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Abstract

This article presents the fundamentals of a numerical model that is set to undergo subsequent algorithmic implementation. This model is
a probabilistic semi-explicit cracking model dedicated to the dynamic behavior of structures made from steel fiber reinforced concrete (SFRC).
It is based on the extension of the same model that has been previously proposed for static loading. This extension is presented after a detailed
exploration of the physical mechanisms accompanying the cracking process of fiber-reinforced concrete under dynamic loading. The fact that
the model is based on precise and detailed physical mechanisms allows to propose new theoretical relations concerning strain rate effect on the
numerical model parameters. So, an interesting and innovative alternative to the experimental quantification of the model parameters is proposed.
This alternative allows to avoid performing tests on sophisticated testing machine as, for example, the Hopkinson bar. It involves conducting only
static uniaxial tensile tests on notched fiber-reinforced concrete specimens, that is a fully new and original proposal.
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Introduction

Dynamic loadings, as considered here, are what are referred
to as impulsive-type loadings, caused, for example, by impacts or
explosions. It is often emphasized that FRCs (Fiber Reinforced
Concretes) perform particularly well under such impulsive loadings.
The orders of magnitude of stress and strain rates generated by
impulsive loadings in conventional civil engineering structures
typically range from 1072 to 10® GPa-s™*, which corresponds to
strain rates ranging from 1073 to 10 s™*. Numerous experimental
studies on this mechanical issue have shown a clear increase in
energy dissipation (non-linear behavior) and load-bearing capacity
in structural elements made with FRCs, compared to the same
elements made with plain (non-fibered) concrete.

Using fiber reinforced concretes in constructions therefore
becomes an important issue when it is known that climate change is
now leading to these constructions being subjected to increasingly
violent impacts.

To evaluate the specific performance of FRCs under dynamic
conditions (i.e., compared to their static performance), it is relevant
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to analyze whether, for a given mechanical property, denoted as P,
the ratio p,,./P.,, (CWF: Concrete Without Fibers) increases as the
stress rate increases, and what physical mechanisms govern the
evolution of this ratio.

What follows is a description of the physical mechanisms
specific to the behavior of fibers when an FRC is subjected to high
strain rates.

In a composite material such as FRCs, sensitivity to strain
rate effects can stem from the matrix (concrete), and/or
the reinforcement (steel fibers). It is known that, within the
aforementioned range of strain rates, steel is much less sensitive to
rate effects than concrete. Therefore, in a first approximation, the
rate effects in FRCs can be attributed to those of the concrete. These
are now well understood [1] and are recalled in chapter 2.

Based on the description of the mechanisms of rate effects
within FRCs (Chapter 4), the basis ofanumerical model for analyzing
the cracking of FRC constructions in dynamic is proposed. This
numerical model is founded on the extension of the probabilistic
semi-explicit cracking model proposed for static loadings [2].
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Strain rate effects on the Tensile Behavior of plain
(non-fibered) Concretes

One of the main findings from research conducted to date on
strain rate effects is that, within a certain range of strain rates, these
effects are primarily linked to the presence of evaporable water
within the nanopores of the concrete’s hydrates.

A hypothesis has been proposed regarding the physical
mechanism in which this evaporable water plays the central role.
It is a mechanism akin to the Stefan effect, involving the viscosity
of water [1]. This effect can be summarized as follows: when a thin
film of a viscous liquid is trapped between two perfectly flat plates
that are being pulled apart at a certain velocity, the film exerts a
restoring force on the plates that is proportional to the separation
velocity.

This mechanism is expressed by the following relationship (1):
F=(3nV*[2h* ) x(dh/dt) (1)

Where:

F is the restoring force,

1, the viscosity of the liquid,

h, the initial distance between the two plates, (dh/dt), the
displacement rate of the two plates (> 0), V, the volume of the liquid.

If it is assumed that the free water present in the hydrates is
responsible for a similar mechanism when the solid skeleton (here
considered as a network of plates) undergoes tensile deformation,
we can understand why rate effects are significant in wet concrete.
Of course, this Stefan effect should be considered as an explanatory
model to aid understanding, and not as a quantitative approach to
the rate effect. To understand how the viscous mechanism, similar
to the Stefan effect, can influence the tensile fracturing process,
one must start from the quasi-static tensile cracking process in
concrete.

Tensile cracking process in plain concretes
The cracking process proceeds as follows [3]:
Step 1: Formation and propagation of diffuse microcracking.

