes them very attractive from the environmental point of view 
since the combustion of H2 produces heat and H2O, i.e at SF= 0.8 
and an ER=6, it is found the highest calorific value obtained in the 
gasification process.

Table 3: The calorific value of the combustible gases generated (KJ/
m^3).

SF

ER 0 0.2 0.4 0.6 0.8 1

1,5 2060 2037 2021 2009 2000 1992

2 3472 3440 3389 3350 3319 3295

2,5 3869 4362 4412 4339 4281 4235

3 4225 4756 5214 5117 5028 4958

3,5 4548 5106 5580 5754 5634 5539

4 4841 5420 5904 6289 6139 6018

4,5 5108 5701 6191 6602 6566 6423

5 5353 5955 6447 6856 6934 6768

5,5 5578 6186 6678 7083 7255 7068

6 5785 6396 6886 7287 7537 7331

High values of ER (ER> 4) imply low oxygen supplied to the 
reactor therefore there is not enough oxygen for the combustion 
of fixed carbon (FC) and pure carbon begins to appear as a by-
product. In other words, at ER> 4 the process tends to be pyrolysis 
that produces carbon, gases, and ash.

In general, mixtures rich in H2 and CH4 have a better conversion 
efficiency due to their high calorific values, compared with that of 
CO.

Conclusion
•	 To obtain mixtures of gases rich in hydrogen it is 

necessary to carry out the process in an environment rich 
in water vapor.

•	 The best conditions to obtain mixtures rich in hydrogen 
are with high values of the ER.

•	 In general, the production of different combustible gases 
is more sensitive to variations in the ER than to variations 
in the SF.

•	 To obtain a maximum calorific value and a higher HHV of 
corn straw, it is important to work with an ER 6 and an SF 
between 0.6 and 1.
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