
Page 1 of  6

Investigation of Shock-Boundary Layer Interaction 
in a Ramp Flow with MVG Under Different Turbulent 

Inflows

Yonghua Yan2, Caixia Chen1*, Fan Yang3 and Herious A Cotton2

1Tougaloo College, USA
2Jackson State University, USA
3University of Shanghai for Science and Technology, China

Introduction
Shock-boundary layer interactions (SBLI) in high-speed flows 

can significantly reduce the quality of the flow field by inducing 
large flow separation, causing flow unsteadiness and total pressure 
loss. The performance and the overall propulsive efficiency of the 
engine of a high-speed vehicle will be degraded [1-3].

MVG is a potentially new device which can alleviate or overcome 
the adverse effects of SBLI and, therefore, to improve the “health” 
of the boundary layer [4-9]. The height of MVGs are usually less 
than the boundary layer thickness (20-90% of the boundary layer 
thickness). The small size of the MVGs allows them to be embedded 
inside the boundary layer, hence reducing the parasitic drag relative 
to the conventional full size vortex generator. The improved physical 
understanding of how MVGs reduce shock-induced boundary layer 

 
separation will add significantly to the understanding of SBLI that 
dominate high-speed aerodynamics. In addition, optimized MVG 
configurations that destabilize the wake and improve the “health” 
of the boundary layer more efficiently should be studied [10-12].

In previous work [13-15], we performed numerical simulations 
of supersonic ramp flow with MVG control at M=2.5 and Re=5760 
to understand the flow structures, especially the 3D vortex 
structures, behind the MVG. The flow field around the MVG and 
surrounding areas have been studied in detail. According to the 
analysis, a dynamic vortex model was provided. The results of our 
LES also showed that there exist a series of ring-like (or Ω shaped) 
vortices [13,14,16] which are formed behind MVG and then travel 
downstream. Furthermore, it is pointed out that the shock waves at 
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Abstract 
MVG (micro vortex generator) is a potentially new device which can alleviate or overcome the adverse effects of SBLI (Shock-

boundary layer interaction) and improve the “health” of the boundary layer. In this paper, the SBLI in a ramp flow with MVG under 
different inflow conditions is investigated by LES (large eddy simulation). Three turbulent inflows with different boundary layer 
thickness are generated based on turbulent profiles obtained from DNS (Direct numerical simulation) of transition. The numerical 
results show that the interaction between ring-like vortices generated by MVG and the ramp shock is influenced by these different 
inflow conditions. With lower boundary layer thickness, the ring-like vortices are less distorted and thus more stronger when they 
travel to the ramp corner. The more regular and stronger ring-like vortices have more capability to eliminate or distort the strong 
ramp shock wave. Moreover, it confirms that ring-like vortices generated by MVG, and not the lower turbulent boundary layer, is 
dominant in flow separation reduction.
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the ramp corner are weaken substantially under the interaction of 
boundary layer contains ring-like vortices at the upper bound [17].

To confirm that the series of ring-like vortices generated by 
MVG is the major mechanism of flow separation reduction at the 
ramp corner, the influence on SBLI under turbulent inflows with 
different boundary layer thickness (or different relative heights 
between the MVG and the inlet turbulent boundary layer) are 
studied. The rest of the paper is organized as follows: In Sec.2, the 
numerical methods we used are briefly introduced. In Sec. 3, the 
flow structures especially the ring-like vortices are introduced. 
The influence on the ring-like vortical structure with different inlet 
flows are discussed; in Sec. 4. The special SBLI between the ring-
like vortices and ramp shock wave under different inlet flows are 
studied; in Sec. 5. A summary of the present study is provided.

Numerical Methods, Grids and Turbulent Inflows

To reveal the mechanism and get deep understanding of the 
mechanism of MVG, high order DNS/LES is necessary. Our LES 
solved the unfiltered form of the Navier-Stokes equations with 
the 5th order bandwidth-optimized WENO scheme at M=2.5 and 
Re=5760.

The governing equations are the non-dimensional Navier-
Stokes equations in conservative form as follows:
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in which p denotes the pressure, e is the inner energy and T 
represents the temperature. The dynamic viscosity is given by 
Sutherland’s equation [19].
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Non-dimensional variables are defined as follows:

where the variables with ‘’  are the dimensional counterparts.

