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Abstract 
This article presents the fundamentals of a numerical model that is set to undergo subsequent algorithmic implementation. This model is 

a probabilistic semi-explicit cracking model dedicated to the dynamic behavior of structures made from steel fiber reinforced concrete (SFRC). 
It is based on the extension of the same model that has been previously proposed for static loading. This extension is presented after a detailed 
exploration of the physical mechanisms accompanying the cracking process of fiber-reinforced concrete under dynamic loading. The fact that 
the model is based on precise and detailed physical mechanisms allows to propose new theoretical relations concerning strain rate effect on the 
numerical model parameters. So, an interesting and innovative alternative to the experimental quantification of the model parameters is proposed. 
This alternative allows to avoid performing tests on sophisticated testing machine as, for example, the Hopkinson bar. It involves conducting only 
static uniaxial tensile tests on notched fiber-reinforced concrete specimens, that is a fully new and original proposal.
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Introduction

Dynamic loadings, as considered here, are what are referred 
to as impulsive-type loadings, caused, for example, by impacts or 
explosions. It is often emphasized that FRCs (Fiber Reinforced 
Concretes) perform particularly well under such impulsive loadings. 
The orders of magnitude of stress and strain rates generated by 
impulsive loadings in conventional civil engineering structures 
typically range from 10⁻² to 10³ GPa·s⁻¹, which corresponds to 
strain rates ranging from 10⁻³ to 10 s⁻¹. Numerous experimental 
studies on this mechanical issue have shown a clear increase in 
energy dissipation (non-linear behavior) and load-bearing capacity 
in structural elements made with FRCs, compared to the same 
elements made with plain (non-fibered) concrete.

Using fiber reinforced concretes in constructions therefore 
becomes an important issue when it is known that climate change is 
now leading to these constructions being subjected to increasingly 
violent impacts.

To evaluate the specific performance of FRCs under dynamic 
conditions (i.e., compared to their static performance), it is relevant 

to analyze whether, for a given mechanical property, denoted as P, 
the ratio FRC CWFP P  (CWF: Concrete Without Fibers) increases as the 
stress rate increases, and what physical mechanisms govern the 
evolution of this ratio.

What follows is a description of the physical mechanisms 
specific to the behavior of fibers when an FRC is subjected to high 
strain rates.

In a composite material such as FRCs, sensitivity to strain 
rate effects can stem from the matrix (concrete), and/or 
the reinforcement (steel fibers). It is known that, within the 
aforementioned range of strain rates, steel is much less sensitive to 
rate effects than concrete. Therefore, in a first approximation, the 
rate effects in FRCs can be attributed to those of the concrete. These 
are now well understood [1] and are recalled in chapter 2.

Based on the description of the mechanisms of rate effects 
within FRCs (Chapter 4), the basis of a numerical model for analyzing 
the cracking of FRC constructions in dynamic is proposed. This 
numerical model is founded on the extension of the probabilistic 
semi-explicit cracking model proposed for static loadings [2].
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Strain rate effects on the Tensile Behavior of plain 
(non-fibered) Concretes

One of the main findings from research conducted to date on 
strain rate effects is that, within a certain range of strain rates, these 
effects are primarily linked to the presence of evaporable water 
within the nanopores of the concrete’s hydrates.

A hypothesis has been proposed regarding the physical 
mechanism in which this evaporable water plays the central role. 
It is a mechanism akin to the Stefan effect, involving the viscosity 
of water [1]. This effect can be summarized as follows: when a thin 
film of a viscous liquid is trapped between two perfectly flat plates 
that are being pulled apart at a certain velocity, the film exerts a 
restoring force on the plates that is proportional to the separation 
velocity.

This mechanism is expressed by the following relationship (1):

     ( ) ( )2 53 2F V h dh dtη π= ×
                     

(1)

Where:

F is the restoring force,

η, the viscosity of the liquid,

h, the initial distance between the two plates, (dh/dt), the 
displacement rate of the two plates (> 0), V, the volume of the liquid.

