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Introduction

Reproductive Aging and the Concept of the 
Reproductive Immunological Microenvironment (RIM)

Although life expectancy has dramatically increased over 
the last century, reaching around 85 years for women, the age at 
menopause has remained relatively constant at about 50 years 
[1]. Besides their reproductive function, the ovaries play a major  

 
role in the secretion of female hormones and, therefore, are 
involved in various homeostatic processes. With the advent of new 
technologies that extend people’s lives, we now face an increase 
in the number of years during which women live in poor health 
(Figure 1). Thus, reproductive aging is not only relevant from a 
reproductive standpoint but also for the overall health of women in 
the second half of their lives.

Abstract 
Beyond its roles in gametogenesis and hormone secretion, the ovary encompasses a complex reproductive immunological microenvironment 

(RIM). This microenvironment is composed of diverse immune cells, including macrophages, T cells, dendritic cells, natural killer (NK) cells, and 
mast cells. These cells support oogenesis, steroidogenesis, and tissue remodelling. Macrophages stand out among these cells due to their functional 
plasticity and ability to integrate endocrine, immune, and neural signals. Thus, they participate in virtually all aspects of ovarian physiology. Aging 
disrupts this finely tuned environment through “inflammaging,” a chronic, low-grade systemic inflammatory state characterized by elevated 
proinflammatory mediators and tissue fibrosis. In the ovary, inflammaging is associated with structural degeneration, fibro inflammation, and the 
accumulation of foam cells, which perpetuate inflammation and impair function. Additionally, emerging evidence highlights the role of extracellular 
vesicles and microRNAs (miRNAs) in regulating intercellular communication within the ovarian niche. This influences both follicular development 
and the decline in oocyte quality associated with aging. This mini-review discusses the interplay between immune modulation, inflammaging, and 
microRNA-mediated regulation in the ovarian microenvironment, emphasizing its implications for reproductive aging.
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The female reproductive system is one of the first systems to 
show evident signs of physiological aging. Particularly, the most 
affected organ is the ovary, which undergoes profound changes 
that ultimately lead to the cessation of reproductive activity. This 
process is characterized by a marked reduction in both the quantity 
and quality of oocytes, a phenomenon known as the maternal age 
effect [2]. In a typical menstrual cycle, gonadotropin-releasing 
hormone (GnRH) from the hypothalamus stimulates the pituitary 
to release follicle-stimulating hormone (FSH) and luteinizing 
hormone (LH), which drive ovarian production of estrogens, 
progesterone, inhibin, and anti-Müllerian hormone (AMH). As 
women age, follicular depletion reduces these hormones, disrupting 
feedback to the pituitary and elevating FSH and LH levels. This 
leads to reproductive aging markers-hormonal changes, irregular 
cycles, subfertility, infertility, hot flashes, and sleep disturbances-
culminating in menopause, which increases risks of depression, 
osteoporosis, cardiovascular disease, and premature mortality [3].

Reproductive aging is associated with aneuploidy, spontaneous 
miscarriages, birth defects, and infertility, and these consequences 
represent a significant social concern, as more and more women 
worldwide are delaying motherhood due to non-medical reasons 
[4]. In this regard, ovarian failure due to aging in women of 
advanced reproductive age is one of the main causes of global 
infertility (“Female Age-Related Fertility Decline,” 2014) [5], where 
the success of assisted reproductive techniques is compromised in 
terms of low fertilization and blastulation rates as well as a high 
rate of aneuploidies [6], reflected in alarming statistics: up to one 
in four patients undergoing in vitro fertilization will have a poor 
reproductive prognosis [7].

Recently, the concept of the Reproductive Immunological 
Microenvironment (RIM) has emerged as a transformative 
framework, integrating the immune dynamics of reproductive 
tissues like the ovarian stroma and endometrium [8]. By offering a 
macroscopic perspective, the RIM enables a deeper understanding 

of immune-reproductive interactions. This mini review explores 
the ovarian immunological microenvironment and its changes 
during aging, highlighting its implications for reproductive health.