Since the domain is not regular, the Navier-Stokes equations in 
curvilinear coordinate system are actually solved. Considering the 
following grid transformation, 
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the Navier-Stokes equations can be transformed in generalized 
coordinates
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The domain of the fluid flow with the MVG is illustrated in 
Figure 1. The grid numbers for the whole system is 137(spanwise) 
×192(normal) ×1600(streamwise). Parallel computing is used for 
this 3D LES [20]. Detail configurations of MVG and the grids can be 
found in [13].

Figure 1: The schematic of the flow domain - MVG and the Ramp.

The adiabatic, zero-gradient of pressure and non-slipping 
conditions are adopted at the wall. To avoid possible wave 
reflection, the non-reflecting boundary conditions are used on the 
upper boundary. The boundary conditions at the front and back 
boundary surfaces in the spanwise direction are treated as the 
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periodic condition. The outflow boundary conditions are specified 
as a kind of characteristic-based condition, which can handle the 
outgoing flow without reflection.

To generate the true turbulent inlet, turbulent profiles are 
obtained from previous DNS simulation and used as the time 
dependent inflow [21]. After a short range of development, the 
inflows generated in the upstream of the MVG are fully developed 
turbulent flows.

The parallel computation is accomplished through the Message 
Passing Interface (MPI) together with domain decomposition in the 
streamwise direction (Figure 2). 

Figure 2: Domain decomposition along the streamwise direction.

Ring-Like Vortices Generated by MVG

In the downstream, there exists a chain of ring-like vortices 
behind the trailing-edge of MVG. The mechanism of these ring-like 
vortices was investigated both numerically and analytically [14,15]. 
The boundary layer shed from the MVG causes momentum deficit. 
The momentum deficit forms a cylindrical high-shear (HS) layer 
behind the MVG. The HS layer has inflection surfaces which cause 
Kelvin-Helmholtz (KH) like instability which generates the ring-like 
vortices [15]. The existence of the ring-like vortices was verified by 
Lu’s and Sun’s experiments [13] recently.

In this work, three simulations are conducted with the different 
turbulent inflows described above. The boundary layer thicknesses 
of the inflows obtained in this study are given in Table 1. The 
shape factors of the boundary layers in front of MVG are 1.33, 
1.42, 1.46 respectively, which indicate that the inflows evolve to 
fully developed turbulent flows. The vortex structures around the 
MVG in all the three cases are given in Figure 3. Ring-like vortical 
structure is observed in all cases.

Table 1: flow parameters of the three inlet flows (h is the height of MVG).

Case # 1 2 3

BL thickness, δ 2.751h 1.120h 0.598h

Displacement 
Thickness, δ* 0.394h 0.195h 0.104h

To visualize the vortex structures in the field, the 2λ  method 
[22,23] is used to capture the iso-surfaces of vortices. In this 
method, 

2λ  is the second eigenvalue of the 3 × 3 matrix comprised 
of velocity gradient, i.e.,

                                       ΩΩ+= :: SSM                                  (7)

where the 3 × 3 tensors 

 [ ] ( / / ) / 2ij i j j iS u x u x= ∂ ∂ + ∂ ∂ and 
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Once the ring-like vortices are generated, they will be 

continuously distorted and enlarged due to complicated 
interaction within the boundary layer. Although the difference 

among the turbulent inflows does not give different mechanisms 
on the generation of the ring-like vortices [16], the ring-like vortex 
structures are significantly influenced when they travel to the 
ramp corner. Figure 3 shows the ring-like vortex structures at the 
ramp’s corner in the three cases. It shows that the ring-like vortices 
line up regularly when the boundary layer thickness of inflow is 
smaller. With smaller inflow boundary layer thickness, there is 
less distortion applied on the vortex structure so that the ring-like 
vortices are relatively regular.

(a)

(b)

(c)
Figure 3 : Vortex structure behind MVG shown by iso-surface of 
2= -0.002 (a). Case 1. (b). Case 2. (c). Case 3.
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Figure 4 also shows that the ring-like vortices are much 
stronger when they travel to the ramp corner where involves the 
interaction with the ramp shock. It is normal since less interaction 
with the lower boundary layer has made the ring-like vortices in 
case 3 less distorted and remain more stronger. In [12] we already 
showed that when strong ring-like vortex penetrate the shock 
wave, the shock wave will be cut off at the location where it meets 
the ring-like vortex. Although the heights of the ring-like vortices in 
the three cases are almost the same at the ramp corner, the more 
regular and stronger ring-like vortices have more ability to reduce 
the ramp shock.

(a)

(b)

(c)
Figure 4 : Vortex structure at the ramp corner shown by iso-
surface of 2= -0.002 (a). Case 1. (b). Case 2. (c). Case 3.