If it is assumed that the free water present in the hydrates is 
responsible for a similar mechanism when the solid skeleton (here 
considered as a network of plates) undergoes tensile deformation, 
we can understand why rate effects are significant in wet concrete. 
Of course, this Stefan effect should be considered as an explanatory 
model to aid understanding, and not as a quantitative approach to 
the rate effect. To understand how the viscous mechanism, similar 
to the Stefan effect, can influence the tensile fracturing process, 
one must start from the quasi-static tensile cracking process in 
concrete.

Tensile cracking process in plain concretes

The cracking process proceeds as follows [3]:

Step 1: Formation and propagation of diffuse microcracking.

Microcracks are small cracks relative to the stressed volume 
of material. At this scale, they do not cause strain localization. 
During this initial phase – characterized solely by the formation 
of microcracks throughout the specimen – the overall behavior 
appears linear elastic.

Step 2: Transition phase or onset of microcrack localization.

In this phase, some microcracks grow to form mesocracks. 
These mesocracks induce stress concentrations at different 
locations within the stressed material, but strain localization at the 
specimen level has not yet occurred. This is a brief phase in tensile 
concrete cracking, shifting from microcrack formation to crack 
propagation. It is associated with the emergence of the nonlinear 
portion of concrete’s tensile response, reflecting its low ductility.

Step 3: Localization of cracking.

This shortest phase in the tensile cracking process begins at the 
end of step 2. During mesocrack development, one crack begins to 
dominate, leading to a macrocrack. This signals strain localization 
at the specimen scale and marks the end of the intrinsic uniaxial 
tensile behavior of concrete. The concrete’s tensile strength is 
reached at this point.

Step 4: Macrocrack propagation.

This phase concerns the structural behavior of the specimen. 
Beyond this point, strain localization prevents defining a statistically 
homogeneous volume of material from mechanical stand- point. 
The primary mechanical relation becomes the link between the 
macroscopic tensile force and displacement. During this stage, a 
reduction in force with increasing displacement is observed when 
the test is conducted at a fixed displacement rate, illustrating the 
structural softening behavior (the specimen being considering as a 
small structural element).

Importance of the Stefan effect on the tensile cracking 
process of plain concretes

Before localization (steps 1, 2, and 3), the viscous mechanism 
can have two consequences:

•	 Delaying the formation of microcracks,

•	 Delaying the propagation of initial microcracks.

These two actions lead to a delay in the localization of 
microcracking and thus increase the peak load (So, the uniaxial 
tensile strength). After localization (step 4), the viscous mechanism 
(Stefan effect), by acting on the microcracks of the process zone 
at the front tip of the macrocrack, oppose the propagation of this 
macrocrack (increase of the macrocrack propagation energy). 
In parallel with the activation of the viscous mechanism, inertia 
forces can no longer be neglected when the stress and strain rates 
generated by dynamic loading reach high values. These inertia 
forces can influence the cracking process in two different ways 
before the localization phase under dynamic loading: They oppose 
both the appearance and the propagation of microcracks, thereby 
delaying their localization. They also act after the localization 
phase, by resisting the propagation of the macrocrack.

It is clear that, although they may act simultaneously, the viscous 
mechanism and the inertia forces are not activated with the same 
intensity depending on the imposed loading rate. Thus, for strain 
rates below a critical rate around 1 s⁻¹, inertia forces are negligible 
compared to viscous effects. However, for strain rates equal to or 
greater than this value, inertia forces become non-negligible and 
even dominant for strain rates around 10 s⁻¹. It turns out that if 
the experimental curve relating tensile strength to strain rate is 
considered, it deviates from linearity (a sudden increase in strength 
is observed) for strain rates near 1 s⁻¹.

