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Abstract 
Sleep plays a crucial role in maintaining brain health and cognitive function. It is well-known that disrupted sleep is a common symptom of 

Alzheimer’s disease (AD). However, emerging evidence suggests that even suboptimal sleep can increase the risk of developing AD. The deacetylase 
Sirtuin 1 (Sirt 1), which is encoded by the SIRT1 gene, has been found to influence sleep by affecting wake-sleep neurotransmitters and somnogens. 
Both animal and human studies have provided support for a complex relationship between sleep, Sirt 1/SIRT1, and AD. Various hypotheses have 
been proposed to explain the significant impact of Sirt 1/SIRT1 on neurons involved in promoting wakefulness and sleep, as well as their associated 
mechanisms and neurotransmitters. However, there is a lack of research investigating the interaction between sleep and Sirt 1/SIRT1 as a key 
component of sleep regulation in relation to AD pathology. In this review, we aim to explore the potential association between Sirt 1/SIRT1, sleep, 
and the development of AD. Considering that sleep is a modifiable risk factor for AD and recent studies suggest that the activation of Sirt 1/SIRT1 can 
be influenced by lifestyle and dietary interventions, further research in this area is necessary to investigate its potential as a target for the prevention 
and treatment of AD.
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Introduction

Insufficient sleep or poor sleep quality has been linked to a 
wide range of negative health outcomes and subsequent economic 
burdens [1]. Research has shown that sleep plays a crucial role in 
brain health and the maintenance of cognitive abilities by regulating 
neuroplasticity, information processing, and memory consolidation 
[2]. Older adults often experience suboptimal sleep, characterized 
by difficulties in falling and staying asleep, frequent awakenings, and 
a decrease in restorative slow-wave sleep and rapid eye movement 
(REM) sleep [3]. The prevalence of these sleep disturbances tends 
to increase with age and can be attributed to various factors such as 
changes in sleep behavior due to aging, stress, anxiety, medication 
use, underlying diseases, or a combination of these factors [4].

A growing body of literature has focused on the relationship 
between sleep disturbances and neurodegenerative diseases. 
Patients with Alzheimer’s disease (AD) often exhibit clinical  

 
symptoms of sleep abnormalities, with increased fragmentation 
being one of the earliest reported symptoms or complaints [5]. 
Electroencephalogram (EEG) recordings in AD patients have 
shown a significant reduction in slow-wave sleep and REM sleep, 
as well as disruptions in arousal in response to external stimuli 
[6]. Additionally, the sleep-wake cycle in AD patients is frequently 
disrupted by nocturnal awakenings and reduced daytime 
wakefulness following naps [7-9].

The alterations in sleep architecture are believed to worsen 
the pathology of cerebral AD. Specifically, during deep sleep, 
there is a reduced clearance of Ab-amyloid in the brain, leading to 
enhanced deposition and ultimately contributing to the worsening 
of cognitive symptoms [10]. However, accumulating evidence 
suggests that there is a bidirectional relationship between sleep 
and AD. It is not just a symptom of AD, but poor-quality sleep, 
insufficient sleep, and excessive daytime napping are also proposed 
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to increase the risk of developing AD in the future [11]. A meta-
analysis conducted in 2017 supports this notion, indicating that 
individuals with sleep disturbances have a 1.55 times higher risk 
of developing AD compared to those without sleep disturbances. 
Additionally, poor sleep accounts for up to 15% of the population 
attributable risk for AD [12]. It is important to note that this 
estimate may underestimate the true extent of the problem, as 
many of the studies included in the analysis relied on self-reported 
sleep measures rather than objective assessments. 

Sleep is regulated by two processes: the homeostatic process 
and the circadian process. These processes control various aspects 
of sleep behavior and associated variables. The protein Sirtuin 1 

(Sirt 1) is involved in both the circadian rhythm and the homeostatic 
process of sleep. It is associated with wake-sleep neurotransmitters 
and somnogens, further highlighting its role in regulating sleep 
[13,14]. Accordingly, the role of Sirt 1 in cell survival is of great 
significance, as it is believed to provide protection against the 
deposition of Ab-amyloid and the development of AD-related 
tau pathology [15,16]. In this review, we aim to explore the 
potential connections between Sirt 1, its encoding gene SIRT1, 
sleep regulation, and AD. Additionally, we will discuss various 
activators of Sirt 1 in the context of AD prevention, and propose 
recommendations for future research that may contribute to a 
deeper understanding of the intricate and multifaceted relationship 
between Sirt 1/SIRT1, sleep, and the etiology of AD (Figure 1).