Analysis on SBLI

When the ring-like vortices travel downstream, they will 
eventually interact with the ramp shock wave. The influence 
of interaction on ring-like vortices and ramp shock wave were 
investigated carefully. In the three cases, the ring-like vortical 
structures are quite robust. They never break down during the 
interaction. Moreover, they are influenced marginally by the strong 
shock wave. The interaction is a smooth process to the ring-like 
vortex structure which is generated by MVG.

However, the 3D ramp shock wave in every case is blurred at 
the ramp corner substantially. During the interaction with ring-like 

vortices, the ramp shock wave is badly distorted. In Figure 5, we 
can see that the quantity of the shock wave is reduced substantially 
at the region where the interaction happens. The upper part of 
the shock wave keeps well in the shape. However, the bottom part 
suffers severe interaction. With the existence of ring-like vortices 
at upper boundary layer, the separation is reduced due to the 
interaction.

Figure 5: Iso-surface of pressure gradient in case 1 (transient).

(a)

(b)

 (c)
Figure 6: Time averaged spanwise vorticity distribution and 
contour of pressure gradient on the central plane (a). Case 1. (b). 
Case 2. (c). Case 3.
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The different turbulent inflows with different boundary layer 
thickness do bring difference on the interaction between the ring-
like vortices and the ramp shock. With lower inflow boundary layer 
thickness (or relative higher MVG), the ramp shock wave is more 
reduced by the ring-like vortices. In Figure 6, the time averaged 
spanwise vorticity distributions and the contour of pressure 
gradient on the central spanwise plane(x=0) from all the 3 cases 
are given. The ramp shock wave can be captured by those contour 
lines of pressure gradient. It can be found that in case 3, the shock 
wave is almost eliminated at the corner. As a result, there will be 
less resistance to the separation induced by the ramp shock and the 
separation zone at the ramp’s corner in case 3 is reduced the most.

(a)

(b)

 

(c)
Figure 7: Time averaged iso-surface of pressure (p=2.2) at the 
ramp (a). Case 1. (b). Case 2. (c). Case 3.

Figure 7 gives the iso-surface of pressure at p=2.2 from the 
time averaged data of the cases. In Figure 6a, it shows clearly that 
the ramp’s shock wave is badly distorted and reduced where the 
interaction with ring-like vortices happens. Furthermore, when 
the boundary layer thickness of the inflow is lower, the ramp shock 
wave is more distorted and weakened.

Figure 8: The streamwise section beside the ring-like vortices.

(a)

(b)
Figure 9: Time averaged spanwise vorticity distribution and 
contour of pressure gradient on the streamwise plane beside the 
ring-like vortices (a). Case 1 (b). Case 3.

For comparison, time averaged spanwise vorticity distributions 
and contour of pressure gradient on the streamwise plane beside 
the ring-like vortices (see Figure 8, the plane in green) of case 1 and 
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case 3 are given in Figure 9. On this streamwise plane, without the 
interaction between ring-like vortices and shock wave, the shock 
wave in case 3 is less distorted and the separation zone becomes 
larger than that in case 1. It’s normal for the larger separation zone 
in case 3 on that plane since the inlet turbulence intensity is lower. 
However, it strongly emphasized the role of ring-like vortices on the 
flow separation reduction in the MVG controlled supersonic ramp 
flow. With lower inflow boundary layer thickness, the ring-like 
vortices will be less distorted and thus become stronger when they 
travel to the ramp corner. The stronger and more regular ring-like 
vortices have more potential to eliminate the ramp shock wave and 
reduce the corresponding flow separation induced by the shock 
wave. 

Conclusion

LES (large eddy simulation) is conducted on the MVG controlled 
supersonic ramp flow under the influence of different inflow 
conditions. Three turbulent inflows with different boundary layer 
thickness are generated in front of the MVG. The different inflow 
conditions do not influence the mechanism of the generation of 
vortical structures in downstream of MVG but have significant 
influences on the topology and intensity of the ring-like vortical 
structure generated by MVG. More important, it is found that the 
interaction between ring-like vortices and the shock wave at the 
ramp corner which controls the boundary layer separation is also 
influenced. With lower boundary layer, the ring-like vortices are 
less distorted and remain stronger when they propagate to the 
ramp shock wave. The stronger ring-like vortices thus have more 
capability to eliminate or distort the strong ramp shock wave. 
Accordingly, the induced separation zone is more reduced. 
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