Microcracks are small cracks relative to the stressed volume
of material. At this scale, they do not cause strain localization.
During this initial phase - characterized solely by the formation
of microcracks throughout the specimen - the overall behavior
appears linear elastic.

Step 2: Transition phase or onset of microcrack localization.

In this phase, some microcracks grow to form mesocracks.
These mesocracks induce stress concentrations at different
locations within the stressed material, but strain localization at the
specimen level has not yet occurred. This is a brief phase in tensile
concrete cracking, shifting from microcrack formation to crack
propagation. It is associated with the emergence of the nonlinear
portion of concrete’s tensile response, reflecting its low ductility.
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Step 3: Localization of cracking.

This shortest phase in the tensile cracking process begins at the
end of step 2. During mesocrack development, one crack begins to
dominate, leading to a macrocrack. This signals strain localization
at the specimen scale and marks the end of the intrinsic uniaxial
tensile behavior of concrete. The concrete’s tensile strength is
reached at this point.

Step 4: Macrocrack propagation.

This phase concerns the structural behavior of the specimen.
Beyond this point, strain localization prevents defining a statistically
homogeneous volume of material from mechanical stand- point.
The primary mechanical relation becomes the link between the
macroscopic tensile force and displacement. During this stage, a
reduction in force with increasing displacement is observed when
the test is conducted at a fixed displacement rate, illustrating the
structural softening behavior (the specimen being considering as a
small structural element).

Importance of the Stefan effect on the tensile cracking
process of plain concretes

Before localization (steps 1, 2, and 3), the viscous mechanism
can have two consequences:

. Delaying the formation of microcracks,
o Delaying the propagation of initial microcracks.

These two actions lead to a delay in the localization of
microcracking and thus increase the peak load (So, the uniaxial
tensile strength). After localization (step 4), the viscous mechanism
(Stefan effect), by acting on the microcracks of the process zone
at the front tip of the macrocrack, oppose the propagation of this
macrocrack (increase of the macrocrack propagation energy).
In parallel with the activation of the viscous mechanism, inertia
forces can no longer be neglected when the stress and strain rates
generated by dynamic loading reach high values. These inertia
forces can influence the cracking process in two different ways
before the localization phase under dynamic loading: They oppose
both the appearance and the propagation of microcracks, thereby
delaying their localization. They also act after the localization
phase, by resisting the propagation of the macrocrack.

Itis clear that, although they may act simultaneously, the viscous
mechanism and the inertia forces are not activated with the same
intensity depending on the imposed loading rate. Thus, for strain
rates below a critical rate around 1 s™%, inertia forces are negligible
compared to viscous effects. However, for strain rates equal to or
greater than this value, inertia forces become non-negligible and
even dominant for strain rates around 10 s™*. It turns out that if
the experimental curve relating tensile strength to strain rate is
considered, it deviates from linearity (a sudden increase in strength

is observed) for strain rates near 1s™*.

According to the definitions given regarding material-scale and
structural-scale behavior; it is plausible that inertia forces triggered
by macrocrack propagation (i.e., after localization) are sufficient,
within a certain strain rate range, to generate an increase in the
material’s tensile strength. In other words, the presence of inertia
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forces means that the peak load may not coincide with the onset of
crack localization, and thus the observed jump in tensile strength at
a strain rate of about 1 s™* could be a structural effect. Based on the
dynamic cracking process in concrete, it can be analyzed how steel
fibers intervene in this process. To do so, it must first be examined
how fibers act in the quasi-static cracking process.

Role of fibers in the tensile cracking process of FRC
in static

Fibers’ role in the static cracking process can be summarized
as follows [3]:

. In steps 1, 2, and 3, fibers can bridge micro- and meso-
cracks, delaying the formation of a macrocrack. This improves the
material’s tensile strength and ductility.

. In step 4, fibers bridge the macrocrack itself, opposing its
propagation and increasing the energy required for crack growth.
This step is related to a structural behavior (the specimen can be
considered, mechanically, as a mini structural element)

This paper does not delve into the specifics of how these
bridging effects are achieved, such as fiber type, geometry, dosage,
and orientation. For example, bridging effects in steps 1 to 3 can
occur in UHPFRC (Ultra-High Performance Fiber Reinforced
Concrete) when the fiber content is high (with small diameters)
and fibers are well-oriented relative to the crack, usually obtained
through uniaxial tensile testing or very high fiber volume fractions
(exceeding 5%).

