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Introduction

A significant portion of the vital infrastructure supporting 
modern dynamic society, including bridges, railways, tunnels, 
dams, buildings, power plants, and highways, was constructed 
decades ago and it is important to ensure the safety, resilience, and 
efficiency of these critical infrastructures. As an example, according 
to the report of the American Road and Transportation Builders 
Association (ARTBA) which is based on data from the Federal 
Highway Administration (FHWA) National Bridge Inventory 
(NBI) for 2022, from a total of more than 617,000 bridges across 
the United States, 36% of them (near 224,000) need repair work 
and more than 43,500 bridges are rated in poor condition and  

 
classified as structurally deficient. Due to these statistics, ARTBA 
estimated the cost of identified repairs for all 224,000 bridges, is 
approximately $260 billion [1]. These reports and statistics indicate 
the importance of monitoring, maintenance, and rehabilitation of 
aging civil infrastructures.

Infrastructure inspection is one of the important aspects and 
a key to identifying damage, preventing potential hazards, and 
optimizing performance. Civil infrastructure condition assessment 
is carried out by utilizing data from inspection/or monitoring. 
Traditional methods to evaluate the condition of civil infrastructure 
usually is done by visual inspection by the inspectors considering 
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the related criteria (e.g., NBI standards for the bridges [2,3]. 
However, these methods for infrastructure inspection can be time-
consuming, expensive, imprecise, and unsafe [4]. In recent years, 
to overcome these challenges, using Unmanned Aerial Vehicles 
(UAVs) also known as drones, has become one of the solutions, and 
it has attracted a lot of attention in civil engineering [5,6]. Due to 
UAV’s key benefits, such as enhanced safety, cost efficiency, time 
efficiency, and easy repeatability, they are now widely used for civil 
infrastructure inspection and remote sensing [7]. 

As with most emerging technologies, challenges for UAV-
based inspection remain, such as image distortion, massive data, 
image matching, lack of access to some parts of the infrastructure, 
instability of the UAV, vibration effects, etc. [6]. Recent advances 
in computer vision and image processing techniques, especially 
developments in Artificial Intelligence (AI) would be beneficial 
for UAV-based infrastructure inspection in different damage 
detection aspects. However, these methods heavily rely on the 
quality of collected data, and inaccuracies may arise without high-
quality data. In this context, ensuring data quality is crucial for 
the success and reliability of UAV-based inspections. To harness 
the full potential of data processing techniques and enhance the 
overall efficiency of UAVs in infrastructure inspection, it is crucial to 
investigate pre-flight preparation and meticulous data collection to 
ensure high data quality. Regarding the importance of data quality 
and data collection, this study focuses on the recent developments 
and the challenges related to the pre-flight preparation for the data 
collection phase. For this purpose, the pre-flight preparation for 
the data collection phase is divided into two different categories: 
hardware selection and flight planning. The remainder of the paper 
is structured as follows: in section 2, developments and challenges 
of the hardware selection including UAV selection, payload selection, 
and camera calibration are discussed; Also, developments and 
challenges for flight planning are discussed in section 3, and section 
4 delivers the conclusions of this paper.

Hardware (UAV Platform and Payload)

Before discussing the hardware selection, it is important to 
consider and define the inspection purpose. Without considering 
the purpose of inspection, suitable hardware may not be chosen 
and consequently, it may lead to some issues in other steps such 
as low data quality or inappropriate data collection. Five different 
purposes are defined in this study: crack detection, delamination, 
fatigue, 3D modeling, and corrosion. These purposes of inspection 
are discussed briefly below.

a. Crack Detection: Most of the studies mentioned crack 
detection as the basic and major application of infrastructure 
inspection using UAVs [8]. There are two primary steps in the 
image-based surface crack assessment method. Crack detection 
comes first, intending to remove noise and extract cracked 
objects from the images. The extraction of crack edges and the 
calculation of crack characteristics, such as crack width and 
length, make up the second stage of crack assessment [9]. For 
this purpose, mostly RGB cameras are used to find cracks in the 
surface of bridges, tunnels, and other structures. Using optical 

cameras, the UAVs can take high-quality pictures from difficult-
to-reach regions [10].

b. Delamination: Deck delamination, also known as 
horizontal debonding in the deck’s subsurface, is frequently 
a sign that the deck reinforcement has deteriorated due 
to corrosion [11]. The shape and depth of delamination, 
environmental factors like air temperature and solar intensity, 
which introduce feature variation of the same delamination, 
and surface textures like cracks, color differences, patching, 
and road painting, which add external noise, are the current 
challenges for the purpose of delamination profiling through 
thermography [12].