Figure 1:

Sirtuins, also referred to as Silent information regulator 2 
(Sir2) proteins, were initially discovered in yeast (Saccharomyces 
cerevisiae). They belong to a conserved family of nicotinamide 
adenine dinucleotide (NAD)-dependent protein deacetylases and 
are classified as class III histone deacetylases (HDACs). Sirtuins play 
a crucial role in the removal of acetyl groups from both histones and 
non-histone proteins, including transcription factors and enzymes. 
Among the seven sirtuins found in humans and other mammals, 
Sirt 1 is the most extensively studied and will be the main focus 
of this review [17]. The SIRT1 gene, responsible for encoding Sirt 
1, is located on chromosome 10 (Chr10q21.3) in humans. These 
enzymes, known for their potential anti-aging effects, tend to 
decrease in levels as individuals age [18]. Consequently, they are 
considered promising candidates for the investigation of age-related 
diseases such as Alzheimer’s disease (AD) [18,19]. Sirt 1 has been 

associated with various biological processes in mammals, including 
aging, calorie restriction, metabolism, cancer, stress responses, 
chromosomal stability, cell differentiation, and the regulation of 
the circadian clock [20,21]. The exact mechanisms underlying the 
decline of Sirt 1 with age remain unknown. However, its reduction 
has been observed in both human and animal models during 
midlife, a period when age-related changes in sleep disorders and 
wakefulness commonly occur [22,23].

Methods and Materials
The following databases were searched for this review article: To 

find the most significant comparative research on the relationship 
between sleep and brain health, its therapeutic options, search 
engines like Google Scholar, PubMed, and Directory Open Access 
Journal databases. Keywords like sleep, brain health, slow wave 
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sleep, NREM sleep, amyloid precursor protein, Sirtuin, Alzheimer’s 
disease, sleep disorders, retinoic acid, amyloid production, and 
drugs are also used. After assessing the quality and strength of the 

findings, meta-analyses, systematic reviews, large epidemiological 
studies, and randomized control trials were used as the main 
sources of information where they were available (Figure 2).

Figure 2:

Results
Alzheimer

Regarding Alzheimer’s disease, Sirt 1 has been proposed to 
have a potential protective effect by modulating the acetylation 
homeostasis of proteins and enzymes associated with the disease 
[19,24]. One of the hallmarks of AD is the accumulation of Ab-
amyloid peptides in the brain, resulting from the sequential 
cleavage of the amyloid precursor protein (APP) by the enzyme 
beta-secretase. Conversely, activation of alpha-secretase suppresses 
Ab-amyloid production [16]. Sirt 1, deacetylation of transcriptional 
factors related to alpha-secretase and beta-secretase enzymes, may 
reduce the burden of Ab-amyloid in the brain [15,16]. For instance, 
Sirt 1 directly promotes the transcription of the gene encoding 
alpha-secretase. This is achieved by removing acetyl groups from 
the retinoic acid receptor beta, a key regulator of alpha-secretase 
transcription. Additionally, the induction of alpha-secretase by Sirt 
1 activates the Notch pathway, which plays a role in the repair of 
damaged neurons [15].

Sirt 1 has been found to play a role in the deacetylation of tau, 
which leads to the ubiquitination of hyperphosphorylated tau. 
This process facilitates the proteasomal degradation of tau and 
prevents the formation of tau tangles, a hallmark of Alzheimer’s 
disease (AD) [25]. Studies have shown that Sirt 1 is expressed in 
neurons of the hippocampus, a brain region critical for memory and 
learning functions that are impaired in AD [21,26]. In AD, there is 
a reduction in Sirt 1 expression in the brain, which correlates with 
the accumulation of AD pathology and disease progression [27,28]. 
Additionally, cognitive disorders have been observed in SIRT1 
knockout mice [20], and dysregulation of the Sirt 1 pathway has 
been implicated as a critical mediator of AD pathogenesis in animal 
models [29]. Importantly, animal studies have demonstrated that 
SIRT1 gene expression in the hippocampus and other brain regions 

can be increased through interventions such as dietary restriction 
or physical exercise, suggesting potential approaches for enhancing 
Sirt 1-mediated neuroprotection [18,30]. 

Sirt 1 and Sleep

The relationship between Sirt 1 and sleep will be discussed in 
more detail later. Sleep in mammals is categorized into different 
stages based on cortical electroencephalography (EEG) activity, 
including REM sleep and non-REM (NREM) sleep, which consists of 
three sub-stages: N1, N2, and N3 (also known as slow-wave sleep). 
According to conventional sleep models, wake-promoting neurons 
(WPNs) and sleep-promoting neurons (SPNs) create a “switch” 
system in which they compete for network dominance. In the 
human brain, WPNs and SPNs are primarily located in the brainstem 
and diencephalon, accounting for less than 1% of neurons. These 
neurons are associated with different neurotransmitters and have 
opposing modulatory effects [31].