Role of fibers in the tensile cracking process of FRCs
under dynamic loading

To influence the dynamic tensile cracking process, fibers must
activate additional physical mechanisms compared to the static
regime (chapter 3).

Two potential beneficial mechanisms are highlighted:

. Waves diffraction by fibers.

. Synergistic coupling between fibers and concrete.
Waves Diffraction by Fibers

Under impulsive loading, mechanical waves propagate through
the material. The wave diffraction by an inclusion (such as a fiber)
depends mainly on:

. The contrast in elastic properties and density between
the cement paste and the steel fiber,

. The ratio between the wave length and the fiber’s length
or diameter.

If the period of the wave is compatible with the dimensions of
the steel fibers, diffraction is significant due to large contrasts:

. Young’s modulus ratio = 10.
. Density ratio = 3.5.

In contrast, aggregates present lower contrasts (modulus =
2.5, density =~ 1), making them less significant for diffraction. For
diffraction to occur, the wavelength A must be less than about 10
times the fiber length (L), or diameter (@). The wave propagation
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formula to be considered is the following:
A=CxT (2)
(where A is wavelength, C is wave speed, T is period).

If a long fiber with a length of 60 mm and a short fiber with a
diameter of 0.2 mm are considered, it is found that:

. For@=02mm-T<05x105s
. ForL=60mm—>T<15x10™*s

As example, in an experimental study [4] related to impact
resistance of concrete slabs (slabs 8 cm thick) subjected to shock
tube testing, the following quantitative data were obtained:

o Generated strain rates » 1 s™*
. Natural period of the slab in bending ~ 2.5 x 1073 s

This is 1-2 orders of magnitude above the critical diffraction
periods, suggesting fibers do not significantly diffract waves during
the stationary wave regime. However, wave propagation involves
both transient and stationary regimes. During the transient regime,
shorter wave periods may occur, comparable to those needed for
fiber diffraction. Thus, fibers may indeed diffract mechanical waves
early in the process, potentially increasing the volume of material
subjected to motion and promoting multiple cracking (which is
favorable for fiber efficiency). So, in conclusion, for structures
susceptible to cracking during the transient wave regime, wave
diffraction by fibers could prevent brittle failure by promoting
distributed cracking. This structural effect depends on boundary
conditions, loading type, and geometry. Fiber effectiveness
increases with volume fraction. However, this mechanism is very
hard to model using macroscopic models and would require
micromechanical modeling, which is beyond this study’s scope.

Synergistic coupling between concrete and steel fibers

In chapter 3, fibers were shown to oppose displacement across
crack faces and transfer stresses (bridging effect). Under impulsive
loading, crack lips move at high velocity, and fibers are rapidly
engaged. In transferring stress, fibers induce high strain rates in the
surrounding matrix. Depending on fiber geometry and anchorage,
these can be shear, tensile, or compressive stresses. For bond-based
fibers, the transmitted stress is macroscopic shear. However, due to
surface roughness and matrix heterogeneity, these become tensile
stresses at the micro-scale, causing microcracking around the fiber,
leading to nonlinear interface behavior. This microcracking near the
fiber/matrix interface activates rate effects (as discussed in chapter
2), increasing macroscopic bond strength under dynamic vs. static
loading. For mechanically anchored fibers (with hooks at their
ends, as example), similar tensile stress concentrations arise, often
greater than with bonded fibers. Rate effects here are localized near
anchor points, increasing fiber effectiveness before pull-out.

In conclusion, both bonded and mechanically anchored fibers
transmit higher forces dynamically than statically, for the same
crack width (assuming fibers do not rupture). Thus, whether
fibers increase intrinsic strength (as in UHPFRC) or post-crack
energy (any FRC), the strength ratio K, = Ry, /R;,, Or energy ratio
Ky = Epe, [Ep, increases under dynamic loading. This effect scales
with fiber volume.
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Numerical model of the cracking of FRC concrete
structures in static

Existing diffuse cracking models

These models [5-11] treat cracks as microcracked zones where
the density of microcracks gradually increases until forming a void,
at which point no further stress is transmitted. From a numerical
perspective, within the framework of finite element theory, these
microcracked zones are modeled using volume elements. Generally,
these models follow a deterministic approach and describe the
nonlinear mechanical behavior associated with microcracking. The
nonlinear mechanical behavior of these elements is linked to the
post-peak tensile behavior of Fiber-Reinforced Concrete (FRC).
This post-peak behavior is typically characterized by two key
material parameters:

. The shape of the post-peak response referring to the
behavior of the tensile stress- strain curve after the linear elastic
phase of the FRC.