The Ovarian Immunological Microenvironment: 
Composition and Physiological Functions

The ovary serves dual roles: producing and releasing oocytes 
for fertilization (gametogenic function) and secreting hormones 
like estrogens and progesterone to support zygote implantation 
(endocrine function) [9]. Historically, ovarian research focused 
on follicle formation, the ovary’s functional unit. However, recent 
evidence underscores the immune response’s critical role in 
modulating ovarian function, opening new research frontiers 
[10]. Structurally, the ovary comprises a cortical zone, housing the 
ovarian stroma (loose connective tissue, fibroblasts, thecal cell 
precursors, follicles at various stages, atretic follicles, and corpora 
lutea), and a medullary zone, rich in vascularization, innervation, 
and muscle-type cells [11]. In this context, both resident immune 
cells and those recruited from blood vessels into the follicles can 
be found.

Immune cells support oogenesis, estrogen synthesis, and 
antigen presentation [10, 11]. Since Finn (1986) proposed 
ovulation as an inflammatory process, accumulating evidence has 
highlighted immune cells’ roles in both generating and regulating 
this physiological inflammation [12, 11]. Follicular fluid not 
only represents the microenvironment of the oocyte but is also 
associated with its quality [13]. Therefore, the characterization of 
immune cells recovered from the follicular fluid of patients who 
respond to ovarian stimulation constitutes a highly representative 
approach to evaluating changes in the ovarian microenvironment. 
Here we can find immune cells like macrophages, neutrophils, and 
T lymphocytes, with natural killer (NK) cells and mast cells less 
common [13, 14, 11].

Macrophages, acting as resident “sentinels,” integrate nervous, 

Figure 1: Over the last 150 years, life expectancy has increased dramatically, while the age of menopause has remained relatively constant, 
around 50 years.
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immune, and endocrine signals, modulating cytokine secretion and 
ovarian function [15, 16]. Mast cells in the ovarian hilum produce 
histamine, a mediator of follicle development and ovulation 
[14]. NK cells, specifically the CD56⁺CD16⁻ subset, promote 
angiogenesis via vascular endothelial growth factor (VEGF) 
production [17]. Dendritic cells (DCs) in follicular fluid correlate 
with gonadotropin response, suggesting a role in ovulation, though 
their precise functions require further study [18-20]. Regulatory 

T cells (CD4⁺Foxp3⁺) prevent premature luteal regression and 
support hormone secretion and follicle development in cases of 
premature ovarian insufficiency [21, 22]. These immune dynamics, 
summarized in Table 1, lay the groundwork for understanding 
how alterations in the ovarian microenvironment contribute to 
aging-related reproductive decline, as explored in subsequent 
sections. Given their relevance, we will focus on the contribution of 
macrophages to ovarian function throughout this work.

Table 1: Key Immune Cells in the Ovarian Microenvironment.

Cell Type Key Functions References

Macrophages Cytokine secretion, tissue remodeling
Mosser & Edwards, 2008

Nagamatsu & Schust, 2010

NK Cells Angiogenesis (VEGF production) Fainaru et al., 2010

Tregs Prevent luteal regression, support folliculogenesis Gao et al., 2022; D. Liu et al., 2020

Mast Cells Histamine production for ovulation Morikawa et al., 1981

Dendritic Cells Potential role in ovulation Fainaru et al., 2012; Shi et al., 2015; T. Zhang et al., 2017

Central Role of Macrophages in Ovarian Function

Macrophages are the predominant immune cells in the ovary, 
driving essential processes like follicle growth, ovulation, atresia, 
and corpus luteum formation and regression [23, 24]. Their diverse 
roles include phagocytosis during atresia and luteolysis, as well 
as matrix dissolution and tissue remodeling during ovulation and 
corpus luteum development [25, 26]. A key macrophage function is 
secreting growth factors and cytokines, such as epidermal growth 
factor (EGF), insulin-like growth factor (IGF), vascular endothelial 
growth factor (VEGF), and transforming growth factor (TGF)-α and 
-β, which regulate primordial follicle development via paracrine 
signaling. Although granulosa and theca cells also produce these 
factors, macrophages, as hematopoietic cells, generate them in 
higher concentrations, underscoring their unique contribution 
[27].

Macrophages also secrete extracellular vesicles (EVs), 
nanometer-sized lipid bilayer vesicles that transport proteins, 
lipids, or RNA for intercellular communication [28]. EV content 
varies with physiological or pathological contexts, enabling diverse 
roles in ovarian tissue homeostasis [29]. This plasticity allows 
macrophages to adopt specialized activated profiles: M1 (pro-
inflammatory, CD11c⁺) and M2 (anti-inflammatory or regulatory, 
CD206⁺), with murine studies showing M1-like macrophages 
dominating in inflammatory contexts and M2 macrophages 
supporting folliculogenesis [30, 31, 15, 32].