According to the definitions given regarding material-scale and 
structural-scale behavior, it is plausible that inertia forces triggered 
by macrocrack propagation (i.e., after localization) are sufficient, 
within a certain strain rate range, to generate an increase in the 
material’s tensile strength. In other words, the presence of inertia 
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forces means that the peak load may not coincide with the onset of 
crack localization, and thus the observed jump in tensile strength at 
a strain rate of about 1 s⁻¹ could be a structural effect. Based on the 
dynamic cracking process in concrete, it can be analyzed how steel 
fibers intervene in this process. To do so, it must first be examined 
how fibers act in the quasi-static cracking process.

Role of fibers in the tensile cracking process of FRC 
in static

Fibers’ role in the static cracking process can be summarized 
as follows [3]:

•	 In steps 1, 2, and 3, fibers can bridge micro- and meso-
cracks, delaying the formation of a macrocrack. This improves the 
material’s tensile strength and ductility.

•	 In step 4, fibers bridge the macrocrack itself, opposing its 
propagation and increasing the energy required for crack growth. 
This step is related to a structural behavior (the specimen can be 
considered, mechanically, as a mini structural element)

This paper does not delve into the specifics of how these 
bridging effects are achieved, such as fiber type, geometry, dosage, 
and orientation. For example, bridging effects in steps 1 to 3 can 
occur in UHPFRC (Ultra-High Performance Fiber Reinforced 
Concrete) when the fiber content is high (with small diameters) 
and fibers are well-oriented relative to the crack, usually obtained 
through uniaxial tensile testing or very high fiber volume fractions 
(exceeding 5%).

Role of fibers in the tensile cracking process of FRCs 
under dynamic loading

To influence the dynamic tensile cracking process, fibers must 
activate additional physical mechanisms compared to the static 
regime (chapter 3).

Two potential beneficial mechanisms are highlighted:

•	 Waves diffraction by fibers.

•	 Synergistic coupling between fibers and concrete.

Waves Diffraction by Fibers

Under impulsive loading, mechanical waves propagate through 
the material. The wave diffraction by an inclusion (such as a fiber) 
depends mainly on:

•	 The contrast in elastic properties and density between 
the cement paste and the steel fiber,

•	 The ratio between the wave length and the fiber’s length 
or diameter.

If the period of the wave is compatible with the dimensions of 
the steel fibers, diffraction is significant due to large contrasts:

•	 Young’s modulus ratio ≈ 10.

•	 Density ratio ≈ 3.5.

In contrast, aggregates present lower contrasts (modulus ≈ 
2.5, density ≈ 1), making them less significant for diffraction. For 
diffraction to occur, the wavelength λ must be less than about 10 
times the fiber length (L), or diameter (Ø). The wave propagation 

formula to be considered is the following:

                    λ = C × T                                         (2)

(where λ is wavelength, C is wave speed, T is period).

If a long fiber with a length of 60 mm and a short fiber with a 
diameter of 0.2 mm are considered, it is found that:

•	 For Ø = 0.2 mm → T ≤ 0.5 × 10⁻⁵ s

•	 For L = 60 mm → T ≤ 1.5 × 10⁻⁴ s

As example, in an experimental study [4] related to impact 
resistance of concrete slabs (slabs 8 cm thick) subjected to shock 
tube testing, the following quantitative data were obtained:

•	 Generated strain rates ≈ 1 s⁻¹

•	 Natural period of the slab in bending ≈ 2.5 × 10⁻³ s

This is 1–2 orders of magnitude above the critical diffraction 
periods, suggesting fibers do not significantly diffract waves during 
the stationary wave regime. However, wave propagation involves 
both transient and stationary regimes. During the transient regime, 
shorter wave periods may occur, comparable to those needed for 
fiber diffraction. Thus, fibers may indeed diffract mechanical waves 
early in the process, potentially increasing the volume of material 
subjected to motion and promoting multiple cracking (which is 
favorable for fiber efficiency). So, in conclusion, for structures 
susceptible to cracking during the transient wave regime, wave 
diffraction by fibers could prevent brittle failure by promoting 
distributed cracking. This structural effect depends on boundary 
conditions, loading type, and geometry. Fiber effectiveness 
increases with volume fraction. However, this mechanism is very 
hard to model using macroscopic models and would require 
micromechanical modeling, which is beyond this study’s scope.