. The post-peak energy dissipation which corresponds to
the area under the tensile stress-strain curve and is often referred
to as Gf .

In summary, diffuse cracking models applied to FRC rely on
nonlinear finite element methods using volume elements. The
nonlinear behavior considered is the tensile response of the FRC,
represented as a stress-strain relationship. These models consider
that the post-peak behavior is the evolution of the microcracking
process in presence of fibers. This highlights a major limitation
of these diffuse cracking models: they are not physically based if
chapters 3 and 4 are considered.

Although these models are widely described in the literature
and commonly used in practice, they have a significant drawback.
As previously mentioned, diffuse cracking models are not
physically based since they transform a localized crack into
diffused microcracked zone. This strong physical approximation
results in an inaccurate representation of the cracking pattern in
FRC structures. Numerically, because G , values are significantly

higher for FRCs than for conventional concretes, diffuse cracking
models tend to overly spread the damaged (microcracked) zones
and underestimate crack openings.

The most well-known diffuse cracking models for FRC include
damage models [5-7] and smeared crack models [8,9], which
are mechanically equivalent. Notably, the smeared crack model
developed at Ecole Polytechnique de Montréal (Canada) [10, 11]
provides a more accurate evaluation of crack openings in FRC
compared to other diffuse cracking models. This improvement is
attributed to its use of an explicit resolution algorithm, whereas
other models employ implicit resolution algorithms. The explicit
approach allows for better crack localization. However, despite
this advancement, even the smeared crack model has limitations in
accurately evaluating crack openings.

The probabilistic semi-explicit cracking (PSEC’) model
for FRC in static

The PSEC' model for simulating the mechanical behavior of
large-scale FRC structures was previously presented for static
problems [2]. This PSECf model is designed to simulate macrocrack
propagation, specifically addressing cracks with openings equal
to or greater than 300 microns. It is based on the uniaxial tensile
behavior of FRCs. It concerns only FRCs which have softening post-
cracking behavior in uniaxial tension. This uniaxial tensile behavior.

The main objective of this model is to address a key limitation
in existing distributed cracking models from the literature, namely,
the excessive dispersion of cracks, which results in underestimating
the openings of major cracks. Macrocrack initiation and propagation
are simulated using linear volumetric elements, where cracks
form when the tensile stress at the integration point of an element
reaches the matrix’s tensile strength (unreinforced concrete),
assuming perfectly brittle matrix behavior. Concrete strength is
modeled as a random variable following a Weibull distribution,
with dependence on the finite element volume. As the finite
element volume increases, both the mean and standard deviation
of the matrix tensile strength decrease.

4 N
T,
»
Failure of the
rmatrix
Bridging effect
> £ 1
E1m
L Figure 1: Aspects of the PSEC" model for fiber-reinforced concrete — Mechanical behavior in uniaxial tension. )
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As demonstrated in [12], using linear volume elements does
not precisely capture macrocrack initiation. However, in the case
of fiber-reinforced concrete (FRC), this approximation is acceptable
provided that the fiber bridging effect is properly incorporated into
the numerical model. Previous experimental study [13] has shown
that the average post-cracking energy related to the bridging
effect is independent of the tested material volume, although
the standard deviation of this energy decreases with increasing
volume. Aligning with the objectives of this model, a simplified
approach is adopted where the fiber bridging energy G,, is treated
as a deterministic parameter, unaffected by the finite element
volume. The probabilistic semi-explicit model considers two key
mechanical stages: initial macrocrack initiation (step 3 of chapter
2.2) and fiber bridging effect. These aspects are illustrated in Figure
1.

Crack initiation occurs when the maximum principal stress ¢,
in an element reaches the randomly assigned tensile strength /. At
this point, the element’s stiffness decreases sharply. During fiber
bridging, as the maximum principal strain ¢, increases, the bridging
mechanism is activated, which increases the effective stiffness £,
but remains below the original material stiffness z,. If & decreases,
the element’s stiffness remains low. During crack progression, once
¢ reaches a critical value ¢, the stress o, decreases linearly with
& to simulate fiber pullout. When ¢, attains its maximum value &,
, the fiber effect is considered negligible, and the element stiffness
drops to zero.