Changes in the Immunological Microenvironment 
During Aging: The Phenomenon of “Inflammaging”

Aging is characterized by structural degeneration, 
environmental imbalance, functional decline, and reduced 
adaptability, resilience, and resistance [33]. In recent years, 
growing evidence has linked inflammation to aging, with the term 

“inflammaging”-coined by Franceschi et al. in 2000-describing 
chronic, low-grade inflammation from immune dysregulation 
[34]. During aging, cells display altered metabolism and mediator 
expression, secreting pro-inflammatory cytokines, chemokines, and 
matrix metalloproteinases that facilitate cell-microenvironment 
communication and immune infiltration [33]. Inflammaging is a 
hallmark of normal aging and age-related pathologies, including 
ovarian decline [35]. For instance, Duncan et al. identified an age-
associated cytokine profile in follicular fluid from women aged 
27.7-44.8 years, with IL-3, IL-7, IL-15, TGFβ1, TGFβ3, and MIP-1 
levels rising with age and inversely correlating with anti-Müllerian 
hormone [13].

Inflammation also drives fibrosis, where cytokines like 
IL-1β, IL-6, and TNF-α promote profibrotic effects, leading to 
tissue and vascular remodelling in aged ovaries [36]. This “fibro 
inflammation” extends beyond ovaries to general tissue aging and 
may predict outcomes in assisted reproduction [13]. Aged ovaries 
exhibit profound changes: low estrogen, follicular depletion, and 
fibro inflammation. Specifically in ovaries, fibro inflammation 
accompanies foam macrophages (FMs)-giant cells with lipid-filled 
cytoplasm [37, 27]. During the luteal phase, phagocytes clear 
damaged cells for homeostasis, but failure in aged ovaries increases 
FM frequency and fibrosis [37]. Macrophages show altered 
metabolism, elevated inflammatory mediators, and fibrosis in 
aging tissues, including ovaries, where our group and others noted 
“foamy” macrophages in murine models of advanced reproductive 
age [37-41].

Foam Macrophages and Their Relevance in Ovarian 
Aging

Macrophage differentiation into FMs involves LDL influx-efflux 
dysregulation and PPARγ’s role in metabolism, inflammation, 
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and cholesterol efflux via LDL receptors and ABCA1 [42]. Chronic 
phagocytosis of apoptotic bodies or lipids in inflammatory contexts 
leads to non-digestible intracellular accumulation, forming FMs 
[43]. Lipid-laden FMs secrete pro-inflammatory cytokines (IL-
1α, IL-6, TNF-α), creating a feedback loop that sustains chronic 
inflammation. Efferocytosis, essential for homeostasis, becomes 
pathological when excessive. Anti-inflammatory therapies, such 
as EV injections from anti-inflammatory macrophages in aged 
mice, restore ovarian function, fertility, and oocyte quality while 
reducing cytokines [44]. Murine studies distinguish resident 
ovarian macrophages (self-proliferating) from blood-recruited 
monocytes [45]. Aging depletes residents, replacing them with 
monocyte-derived M1 macrophages that amplify inflammation [46, 
47]. Future research should explore macrophage population shifts, 
functions, and metabolism to elucidate their role in ovarian aging.

Modulation by miRNAs in Follicular Development and 
Ovarian Aging

Folliculogenesis, encompassing reactivation, selection, 
growth, atresia, and ovulation, relies on precise gene regulation by 
endocrine and paracrine factors [48]. MicroRNAs (miRNAs), small 
(~22-nucleotides), non-coding RNAs, regulate mRNA translation 
by targeting messenger RNAs via sequence complementarity, 
modulating gene expression critical for follicular development [49].

Essential for development, differentiation, and homeostasis, 
miRNA biogenesis machinery disruptions are lethal in mouse 
embryos [49, 50]. Beyond intracellular roles, miRNAs are secreted 
in stable forms within small extracellular vesicles (sEVs; 30-100 
nm) and microvesicles (MVs; 100 nm-1 µm) in body fluids like 
serum and follicular fluid (FF), acting as hormone-like signaling 
molecules [51]. These extracellular miRNAs facilitate intercellular 
communication, influencing gene expression under physiological 
and pathological conditions [52]. Notably, macrophages-as 
predominant immune cells in the ovary-secrete EVs containing 
miRNAs, which could exert paracrine effects on nearby cells, 
including other macrophages, potentially modulating inflammatory 
responses during ovarian aging. In this regard, both in vitro and in 
vivo studies have revealed that these vesicles can be taken up by 
granulosa cells, suggesting a role in intercellular communication 
[52].