Synergistic coupling between concrete and steel fibers

In chapter 3, fibers were shown to oppose displacement across 
crack faces and transfer stresses (bridging effect). Under impulsive 
loading, crack lips move at high velocity, and fibers are rapidly 
engaged. In transferring stress, fibers induce high strain rates in the 
surrounding matrix. Depending on fiber geometry and anchorage, 
these can be shear, tensile, or compressive stresses. For bond-based 
fibers, the transmitted stress is macroscopic shear. However, due to 
surface roughness and matrix heterogeneity, these become tensile 
stresses at the micro-scale, causing microcracking around the fiber, 
leading to nonlinear interface behavior. This microcracking near the 
fiber/matrix interface activates rate effects (as discussed in chapter 
2), increasing macroscopic bond strength under dynamic vs. static 
loading. For mechanically anchored fibers (with hooks at their 
ends, as example), similar tensile stress concentrations arise, often 
greater than with bonded fibers. Rate effects here are localized near 
anchor points, increasing fiber effectiveness before pull-out.

In conclusion, both bonded and mechanically anchored fibers 
transmit higher forces dynamically than statically, for the same 
crack width (assuming fibers do not rupture). Thus, whether 
fibers increase intrinsic strength (as in UHPFRC) or post-crack 
energy (any FRC), the strength ratio R FRCs PlainK R R=  or energy ratio 

E FRCs PlainK E E=  increases under dynamic loading. This effect scales 
with fiber volume.
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Numerical model of the cracking of FRC concrete 
structures in static

Existing diffuse cracking models

These models [5–11] treat cracks as microcracked zones where 
the density of microcracks gradually increases until forming a void, 
at which point no further stress is transmitted. From a numerical 
perspective, within the framework of finite element theory, these 
microcracked zones are modeled using volume elements. Generally, 
these models follow a deterministic approach and describe the 
nonlinear mechanical behavior associated with microcracking. The 
nonlinear mechanical behavior of these elements is linked to the 
post-peak tensile behavior of Fiber-Reinforced Concrete (FRC). 
This post-peak behavior is typically characterized by two key 
material parameters:

•	 The shape of the post-peak response referring to the 
behavior of the tensile stress- strain curve after the linear elastic 
phase of the FRC.

•	 The post-peak energy dissipation which corresponds to 
the area under the tensile stress-strain curve and is often referred 
to as fG  .

In summary, diffuse cracking models applied to FRC rely on 
nonlinear finite element methods using volume elements. The 
nonlinear behavior considered is the tensile response of the FRC, 
represented as a stress-strain relationship. These models consider 
that the post-peak behavior is the evolution of the microcracking 
process in presence of fibers. This highlights a major limitation 
of these diffuse cracking models: they are not physically based if 
chapters 3 and 4 are considered.

Although these models are widely described in the literature 
and commonly used in practice, they have a significant drawback. 
As previously mentioned, diffuse cracking models are not 
physically based since they transform a localized crack into 
diffused microcracked zone. This strong physical approximation 
results in an inaccurate representation of the cracking pattern in 
FRC structures. Numerically, because 

fG  values are significantly 

higher for FRCs than for conventional concretes, diffuse cracking 
models tend to overly spread the damaged (microcracked) zones 
and underestimate crack openings.

The most well-known diffuse cracking models for FRC include 
damage models [5–7] and smeared crack models [8,9], which 
are mechanically equivalent. Notably, the smeared crack model 
developed at École Polytechnique de Montréal (Canada) [10, 11] 
provides a more accurate evaluation of crack openings in FRC 
compared to other diffuse cracking models. This improvement is 
attributed to its use of an explicit resolution algorithm, whereas 
other models employ implicit resolution algorithms. The explicit 
approach allows for better crack localization. However, despite 
this advancement, even the smeared crack model has limitations in 
accurately evaluating crack openings.