This softening behavior is modeled via a simple damage
approach, where only the matrix values in the element related to
the maximum principal stress-strain relationship are modified,
while other matrix entries remain zero. Consequently, the fiber
bridging effect is treated as anisotropic. Given the probabilistic
nature of the model, Monte Carlo procedure is essential to ensure
the results statistically reflect the variability inherent in both model
parameters and material properties. For a given structural problem,
the set of obtained results allows for a relevant statistical analysis,
enabling a safety-oriented assessment of the structure’s behavior.

It can be emphasized that, in the proposed model, the rupture
of the matrix (the concrete) being perfectly brittle and its tensile
strength a probabilistic parameter, this allows the cracks to be
located much better than in the diffuse cracking models mentioned
previously.

It is important to clarify that the proposed model is not valid
for FRCs which have hardening behavior in uniaxial tension. In
this model, the bridging effect of the fibers is only considered
when the matrix is fully cracked. This choice might appear overly
simplistic given the macroscopic behavior observed during a direct
tensile test on a notched specimen. Indeed, during such a test, a
softening behavior emerges, resulting from the propagation of
the macrocrack and the progressive bridging action of the fibers
until the entire section of the specimen is fully cracked. However,
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as de- scribed in Section 2.1, this macrocrack propagation phase is
by no means a material behavior, but rather a structural behavior.
In fact, this post-cracking softening behavior entirely depends on
the dimensions of the direct tensile specimen, and more specifically
on the cross-section where the cracking occurs (in the case of a
notched specimen).

As a result, the only stages of the cracking process of fiber-
reinforced concrete under direct tension are considered in the
model: (1) the behavior up to the initiation of the macrocrack (peak
load) which is the material behavior of the uncracked FRC; and (2)
the load transfer by the fibers when the specimen’s cross-section
is fully cracked (which is the material behavior of the fully cracked
FRC). Indeed, for the latter stage, it has been experimentally
demonstrated [13] that the average behavior of the load transfer
by the fibers is independent of the specimen’s dimensions. The
scattering related to this fibers load transfer behavior decreasing
with the in- creasing specimen dimensions, it is important to adapt
the number of specimens to be tested to get a correct information
about the average behavior [13]. To conclude, all models that
incorporate the macrocrack propagation phase into the material
behavior model are physically and mechanically incorrect.

Parameters determination of the PSEC! in static

The mean tensile strength of the matrix ft and its standard
deviation (which depends on the finite element volume) are
computed from previously validated formulas [14]. These
properties are randomly distributed across the mesh following a
Weibull distribution. The fiber bond energy G, is derived from
uniaxial tensile test on notched specimens [15,16]. Since this
uniaxial tensile test measure crack opening, a conversion to strain is
necessary for modeling and numerical simulations. This conversion
involves dividing the crack opening by a characteristic length of the
finite elements, /. =7, where Ve represents the volume of the
finite element.

An example of test set-up related to the direct tensile test on
notched specimen is presented in following. This test set-up has
long been validated [3,15,16].

A very good technical solution is to use, as connection between
the specimen and the testing machine, aluminum cylinders having
the same diameter than the specimen tested. Aluminum having
a Young modulus/Poisson ratio close to that of concrete, stress
concentration in the glue (which serves to connect the specimen to
the aluminum bar) and in the specimen near the connection is very
low. These aluminum cylinders are directly screwed on the testing
machine. A schematic draw of this test set-up is presented in Figure
2. To minimize this stress concentration, the length of the aluminum
cylinders is chosen in relation with the length of the dimensions of
the specimen. This length optimization of the aluminum cylinders
is made by performing linear finite element analysis (considering
both the specimen and the aluminum cylinders).
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( )
One of the three displacement
SENsSOrs
Notched specimen Alluminum cylinders
L Figure 2: Schematic draw of the bond between the notched specimen and the aluminum cylinders — vertical cut (from [3]). )

Determination of the tensile stress-crack opening curve useful
to calculate G,

As précised before, when a notched specimen is concerned, the
beginning of the test is related to a macrocrack propagation along
the specimen section (at the level of the notch). This propagation
coincides with a local bending inside the cracked section. This
bending can occur until the complete macrocrack creation.
Therefore, the part of the tensile stress-crack opening curve related
to this step of crack propagation has not to be considered. The crack
is considered completely open along the section of the specimen
when all displacement sensors indicate an opening displacement,
w0, equal to 10*. L, . L, is the basis length of measurement of the
sensors and 10* corresponds to a conventional value of cracking

strain of concrete. After the step of crack propagation, the local
bending is less if the test is well performed, whether with the
gripping or the bonding connection.