SPNs are believed to play a role in controlling sleep by inhibiting 
wake-promoting centers, such as GABAergic neurons in the 
ventrolateral preoptic nuclei and melanin-concentrating hormone 
(MCH)-producing neurons in the diencephalon [33,34]. This 
suggests that the regulation of sleep involves multiple molecular 
mechanisms and genes, rather than a singular one. Sleep physiology 
can be examined from two different perspectives: 1) the timing of 
sleep, which is regulated by the circadian process (process C) in the 
brain and is independent of sleep itself, and 2) the duration of sleep, 
which is influenced by the homeostatic, sleep-dependent process 
(process S) [35,36]. There is a potential interaction between process 
C and process S in the regulation of sleep [37]. In humans, process 
C is demonstrated by REM sleep and exhibits a circadian rhythm 
that closely correlates with body temperature. These processes are 
minimally affected by sleep and wakefulness within the past 24 
hours [38]. In contrast, external factors such as prior wake or sleep 
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can impact process S, which determines N3, and slow-wave activity 
in EEG [35].

The Circadian System

 The circadian system plays a crucial role in regulating sleep 
timing. Circadian clock regulators are divided into positive and 
negative categories. Brain and Muscle ARNT-Like 1 (BMAL1; also 
known as Aryl hydrocarbon receptor nuclear translocator-like 
protein 1, ARNTL) and Circadian Locomotor Output Cycles Kaput 
(CLOCK, and its paralogue Neuronal Per-Arnt-Sim domain protein 
2, NPAS2) are positive regulators in mammals. These ‘master genes’ 
drive rhythmic gene expression and control biological functions 
under circadian regulation. BMAL1: CLOCK protein heterodimers 
initiate the transcription of target genes, including those encoding 
periods (Pers) and cryptochromes (Crys), which are negative 

circadian clock regulators. The resulting proteins form dimers that 
inhibit further transcription of BMAL1 and CLOCK (Figure 3). This 
negative transcriptional feedback loop allows the cycle to repeat 
through a low level of transcriptional activity, thereby creating 
a 24-hour rhythm in mammals [39]. CLOCK protein exhibits 
histone acetyltransferase (HAT) activity. Studies on animals have 
demonstrated that Sirt 1, with its deacetylase function, counteracts 
the HAT activity of CLOCK, subsequently influencing the expression 
of Cry1, Per1, and Per2 in mice [40-42]. Deletion of Sirt1 in 
mouse models results in disruption of circadian rhythm and an 
inability to adapt to a new light-dark cycle. The decrease in both 
SIRT1 expression and NAD+ levels with aging could be a potential 
mechanism for the weakening of circadian control in older adults 
[13].

Figure 3:

The Circadian System 

The circadian system plays a crucial role in regulating the 
timing of sleep, while the homeostatic process is responsible for 
controlling the duration of sleep. The homeostatic sleep drive, 
which is the pressure to sleep, increases as the time spent awake 
increases, and decreases during sleep, returning to a ‘baseline’ level 
after a night of good quality sleep. In cases of sleep deprivation, lost 
sleep can be compensated for by increasing the amount of sleep. 
Conversely, excessive sleep leads to a decrease in the inclination 
to sleep. The homeostatic process is considered a fundamental 
regulatory mechanism for sleep. Delta waves, with a frequency 
of 0.5-4 Hz recorded through EEG, are typically linked to N3 
(slow wave) sleep, defining deep sleep, and are controlled by the 
homeostatic process [43].

Animal studies have suggested that Sirt 1 may play a role in 

maintaining delta waves during NREM sleep [23,44]. Consistent 
with this idea, research on humans has shown that delta power in 
EEG decreases with age, which is in line with the reduced levels 
of Sirt 1 in aging individuals. It is worth noting that delta power 
is not only associated with sleep quality but also with longevity 
and metabolic complications [45,46]. Therefore, it is plausible 
to suggest that Sirt 1 contributes to sleep homeostasis, although 
the exact mechanism behind this relationship requires further 
investigation.