The probabilistic semi-explicit cracking (PSECf) model 
for FRC in static

The PSECf model for simulating the mechanical behavior of 
large-scale FRC structures was previously presented for static 
problems [2]. This PSECf model is designed to simulate macrocrack 
propagation, specifically addressing cracks with openings equal 
to or greater than 300 microns. It is based on the uniaxial tensile 
behavior of FRCs. It concerns only FRCs which have softening post-
cracking behavior in uniaxial tension. This uniaxial tensile behavior.

The main objective of this model is to address a key limitation 
in existing distributed cracking models from the literature, namely, 
the excessive dispersion of cracks, which results in underestimating 
the openings of major cracks. Macrocrack initiation and propagation 
are simulated using linear volumetric elements, where cracks 
form when the tensile stress at the integration point of an element 
reaches the matrix’s tensile strength (unreinforced concrete), 
assuming perfectly brittle matrix behavior. Concrete strength is 
modeled as a random variable following a Weibull distribution, 
with dependence on the finite element volume. As the finite 
element volume increases, both the mean and standard deviation 
of the matrix tensile strength decrease.

Figure 1: Aspects of the PSECf model for fiber-reinforced concrete – Mechanical behavior in uniaxial tension.
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As demonstrated in [12], using linear volume elements does 
not precisely capture macrocrack initiation. However, in the case 
of fiber-reinforced concrete (FRC), this approximation is acceptable 
provided that the fiber bridging effect is properly incorporated into 
the numerical model. Previous experimental study [13] has shown 
that the average post-cracking energy related to the bridging 
effect is independent of the tested material volume, although 
the standard deviation of this energy decreases with increasing 
volume. Aligning with the objectives of this model, a simplified 
approach is adopted where the fiber bridging energy wfG  is treated 
as a deterministic parameter, unaffected by the finite element 
volume. The probabilistic semi-explicit model considers two key 
mechanical stages: initial macrocrack initiation (step 3 of chapter 
2.2) and fiber bridging effect. These aspects are illustrated in Figure 
1.

Crack initiation occurs when the maximum principal stress 1σ  
in an element reaches the randomly assigned tensile strength tf . At 
this point, the element’s stiffness decreases sharply. During fiber 
bridging, as the maximum principal strain 1ε   increases, the bridging 
mechanism is activated, which increases the effective stiffness bE  
but remains below the original material stiffness 0E . If 1ε  decreases, 
the element’s stiffness remains low. During crack progression, once

1ε   reaches a critical value 1Cε , the stress 1σ  decreases linearly with 
1ε   to simulate fiber pullout. When 1ε  attains its maximum value 1mε

, the fiber effect is considered negligible, and the element stiffness 
drops to zero.

This softening behavior is modeled via a simple damage 
approach, where only the matrix values in the element related to 
the maximum principal stress-strain relationship are modified, 
while other matrix entries remain zero. Consequently, the fiber 
bridging effect is treated as anisotropic. Given the probabilistic 
nature of the model, Monte Carlo procedure is essential to ensure 
the results statistically reflect the variability inherent in both model 
parameters and material properties. For a given structural problem, 
the set of obtained results allows for a relevant statistical analysis, 
enabling a safety-oriented assessment of the structure’s behavior.

It can be emphasized that, in the proposed model, the rupture 
of the matrix (the concrete) being perfectly brittle and its tensile 
strength a probabilistic parameter, this allows the cracks to be 
located much better than in the diffuse cracking models mentioned 
previously.

It is important to clarify that the proposed model is not valid 
for FRCs which have hardening behavior in uniaxial tension. In 
this model, the bridging effect of the fibers is only considered 
when the matrix is fully cracked. This choice might appear overly 
simplistic given the macroscopic behavior observed during a direct 
tensile test on a notched specimen. Indeed, during such a test, a 
softening behavior emerges, resulting from the propagation of 
the macrocrack and the progressive bridging action of the fibers 
until the entire section of the specimen is fully cracked. However, 

as de- scribed in Section 2.1, this macrocrack propagation phase is 
by no means a material behavior, but rather a structural behavior. 
In fact, this post-cracking softening behavior entirely depends on 
the dimensions of the direct tensile specimen, and more specifically 
on the cross-section where the cracking occurs (in the case of a 
notched specimen).