Only when w, is reached for all displacement sensors, an
average crack opening can be considered. The smaller average
crack opening is called w, . Figure 3 illustrates how w, and w,
are determined (case of bounding connection). Consequently, G,,
is calculated considering the experimental stress-crack opening
curve from the crack opening w,. It means that for crack openings
inferior to wi the fibers bridging effect is not considered. This
approximation leads to a conservative numerical simulation with
respect to the actual behavior of the structure under consideration.

~ )
Measured displacement {(mm)
(.16 5
! :
0.12 ¢ M“_‘,J displacement sensors
—
0,08 l /
0.04 4
W I
Y~ ==, - :
§ 002|004 006 008 o
=004
b |
Average displacement (mm)
L Figure 3: Example of determination of W, and W; (from [3]). )

In practice, a number of uniaxial tests need to be conducted
to determine the average value of G,, to be used in the numerical
simulations.

Determination of €,.0 and €
¢ T1lc im

O|. is determined directly from the experimental average
tensile stress-crack opening curve. It is the maximal average value
of the post-cracking tensile strength.

Concerning &, ,itis more complicated. The fiber bridging effect
being only considered from an experimental crack opening equal to
w;, while, in the numerical model, this bridging effect begins at zero
crack opening, it is clear that the value of w;, (and so of &, ) in the

model (w,, ) has to be lower than that observed in the experiment
(Wi ). This value of w,, can be calculated considering this point:
the experimental bridging effect attributable to a material behavior
starts when the volume of the macrocracks is equal to (.S, ), where
S, is the cracked section of the specimen, while the numerical
bridging effect starts when the volume element is fully cracked (its
rigidity matrix is equal to 0). To get an equivalent bridging effect
between the numerical model and the experiment, the following
relation as to be considered (as approximation):

Wien = Wice ((Wi'Sp)/Ve) (3)

is calculated as following:
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81m = 2wa /O-lc + 80 (4)

Numerical Model of the SFRC Structures behavior
under Dynamic Loading

The majority of numerical models (finite elements models)
related to the dynamic behavior of fiber-reinforced concrete
structures [17-22] exhibit the same issues as those concerning the
static behavior of these structures (chapter 5.1). They are not very
relevant for providing a realistic representation of the cracking
process (cracking is too diffuse compared to reality). This is due to
the same inherent limitations of these models (chapter 5.1).

The proposed model is based on the development in dynamics
of the PSEC" model developed in statics (chapter 5.2). In this PSEC'
model, two parameters appear: the tensile strength f, of concrete
and the bridging effect energy of fibers G, . Chapters 2, 3, and 4
show that the rate effect on fiber-reinforced concretes have two
main consequences: the increase, with the stain rate, of f, , which
is a probabilistic parameter and of G, " which is a deterministic
parameter.

Regarding the strain rate effect on ft, significant experimental
studies [1] led to the following generic relationship [23]:

ft’ on = ft,mt +2.8+0.3/n(5) (5)

with strength (£, and f,.) given in MPa, while stress rate
has units of GPa/s. f, , and f.,, are respectively the static and the
dynamic tensile strengths.

As for the strain rate effect on G, » there is no generic

be established from a very significant and costly experimental
study (different concretes, geometries and percentage of fibers to
be considered), or obtained for each specific FRC. In both cases, as
with static tests, uniaxial tensile tests on notched specimens will
need to be conducted at different loading rates, from low until high
loading rates through intermediate loading rates. For the low and
intermediate loading rates, a classic traction machine can be used,
while for high loading rates the Hopkinson bar is the most effective
testing method to be used [24-27].

To enable the experimental determination of the evolution of
the uniaxial tensile stress-strain law (Figure 1) - more specifically,
the various parameters related to the fibers’ bridging effect - with
respect to the strain rate for a given FRC, it is essential to assume
about this evolution. Referring to chapters 3 and 4, the following
assumption appears acceptable:

. The elastic modulus Eb is not a lot of affected by strain
rate effects (this Young modulus is mainly linked to the one of
the fibers which is not sensitive to the domain of strain rates
considered).