Satoh et al. conducted a study on transgenic mice that 
overexpressed Sirt 1 specifically in the brain (BRASTO mice) 
and found that these aged mice had higher delta power during 
NREM sleep compared to control mice. Interestingly, there was no 
difference in delta power during wakefulness, indicating that the 
aged BRASTO mice experienced higher quality or deeper sleep 
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[44]. Similarly, another study on mice with knockdown of SIRT1 
in specific brain regions (dorsomedial and lateral hypothalamic 
nuclei) showed a decrease in sleep quality [23]. A recent study in 
mice proposed that Sirt 1 may mediate sleep quality through the 
Sirt 1/Nk2 homeobox 1 (Nkx2-1)/orexin type 2 receptor (Ox2r) 
pathway, which is a major pathway involved in maintaining delta 
power during NREM sleep [44].

Sleep Disturbances

Sleep disturbances are well-established in individuals with 
dementia due to Alzheimer’s disease (AD) [47]. Importantly, 
evidence suggests that these sleep disturbances not only coexist 
with AD but also increase the risk of cognitive decline and dementia 
[11,48,49]. This is believed to occur through the modulation of 
neurobiological changes in the brain, including increased atrophy, 
accumulation of brain Ab-amyloid and tau pathology (hallmarks of 
AD), as well as reduced brain glucose metabolism [50-54]. Recent 
research indicates the significance of sleep quality in relation to the 
functioning of the glymphatic system in the brain [10]. Studies have 
shown that an increase in delta power and a decrease in heart rate 
during sleep are associated with improved glymphatic flow [55]. 
Similar to the lymphatic system in other organs, the glymphatic 
system acts as a “housekeeping” system for the brain [56], removing 
waste products such as tau oligomers and Ab-amyloid protein, 
which are linked to Alzheimer’s disease and cognitive function 
[57]. Additionally, findings from studies conducted on mice suggest 
that an increase in delta power during recovery sleep specifically 
enhances cognitive performance that relies on the prefrontal brain 
regions [58].

Changes in circadian rhythms have been observed in both 
healthy aging and age-related diseases like Alzheimer’s disease. A 
recent review has summarized evidence of age-related alterations 
in various aspects of the circadian system, including: 1) reduced 
expression of circadian-related genes like CLOCK and BMAL1, 
2) changes in structures responsible for light transmission 
and processing, such as the pupil and retina, and 3) decreased 
amplitude of rhythmic behaviors, disturbances in circadian timing, 
and an increased prevalence of sleep disorders [59]. Even in healthy 
older adults without clinical symptoms of sleep disorders, the aging 
process is associated with a decline in sleep quality and quantity, 
reduced sleep depth and intensity, compromised sleep integrity, 
and a higher frequency of daytime napping [60].

Accumulating evidence suggests that circadian rhythm 
disruption in age-related diseases, such as Alzheimer’s disease, is 
even more pronounced. This disruption has been proposed as a 
biomarker for the presence and severity of Alzheimer’s pathology 
[61]. Indeed, several key processes implicated in the development 
of Alzheimer’s disease are believed to follow a circadian rhythm, 
including cerebral blood flow, glymphatic system function, Ab-
amyloid clearance, melatonin production, and metabolism [61].

Orexin

Orexin, a substance that affects both WPNs and SPNs in the 
brain, plays a crucial role in maintaining stable sleep and wake cycles 

[66]. However, its main function seems to be in generating a signal 
that promotes wakefulness. Research suggests that orexin and its 
receptors also contribute to the development and progression of 
neurodegenerative diseases like Alzheimer’s disease (AD) [67]. 
There have been reports of dysregulation in the orexin system in 
the presence of AD pathology, leading to changes in sleep patterns 
[68,69]. In individuals with mild cognitive impairment, which often 
precedes AD, increased levels of orexin in the cerebrospinal fluid 
have been associated with impaired REM sleep [70,71]. However, 
the exact mechanism by which alterations in the orexin system 
worsen sleep in AD still needs to be clarified. It is worth noting that 
orexin also plays a critical role in regulating stress. Since stress and 
stress hormones are linked to both AD and reduced sleep quality, 
this additional function of orexin should be taken into account 
when considering its relationship with sleep and AD.

The gene encoding the orexin type 2 receptor (OX2R) is a key 
target of Sirt 1 in the hypothalamus. Sirt 1 has been observed to 
increase the expression of OX2R, particularly in the dorso-medial 
and lateral regions of the hypothalamus. The OX2R pathway, which 
also involves the orexin type 1 receptor, plays a crucial role in 
arousal, physical activity motivation, and metabolism. Studies have 
shown that transgenic mice with increased Sirt 1 levels in the brain 
exhibit enhanced longevity and delayed aging due to the dose-
dependent upregulation of OX2R. These findings suggest a potential 
mechanism by which Sirt 1 influences sleep and Alzheimer’s disease 
through the orexin system [72].