As a result, the only stages of the cracking process of fiber-
reinforced concrete under direct tension are considered in the 
model: (1) the behavior up to the initiation of the macrocrack (peak 
load) which is the material behavior of the uncracked FRC; and (2) 
the load transfer by the fibers when the specimen’s cross-section 
is fully cracked (which is the material behavior of the fully cracked 
FRC). Indeed, for the latter stage, it has been experimentally 
demonstrated [13] that the average behavior of the load transfer 
by the fibers is independent of the specimen’s dimensions. The 
scattering related to this fibers load transfer behavior decreasing 
with the in- creasing specimen dimensions, it is important to adapt 
the number of specimens to be tested to get a correct information 
about the average behavior [13]. To conclude, all models that 
incorporate the macrocrack propagation phase into the material 
behavior model are physically and mechanically incorrect.

Parameters determination of the PSECf in static

The mean tensile strength of the matrix ft and its standard 
deviation (which depends on the finite element volume) are 
computed from previously validated formulas [14]. These 
properties are randomly distributed across the mesh following a 
Weibull distribution. The fiber bond energy 

wfG  is derived from 
uniaxial tensile test on notched specimens [15,16]. Since this 
uniaxial tensile test measure crack opening, a conversion to strain is 
necessary for modeling and numerical simulations. This conversion 
involves dividing the crack opening by a characteristic length of the 
finite elements, ( )1/3

e el V= , where Ve represents the volume of the 
finite element.

An example of test set-up related to the direct tensile test on 
notched specimen is presented in following. This test set-up has 
long been validated [3,15,16].

A very good technical solution is to use, as connection between 
the specimen and the testing machine, aluminum cylinders having 
the same diameter than the specimen tested. Aluminum having 
a Young modulus/Poisson ratio close to that of concrete, stress 
concentration in the glue (which serves to connect the specimen to 
the aluminum bar) and in the specimen near the connection is very 
low. These aluminum cylinders are directly screwed on the testing 
machine. A schematic draw of this test set-up is presented in Figure 
2. To minimize this stress concentration, the length of the aluminum 
cylinders is chosen in relation with the length of the dimensions of 
the specimen. This length optimization of the aluminum cylinders 
is made by performing linear finite element analysis (considering 
both the specimen and the aluminum cylinders).
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Figure 2: Schematic draw of the bond between the notched specimen and the aluminum cylinders – vertical cut (from [3]).

Determination of the tensile stress-crack opening curve useful 
to calculate wfG

As précised before, when a notched specimen is concerned, the 
beginning of the test is related to a macrocrack propagation along 
the specimen section (at the level of the notch). This propagation 
coincides with a local bending inside the cracked section. This 
bending can occur until the complete macrocrack creation. 
Therefore, the part of the tensile stress-crack opening curve related 
to this step of crack propagation has not to be considered. The crack 
is considered completely open along the section of the specimen 
when all displacement sensors indicate an opening displacement, 
w0, equal to 10-4. sL  . sL   is the basis length of measurement of the 
sensors and 10-4 corresponds to a conventional value of cracking 

strain of concrete. After the step of crack propagation, the local 
bending is less if the test is well performed, whether with the 
gripping or the bonding connection.

Only when 0w  is reached for all displacement sensors, an 
average crack opening can be considered. The smaller average 
crack opening is called iw  . Figure 3 illustrates how 0w  and iw  
are determined (case of bounding connection). Consequently, wfG  
is calculated considering the experimental stress-crack opening 
curve from the crack opening iw . It means that for crack openings 
inferior to wi the fibers bridging effect is not considered. This 
approximation leads to a conservative numerical simulation with 
respect to the actual behavior of the structure under consideration.