. Due to the improvement of fiber anchorage or adhesion
to concrete with increasing strain rate, the stress 01C increases
with strain rate.

. Since, even when fibers start to slip within the concrete
(descending branch of the bridging effect in Figure 1), few
additional microcracks can appear around the fibers (the ten-
sile stresses transmitted near the fibers decrease significantly),
the viscous effects associated with this slipping can be

relationship proposed in the literature. Therefore, it will need to neglected.
( )
gy
Gnﬁ.ﬂﬂ "\
y Bridging effect
&
L Figure 4: Aspects of the PSEC" model in dynamics. )

. The strain ¢, (Figure 1), mainly related to the fiber’s
geometry and dimensions, can be assumed to be unaffected (or
minimally affected, so no considered) by strain rate effects.
In consequence, the strain rate effects accompanying the proposed
fiber bridging effect are primarily related to the enhancement of

fiber adhesion or anchorage (increasing of o,, which becomes o,
). Figure 4 summaries the PSECf model in dynamics. As previously
stated, experimental studies to access the parameters of the
proposed model are complex (especially the use of the Hopkinson
bar, which is a relatively confidential experimental equipment) and

Citation: Pierre Rossi*. Development of Probabilistic Cracking Models for Fiber Reinforced Concrete Under Static and Dynamic
Loadings. Cur Trends Civil & Struct Eng. 12(2): 2026. CTCSE.MS.ID.000779. DOI: 10.33552/CTCSE.2026.12.000779.

expensive. It is therefore relevant to propose an alternative to these
studies by making a few assumptions. Thus, the only value to be
determined in the dynamic bridging effect of fibers is that of the

parameter (o, ). However, as proposed (hypothesis), the value of
this parameter is linked to the improvement of the anchoring or
adhesion of the fiber in the matrix (depending on the fiber type)
with rate effects. Since this improvement is attributable to the
Stefan effect on the microcracking process around the fibers and it
is a process similar to that which governs the increase in the uniaxial
tensile strength of concrete (chapter 2), a new hypothesis can be
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put forward: the increase in the value of (Glcdw) with the strain rate
follows the same law as that of the tensile strength of concrete. This
is reflected in the following relationship (relation (6):

GlCdyn = O-1Cstat (f;dyn /f;sat ) (6)

From a numerical perspective, the influence of structural inertia
should come automatically from a dynamic analysis [28], being a
natural consequence of the inclusion of mass matrix and damping
matrix in the equation of motion. Therefore, it should not be
considered a priori either through Dynamic Increase Factor (DIF)
or by sophisticated constitutive models. This choice is supported by
thorough numerical simulations [29-31].

It is noteworthy to mention that, at local (finite element) level,
structural inertia is only responsible for changing the stress and
strain state. Evidently, structural inertia will control whether
the finite element will achieve its strength faster or slower, but
it will not change its actual value. Concerning the finite element
procedure, before starting the numerical analysis, it is necessary

to assign random property of s and deterministic one of for
each finite element according to a given probabilistic distribution
concerning ft. This type of procedure was originally de- scribed
in [32] for the probabilistic semi-explicit cracking (PSEC) model
related to concrete (it means without fibers). Once the probabilistic
properties and the deterministic one have been assigned to the
finite element mesh, boundary and initial conditions are provided,
and a typical dynamic analysis is performed, usually adopting the
Newmark-beta algorithm for the time-step integration.

Conclusions and Perspectives

This article presents the fundamentals of a numerical model
that is set to undergo subsequent algorithmic implementation. This
model is a probabilistic semi-explicit cracking model dedicated to
the dynamic behavior of structures made from steel fiber reinforced
concrete (SFRC). It is based on the extension of the same model
that has been developed and validated in static conditions. This
extension is proposed after a detailed exploration of the physical
mechanisms accompanying the cracking process of fiber-reinforced
concrete under dynamic loading.

The fact that the model is based on precise and detailed
physical mechanisms allows for an interesting alternative to
the experimental quantification of the model parameters. This
experimental quantification, which requires the use of a Hopkinson
bar, is complex and costly. The proposed alternative involves
conducting only uniaxial tensile tests in static on notched fiber-
reinforced concrete specimens. This work provides the scientific
and engineering communities with a solid foundation to sup- port
such developments. Following this implementation, a validation
phase, based on available experimental data from the literature,
will be necessary to confirm the accuracy and robustness of this
model.
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