Acetylcholine (ACh)

Acetylcholine (ACh) is an essential component of the arousal 
system, playing a critical role in wakefulness and REM sleep. 
However, direct analysis of ACh has been challenging, leading some 
to believe that ACh does not directly regulate sleep, but rather sleep 
stages regulate ACh levels. In Alzheimer’s disease, the cholinergic 
nuclei in the basal forebrain degenerate, resulting in decreased 
activity of choline acetyltransferase and acetylcholinesterase, 
which contributes to cholinergic dysregulation in AD patients. The 
decline in cholinergic tone may be responsible for cognitive and 
arousal impairments [73].

Sirt 1 has been found to influence the expression of ACh 
receptors and choline levels in the brain, suggesting another 
potential mechanism through which Sirt 1 may impact sleep and 
Alzheimer’s disease. Cytidine-50-diphosphate-choline (CDP-
choline) is a naturally occurring compound that serves as a source 
of choline in metabolic pathways for ACh biosynthesis. CDP-choline 
has neuroprotective properties and has been shown to have 
significant positive effects on memory and behavior [5,14,74]. A 
recent investigation demonstrated that CDP-choline has the ability 
to enhance the expression of Sirt1 protein in the rat brain, providing 
neuroprotection [75]. Additionally, it has been proposed that alpha 
7 nicotinic acetylcholine (ACh) receptors can enhance the activity 
of Sirt1 by increasing the levels of its cofactor NAD+ within the cells 
[76]. Furthermore, the anti-aging properties associated with these 
receptors seem to be mediated by Sirt1 [76]. Notably, in an animal 
model of Alzheimer’s disease (AD), treatment with an agonist of the 
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alpha 7 nicotinic ACh receptor resulted in neuroprotective effects 
and improved learning and memory abilities [77]. It is plausible to 
suggest that these beneficial effects were mediated by Sirt1.

The role of monoaminergic neurotransmitter systems in the 
sleep-wake cycle has been extensively studied [5,31,32]. These 
systems are most active during wakefulness, exhibit reduced 
activity during non-rapid eye movement (NREM) sleep, cease 
functioning before and after rapid eye movement (REM) sleep, and 
resume firing before the onset of wakefulness [78]. Impairment of 
the monoaminergic system is commonly observed in AD. Due to the 
relatively low number of monoaminergic fibers in the brain and 
the fact that these neurons have long, unmyelinated axons, they 
are more susceptible to neurological abnormalities associated with 
AD pathology. Specifically, monoaminergic neurons project into the 
hippocampus and cortical regions that are significantly affected by 
the accumulation of hyperphosphorylated tau and Ab-amyloid [79].

Sirt1 is expressed in monoaminergic neurons, where its 
presence is crucial for normal wakefulness and the proper 
functioning of wake-active neurons. Studies involving transgenic 
animals and the conditional loss of brain Sirt1 in adult mice have 
shown that the absence of Sirt1 leads to significant disturbances in 
wakefulness and a reduction in wake time, without affecting sleep 
consolidation [23]. Furthermore, this research also revealed an age-
related decline in Sirt1 levels specifically in wake-active neurons, 
excluding serotoninergic wake-active neurons [23].

Another study conducted on mice found that SIRT1, a protein, 
can regulate the levels of monoamines by deacetylating NHLH2, 
a transcription factor for the gene MAO-A. MAO-A encodes an 
enzyme called monoamine oxidase A, which is involved in the 
breakdown of monoamine neurotransmitters [80]. Additionally, 
research conducted in a laboratory setting demonstrated that 
overexpression of a specific microRNA called miR-142 led to a 
decrease in neuronal expression and enzymatic activity of MAO-A 
through the downregulation of SIRT1 [81]. Abnormal expression 
of microRNAs has been linked to the development of various 
neurodegenerative disorders, potentially through the influence 
of SIRT1 on neurotransmission. Therefore, the modulation of 
monoaminergic neurotransmitter systems represents another 
possible mechanism through which SIRT1 can impact sleep and 
Alzheimer’s disease.

MCH

Melanin-concentrating hormone (MCH), a neuropeptide, 
plays a role in reducing locomotor activity, conserving energy, 
and promoting sleep when there is a surplus of energy [82]. It 
is also believed to be involved in negative energy balance by 
reducing activity and REM sleep [83]. Depletion of MCH, either 
through genetic knockout or the use of an antagonist, is thought to 
decrease both NREM and REM sleep, increase sleep fragmentation, 
and heighten alertness [84]. Animal studies have indicated that 
increased levels of MCH can lead to improved memory, learning, 
and performance [85].