Figure 3: Example of determination of 0w  and iw  (from [3]).

In practice, a number of uniaxial tests need to be conducted 
to determine the average value of wfG  to be used in the numerical 
simulations.

Determination of ε1c, σ1c  and ε1m

 1cσ
 is determined directly from the experimental average 

tensile stress-crack opening curve. It is the maximal average value 
of the post-cracking tensile strength. 

Concerning 1cε  , it is more complicated. The fiber bridging effect 
being only considered from an experimental crack opening equal to  

iw , while, in the numerical model, this bridging effect begins at zero 
crack opening, it is clear that the value of 1cw   (and so of 1cε  ) in the 

model ( 1cnw  ) has to be lower than that observed in the experiment 
( 1cew  ). This value of 1cw  can be calculated considering this point: 
the experimental bridging effect attributable to a material behavior 
starts when the volume of the macrocracks is equal to ( ).i pw S , where 

pS
 

is the cracked section of the specimen, while the numerical 
bridging effect starts when the volume element is fully cracked (its 
rigidity matrix is equal to 0). To get an equivalent bridging effect 
between the numerical model and the experiment, the following 
relation as to be considered (as approximation):

   ( )( )1 1cn ce i p ew w w S V= ⋅
                      

(3)

 is calculated as following:
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  1 1 02m wf cGε σ ε= +
                     

(4)

Numerical Model of the SFRC Structures behavior 
under Dynamic Loading

The majority of numerical models (finite elements models) 
related to the dynamic behavior of fiber-reinforced concrete 
structures [17–22] exhibit the same issues as those concerning the 
static behavior of these structures (chapter 5.1). They are not very 
relevant for providing a realistic representation of the cracking 
process (cracking is too diffuse compared to reality). This is due to 
the same inherent limitations of these models (chapter 5.1).

The proposed model is based on the development in dynamics 
of the PSECf model developed in statics (chapter 5.2). In this PSECf 
model, two parameters appear: the tensile strength tf  of concrete 
and the bridging effect energy of fibers  wfG . Chapters 2, 3, and 4 
show that the rate effect on fiber-reinforced concretes have two 
main consequences: the increase, with the stain rate, of tf  , which 
is a probabilistic parameter and of wfG  which is a deterministic 
parameter.

Regarding the strain rate effect on ft, significant experimental 
studies [1] led to the following generic relationship [23]:

  , , 2.8 0.3 ( )t dyn t satf f In σ= + +                     
 
(5)

with strength ( ,t satf and ,t dynf ) given in MPa, while stress rate  
has units of GPa/s. ,t satf  and ,t dynf  are respectively the static and the 
dynamic tensile strengths. 

As for the strain rate effect on wfG  , there is no generic 
relationship proposed in the literature. Therefore, it will need to 

be established from a very significant and costly experimental 
study (different concretes, geometries and percentage of fibers to 
be considered), or obtained for each specific FRC. In both cases, as 
with static tests, uniaxial tensile tests on notched specimens will 
need to be conducted at different loading rates, from low until high 
loading rates through intermediate loading rates. For the low and 
intermediate loading rates, a classic traction machine can be used, 
while for high loading rates the Hopkinson bar is the most effective 
testing method to be used [24–27].

To enable the experimental determination of the evolution of 
the uniaxial tensile stress–strain law (Figure 1) – more specifically, 
the various parameters related to the fibers’ bridging effect – with 
respect to the strain rate for a given FRC, it is essential to assume 
about this evolution. Referring to chapters 3 and 4, the following 
assumption appears acceptable:

•	 The elastic modulus Eb is not a lot of affected by strain 
rate effects (this Young modulus is mainly linked to the one of 
the fibers which is not sensitive to the domain of strain rates 
considered).

•	 Due to the improvement of fiber anchorage or adhesion 
to concrete with increasing strain rate, the stress σ1C increases 
with strain rate.