Most primordial follicles remain in a dormant state, while a 
small number become activated and recruited into the growing 
pool. Among these growing follicles, only one will be selected as 
the dominant follicle, while the rest degenerate and become atretic. 
Specific families and clusters of miRNAs have been identified as 
being involved in dominant follicle development, such as miR-
21, the let-7 family, and the miR-17-92 cluster [53-55]. Likewise, 
together with other factors and hormones, miRNAs appear to play 
a crucial role during the atresia process. Some of the most well-
characterized miRNAs include the let-7 family, miR-22, and the 
miR-23-27-24, miR-183-96-182, and miR-17-92c clusters [55]. In 
an in vitro study, overexpression of miR-23 and miR-27 in human 
granulosa cells was found to promote apoptosis via the FAS-FASL 
pathway, through the regulation of their target gene SMAD5 [50].

FF, derived from plasma and granulosa/theca cell secretions, 
shapes oocyte development [56]. miRNAs in FF EVs mirror those 
in granulosa and cumulus cells, suggesting their potential as 
biomarkers for ovarian function [57]. In women with reduced 
ovarian reserve or advanced maternal age, FF miRNA profiles (e.g., 
hsa-miR-21-5p, hsa-miR-134, hsa-miR-190b, hsa-miR-99b-3p) 
differ, correlating with aging and oocyte quality [58, 59]. These 
findings confirm previous studies on the role of advanced maternal 
age in shaping the composition of follicular fluid microenvironments 
and provide further evidence supporting the use of extracellular 
miRNAs in FF as potential biomarkers for assessing oocyte quality.

Moreover, various research groups have reported the effects of 
different miRNAs on granulosa cell function and survival, identifying 
altered miRNAs in women with premature ovarian failure, both 
at early stages and in its fully manifested form [60, 61]. Among 
others, it is noteworthy that overexpression of miR-133b inhibits 
estradiol production by granulosa cells, whereas overexpression of 
miR-3061-5p inhibits their proliferation-both leading to premature 
ovarian failure [62, 63]. These miRNA-mediated changes may 
interact with the ovarian immunological microenvironment, 
potentially modulating macrophage activity during inflammaging, 
as explored later.

Conclusion and Future Perspectives

The ovary is not only a heterogeneous organ in terms of the 
cell populations it contains, but also in terms of time, throughout a 
woman’s life. Until now, the mechanism of ovarian reserve decline 
has not been fully understood. However, experimental evidence to 
date indicates that ovarian aging is accompanied by an increase in 
the sustained fibroinflammatory response over time and a decrease 
in oocyte quality.

Some of the evidence includes: (1) Transcriptomic analyses 
show an increase in the expression of genes associated with the 
inflammatory response in the ovaries and follicles recovered from 
women of advanced reproductive age compared to younger women 
(Duncan et al., 2017; [47]; (2) Ovaries of advanced reproductive 
age exhibit excessive collagen deposits in the ovarian stroma 
that are consistent with tissue fibrosis [37]; (3) Histological 
sections of ovaries from aged mice revealed the presence of foamy 
macrophages, which may be associated with chronic inflammatory 
processes [37]. Further studies are still needed to investigate 
the impact of the immune response on ovarian stromal cell 
function and follicular development in aged ovaries. Knowledge 
of the generation of chronic inflammation associated with aging, 
as well as other ovarian pathologies such as polycystic ovary 
syndrome and premature ovarian failure, is advancing in a new 
immunomodulatory therapeutic approach.

Regarding miRNAs, they regulate various biological processes 
in the ovary, including folliculogenesis, ovulation, and hormone 
production. Their association with reproductive disorders, such as 
polycystic ovary syndrome and premature ovarian failure, highlights 
the importance of miRNAs as modulators of ovarian homeostasis 
and as mediators of pathological alterations. Furthermore, 
the identification of specific miRNA profiles associated with 
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these conditions offers a promising opportunity for their use as 
biomarkers, not only for diagnosis but also for the early detection of 
ovarian pathologies. Future research in this field will allow a better 
understanding of their function and the exploitation of their clinical 
potential in the management of reproductive disorders. Integration 
of inflammatory signatures with miRNA profiling may provide 
a powerful tool to confront the reproductive impact of delayed 
childbearing.
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