There is emerging evidence indicating that the function of 
MCH (melanin-concentrating hormone) is disrupted in Alzheimer’s 

disease (AD), and this disruption is associated with AD-related 
characteristics such as the presence of neurofibrillary tangles 
composed of hyperphosphorylated tau proteins. MCH receptors 
are widely distributed in the hippocampus and cortex, which are 
regions particularly susceptible to AD-related neuropathology and 
neurodegeneration. Consequently, the disturbed function of MCH in 
AD and its potential effects on learning and memory performance 
may be attributed to a decrease in MCH receptors.

A recent study has provided evidence that Sirtuin 1 (Sirt 1), 
a protein involved in various cellular processes, including sleep 
regulation, plays a role in the regulation of MCH in neurons that 
express pro-opiomelanocortin (POMC), which promote sleep. 
Therefore, inhibiting Sirt 1 in these regions could potentially 
impair MCH functions. Additionally, the Sirt 1/Forkhead Box O1 
(FoxO1)/POMC signaling pathway has been proposed as a potential 
regulatory mechanism for MCH activity. This pathway is believed to 
contribute to the regulation of energy balance, food intake, and the 
sleep-wake cycle. Taken together, these findings suggest that MCH 
could be another target through which Sirt 1 may influence sleep 
and AD [86,87].

Adenosine

Adenosine, along with its receptors, plays a crucial role in 
regulating both circadian rhythm and the sleep drive. Adenosine 
itself possesses sleep-inducing properties and is considered a “sleep 
substance” that modulates the sleep-wake cycle through its A1 and 
A2A receptor subtypes, which are the most prevalent receptor 
subtypes in the mammalian brain. Studies have demonstrated 
that a decrease in its derivative adenosine triphosphate (ATP) 
and an increase in extracellular adenosine levels are positively 
associated with sleep patterns [88,89]. Activation of A1 receptors 
enhances slow-wave activity [90], which is the primary indicator 
of homeostatic sleep regulation. Additionally, caffeine has been 
suggested to influence the sleep-wake pattern through A2A 
receptors [91]. The signaling molecule cyclic AMP, derived from 
adenosine, is itself a component of the circadian clock and indirectly 
triggers the transcription of numerous circadian genes while also 
influencing cell cycle timing. AMP kinase, a cellular energy sensor 
that relies on AMP, can phosphorylate multiple clock proteins, 
including Sirt 1, thereby upregulating this enzyme and affecting 
downstream pathways. As mentioned earlier, the function of Sirt 1 
is also influenced by NAD+ cofactor levels, which are regulated by 
both circadian and metabolic processes [92]. The neuromodulatory 
role of adenosine and its receptors has been observed in various 
neurodegenerative conditions, including Alzheimer’s disease (AD) 
[93]. Epilepsy is reported in 10% to 22% of AD patients, often 
occurring during the early stages of the disease or even before the 
formation of cerebral Ab-amyloid plaques [94]. It is believed that 
global DNA hypermethylation is associated with chronic epilepsy 
[95], and disruption of adenosine homeostasis is implicated in this 
mechanism. Consequently, therapeutic administration of adenosine 
may improve DNA methylation profiles and potentially alleviate the 
progression of epilepsy [94].

A recent investigation revealed that Sirt 1 in the brain plays 
a crucial role in managing epilepsy, while adenosine enhances 
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epigenetic modifications, neuron survival, and synaptic plasticity 
[93]. However, the impact of adenosine impairment on AD 
pathophysiology is intricate. In the short term, increased adenosine 
levels could potentially have therapeutic benefits by suppressing 
methyltransferase and subsequently reducing DNA methylation 
changes, which are commonly observed in the brains of AD patients 
[96]. Additionally, elevated adenosine levels and the resulting 
increased A1 receptor activity improve the hyperexcitability and 
excitotoxicity network in AD parenchyma. Conversely, heightened 
A2 receptor activity due to increased adenosine levels leads to 
memory deficits and AD pathology. Overall, these findings suggest 
that the positive effects of elevated adenosine levels are likely 
dependent on the specific receptor subtype [96].

Melatonin

Melatonin, a metabolite of the amino acid tryptophan, is 

produced in the pineal gland. In humans, melatonin contributes 
to various physiological processes, including the regulation of 
circadian rhythm and sleep physiology. Following two hours 
of endogenous melatonin secretion at night, sleep propensity 
significantly increases [97]. In diurnal species, melatonin reduces 
the wake-promoting signal of the circadian clock, thereby 
promoting sleep [98]. However, nocturnal melatonin secretion is 
disrupted with advancing age and in neurodegenerative disorders 
such as AD, leading to abnormal sleep patterns [99]. Melatonin 
secretion decreases in individuals with mild cognitive impairment, 
which is often the earliest manifestation of AD neuropathology 
[100,101] and continues to decline as the disease progresses [100]. 
A recent study indicated that mild cognitive impairment patients 
with alterations in melatonin production experience disturbances 
in the circadian clock, resulting in increased wakefulness at night 
and prolonged REM latency [102].