•	 Since, even when fibers start to slip within the concrete 
(descending branch of the bridging effect in Figure 1), few 
additional microcracks can appear around the fibers (the ten- 
sile stresses transmitted near the fibers decrease significantly), 
the viscous effects associated with this slipping can be 
neglected.

Figure 4: Aspects of the PSECf model in dynamics.

•	 The strain 1mε  (Figure 1), mainly related to the fiber’s 
geometry and dimensions, can be assumed to be unaffected (or 
minimally affected, so no considered) by strain rate effects.

In consequence, the strain rate effects accompanying the proposed 
fiber bridging effect are primarily related to the enhancement of 

fiber adhesion or anchorage (increasing of 1cσ  which becomes 1Cdynσ  
). Figure 4 summaries the PSECf model in dynamics. As previously 
stated, experimental studies to access the parameters of the 
proposed model are complex (especially the use of the Hopkinson 
bar, which is a relatively confidential experimental equipment) and 

expensive. It is therefore relevant to propose an alternative to these 
studies by making a few assumptions. Thus, the only value to be 
determined in the dynamic bridging effect of fibers is that of the 

parameter ( 1Cdynσ ). However, as proposed (hypothesis), the value of 
this parameter is linked to the improvement of the anchoring or 
adhesion of the fiber in the matrix (depending on the fiber type) 
with rate effects. Since this improvement is attributable to the 
Stefan effect on the microcracking process around the fibers and it 
is a process similar to that which governs the increase in the uniaxial 
tensile strength of concrete (chapter 2), a new hypothesis can be 
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put forward: the increase in the value of ( )1Cdynσ  with the strain rate 
follows the same law as that of the tensile strength of concrete. This 
is reflected in the following relationship (relation (6):

  ( )1 1Cdyn Cstat tdyn tsatf fσ σ=
                    

(6)

From a numerical perspective, the influence of structural inertia 
should come automatically from a dynamic analysis [28], being a 
natural consequence of the inclusion of mass matrix and damping 
matrix in the equation of motion. Therefore, it should not be 
considered a priori either through Dynamic Increase Factor (DIF) 
or by sophisticated constitutive models. This choice is supported by 
thorough numerical simulations [29–31].

It is noteworthy to mention that, at local (finite element) level, 
structural inertia is only responsible for changing the stress and 
strain state. Evidently, structural inertia will control whether 
the finite element will achieve its strength faster or slower, but 
it will not change its actual value. Concerning the finite element 
procedure, before starting the numerical analysis, it is necessary 
to assign random property of 

tf  and deterministic one of  for 
each finite element according to a given probabilistic distribution 
concerning ft. This type of procedure was originally de- scribed 
in [32] for the probabilistic semi-explicit cracking (PSEC) model 
related to concrete (it means without fibers). Once the probabilistic 
properties and the deterministic one have been assigned to the 
finite element mesh, boundary and initial conditions are provided, 
and a typical dynamic analysis is performed, usually adopting the 
Newmark-beta algorithm for the time-step integration.

Conclusions and Perspectives

This article presents the fundamentals of a numerical model 
that is set to undergo subsequent algorithmic implementation. This 
model is a probabilistic semi-explicit cracking model dedicated to 
the dynamic behavior of structures made from steel fiber reinforced 
concrete (SFRC). It is based on the extension of the same model 
that has been developed and validated in static conditions. This 
extension is proposed after a detailed exploration of the physical 
mechanisms accompanying the cracking process of fiber-reinforced 
concrete under dynamic loading.

The fact that the model is based on precise and detailed 
physical mechanisms allows for an interesting alternative to 
the experimental quantification of the model parameters. This 
experimental quantification, which requires the use of a Hopkinson 
bar, is complex and costly. The proposed alternative involves 
conducting only uniaxial tensile tests in static on notched fiber- 
reinforced concrete specimens. This work provides the scientific 
and engineering communities with a solid foundation to sup- port 
such developments. Following this implementation, a validation 
phase, based on available experimental data from the literature, 
will be necessary to confirm the accuracy and robustness of this 
model.
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