Figure 4:

One possible explanation for these effects could be the excessive 
regulation of monoamine oxidase in AD, which leads to a decrease 
in serotonin, the precursor of melatonin [103]. Studies conducted 
on animals and in vitro also indicate that administering melatonin 
can improve AD pathology by potentially reducing the production 
of Ab-amyloid through increased secretase activity and decreased 
b-and c-secretases [104-106]. Additionally, melatonin has been 
found to up-regulate ADAM10 (A Disintegrin and Metalloproteinase 
10) in vitro by activating the SIRT1 pathway [104]. ADAM10 is the 
primary a-secretase in neurons and is responsible for cleaving 
APP in a way that suppresses Ab-amyloid production. These in 
vitro findings are supported by an animal study where long-

term melatonin administration to aged mice resulted in positive 
changes to secretase activity in the hippocampus, accompanied 
by a decrease in phosphorylated NF-jB and an increase in Sirt 1 
[106]. The mice also showed improved spatial memory following 
melatonin treatment. Based on these findings, the authors suggest 
that dietary supplementation to counteract age-related melatonin 
loss could be a potential therapeutic approach for preventing and 
managing AD [106]. The effects of melatonin treatment have also 
been studied in rats subjected to total sleep deprivation [107]. After 
total sleep deprivation, the rats exhibited significant impairment 
in spatial memory and reduced Sirt 1 levels in the hippocampus. 
However, when the sleep-deprived rats were given melatonin 
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doses of 5, 25, 50, or 100 mg/kg/day, the expression of Sirt 1 in 
the hippocampus was preserved. These neurobiological benefits of 
melatonin treatment were accompanied by improved performance 
in behavioral tests. As a result, the authors propose melatonin as 
a potential therapeutic strategy for preventing memory deficits 
caused by total sleep deprivation and suggest that Sirt 1 may play a 
role in mediating these beneficial effects [107]. Numerous studies 
have also emphasized the significant involvement of Sirt 1 in 
regulating melatonin function to enhance insulin resistance, aging, 
and anti-inflammatory properties; [108-110] all of which have 
implications for Alzheimer’s disease (AD) risk and development. 
The cumulative findings in this section propose melatonin as an 
additional target by which Sirt 1 could potentially influence sleep 
and AD (Figure 4).

Retinal

The function of the retinal in mammals involves the localization 
of the functional photopigment melanopsin within intrinsically 
photosensitive retinal ganglion cells (ipRGCs), which plays a role in 
non-visual photoreceptive functions. The functions of melanopsin 
illustrate that light not only communicates with the circadian 
clock but also interacts intricately with various neurological and 
pathological processes [111,112]. The response to light by the body 
is crucial for the regulation of rhythmic physiological functions, such 
as hormonal cycles, and the expression of negative circadian clock 
regulator genes Per and Cry. Consequently, ipRGCs play a significant 
role in the adjustment of the circadian clock. The depletion of 
ipRGCs, whether acquired or inherited in neurodegenerative 
diseases, results in the impairment of dopaminergic neurons in 
the retina. Similarly, disruptions in light detection or transmission 
to the retina due to aging or conditions like cataracts, lead to the 
dysregulation of circadian synchrony and subsequent impairment 
of various physiological processes, including sleep. In line with 
these discoveries, the decrease in melanopsin levels seems to 
be associated with insomnia, depression, and cognitive decline 
[112,113].

Blue light at 460 nm has been suggested to enhance cognitive 
functions both during the day and at night [114]. However, the 
disruption of the circadian clock may impact the effects of exposure 
to the blue light spectrum, particularly in older individuals leading 
to decreased melatonin levels and reduced alertness [115,116]. 
Studies have shown retinal thinning and vascular disturbances 
in the retina of individuals with Alzheimer’s disease (AD). 
Additionally, AD-related markers such as Ab-amyloid plaques, 
hyperphosphorylated tau, and neurodegeneration have been 
identified in the retinas of individuals with early signs of AD. 
Recent research indicates that retinal scans could potentially aid 
in the early diagnosis of AD [117-119]. Sirt 1, found in various 
parts of the eye, plays a crucial role in maintaining retinal health 
and function. In mice lacking SIRT1, abnormalities in retinal cell 
layers and increased apoptosis of retinal progenitor cells have been 
observed. Sirt 1 influences aging, inflammation, oxidative stress, 
angiogenesis, and neuroprotection in the retina and ocular systems. 
The expression of SIRT1 in retinal tissue is influenced by light, with 
levels increasing at night, suggesting a tissue-specific regulation of 
SIRT1 in the eye [120-125].

Discussion
The presence and severity of Alzheimer’s retinopathy are 

likely to have a negative impact on the transmission of light to the 
retina, which in turn affects various physiological functions such 
as sleep and the expression of SIRT1 [126]. Activators of Sirt 1, 
including dietary factors and other modifying strategies, have been 
proposed to counteract these effects. Several approaches, such as 
intermittent fasting, calorie restriction, and exercise combined 
with calorie restriction, have been shown to increase the levels 
of Sirt 1 mRNA in human muscle tissue. Animal studies have also 
demonstrated that calorie restriction can elevate Sirt 1 levels in the 
brain, particularly in the vulnerable hypothalamus region affected 
by AD neuropathology [127,128]. Additionally, compounds like 
Rhein derived from rhubarb and DOPET found in olive oil, grape 
juice, and wine have shown potential therapeutic effects in animal 
models of AD by activating the Sirt 1 pathway and improving 
mitochondrial biogenesis. However, further research is needed to 
determine the efficacy of these treatments in humans [129].

The increase in SIRT1 activity observed in this study 
was accompanied by enhanced clearance of neurotoxic Ab-
amyloid through a-secretase-mediated mechanisms, resulting 
in neuroprotection. Resveratrol, a polyphenol found in grapes 
and grape products like red wine, has been well-established as 
an activator of Sirt 1 both in laboratory settings and in living 
organisms [130-133]. Furthermore, studies conducted on patients 
with Alzheimer’s disease (AD) have shown that high doses of 
resveratrol can reduce AD biomarker levels in cerebrospinal fluid, 
provide neuroprotection in brain regions affected by early AD, and 
slow cognitive decline while maintaining function in individuals 
with mild to moderate AD. It is important to note, however, that the 
beneficial effects of resveratrol are not solely dependent on Sirt 1 
activation, as this compound has been found to modulate various 
intracellular signaling pathways. The impact of Sirt 1/SIRT1-
activating strategies, such as those mentioned above, on AD risk 
and sleep-related factors, remains to be determined, as does their 
potential therapeutic role in AD treatment.

In terms of future research directions, accumulating evidence 
from both animal and human studies suggests a complex and 
multifaceted relationship between Sirt 1/SIRT1, sleep, and the 
development of AD. However, further research is needed to 
fully understand this relationship. One recommendation for 
future studies is to simultaneously measure Sirt 1 levels and 
sleep parameters in well-characterized longitudinal cohorts of 
aging individuals and those with AD. By assessing Sirt 1 levels in 
plasma, serum, or cerebrospinal fluid, along with sleep efficiency, 
duration, and stages, across the continuum of AD progression (from 
preclinical to prodromal and dementia stages), we can gain a better 
understanding of the relationship between Sirt 1, sleep, and the 
progression of AD.

Furthermore, by including individuals who maintain their 
cognitive abilities over time (both with and without AD biomarkers), 
the study can also consider the impact of healthy aging compared to 
pathological aging. This analysis is crucial for understanding how 
age influences the relationship between Sirt 1/SIRT1, sleep, and AD. 
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Age is the greatest risk factor for AD, and both sleep patterns and 
Sirt 1 are associated with the aging process. Once the relationship 
between Sirt 1/SIRT1, sleep, and AD etiology is well understood, 
the next logical step would be to investigate the effects of Sirt 1 
activators (such as resveratrol, intermittent fasting, and calorie 
restriction) on sleep patterns and AD biomarkers simultaneously. 
This research could provide insights into how these approaches 
could potentially be used to delay or prevent the onset of AD-
related dementia.

Conclusion
A growing body of evidence from animal and human studies 

supports a significant and complex relationship between Sirt 1/
SIRT1, sleep, and AD. Various hypotheses have been proposed to 
explain the critical role of Sirt 1/SIRT1 in the mechanisms and 
neurotransmitters related to wake-promoting neurons (WPNs) and 
sleep-promoting neurons (SPNs). However, there is a lack of studies 
investigating the interaction between sleep and Sirt 1/SIRT1, a 
key component of the circadian clock, in relation to AD pathology. 
This review has explored the potential association between Sirt 1/
SIRT1, sleep, and AD etiology. Considering that sleep is a modifiable 
risk factor for AD and recent studies suggest that Sirt 1/SIRT1 
activation can be influenced by lifestyle and dietary approaches, 
further research is needed to explore its potential as a target for AD 
prevention and treatment.
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