c. Fatigue: Fatigue cracks can have lengths less than 7 mm 
and diameters as small as 0.1 mm, and they are exceedingly 
difficult to discern. Inaccessible areas such as huge cross frames, 
welded stiffeners, or other complex geometries are typically 
where fatigue cracks develop in the superstructure. Commonly, 
RGB and IRT cameras are utilized to identify fatigue cracks. The 
effectiveness of UAV-based fatigue crack detection is greatly 
influenced by the platform that is used, the environment, and 
the lighting [13].

d. 3D Modeling: Inspectors can view geometric data, such 
as damage location, and surface condition, such as damage 
kind and amount, by using 3D models of the structures, 
which provide a base from which damage information can 
be compared. To create 3D models, RGB cameras and LiDAR 
sensors can be used [14]. Photogrammetry creates 3D points 
from a set of 2D photos collected from various angles and 
positions all around the structure, as opposed to LiDAR, which 
often contains more 3D points. Photogrammetry has a higher 
processing cost and lower accuracy than LiDAR because it 
compares image attributes to build the 3D points. However, 
UAV-based LiDAR systems need expensive LiDAR sensors and 
GPS systems, which reduce battery life by adding more payload 
to the system, whereas photogrammetry merely needs an 
optical sensor [15].

e. Corrosion: Due to the widespread usage of metals in 
construction infrastructure, corrosion is a constant risk. A 
positive charge is released during the electrochemical process of 
corrosion, which results in the formation of a stable compound. 
Despite some corrosion on the underlying metal components, 
such as the steel reinforcement used in bridge concrete, the 
surface of steel bridges experiences a great deal of corrosion 
[16]. The most popular cameras for detecting corrosion are 
RGB and IRT cameras. Although infrared thermography is a 
promising technique for measuring, mapping, and detecting 
corrosion, more study is required before it can be used perfectly 
in the field [17-19].

As mentioned above, different kinds of infrastructure 
inspections require different tools and considerations depending 
on the inspection’s goal. The choice of appropriate equipment is 
the next stage, and it is covered below. The typical UAV is composed 
of a frame, motors, control unit, onboard sensors, communication 
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system, and power supply. Many UAVs display a dual tube 
substructure to make it easier to mount various payloads [8]. Fixed-
wing, rotorcraft, multi-rotor drones, and hybrid vertical take-off 
and landing (VTOL) vehicles are the four common UAV designs [20]. 
Figure 1 shows an example of these different types of UAVs and they 
are compared and discussed below. When it comes to operating 
characteristics and different airframes, fixed-wing drones are like 
conventional aircraft, they are usually bigger sized than other types 
and they can efficiently cover large distances. Similar to helicopters, 
rotorcraft UAVs have revolving propellers attached to the aircraft 
frame.  Single-rotor drones are small-sized helicopter, which runs 
on gas or electricity. The multi-rotor UAV is a version of this type 
that has numerous propellers extending from the main body to 

increase the drone’s flight. They are mostly used for common 
applications like aerial photography, aerial video surveillance, etc. 
Other kinds include the Tricopter (with three rotors), Quadcopter 
(with four rotors), Hexacopter (with six rotors), and Octocopter 
(with eight rotors). Multi-rotor UAVs can perform complex 3D 
mapping since they are quick and stable. Rotorcrafts, on the other 
hand, are more difficult to fly manually than multi-rotors since 
they are easier to control, have more lift, and have a backup plan 
in case of motor failure. Measurement Errors can be caused by the 
UAV’s instability or increasing mobility. Finally, hybrid VTOL UAVs 
combine fixed-wing and multirotor designs, where the plane is 
propelled vertically before flying horizontally [10,21-23].

Figure 1: Common UAV types.

The choice of the appropriate UAV platform and sensors 
has proven to be a difficult problem due to UAV performance 
requirements related to flights close to the structure (e.g., turbulent 
flow characteristics around the bridge) and terrain characteristics 
(e.g., surface roughness, temperature, and humidity) [24]. This 
includes positioning and maneuvering the UAV around or under 
structures (operations prohibited by GPS) [25,26] and the stability 
of the platform in windy situations, where turbulence and other 
aerodynamic phenomena cause unpredictable wind effects [27,28]. 
One another major limitation of UAVs is the limited battery capacity 
or flight time. Moreover, it is not reasonable to increase battery sizes 
more than current battery sizes because it will affect the payload 
capacity and maneuverability of the UAV. A solution for this problem 
could be using wireless power transfer but still more investigation 
in this area seems crucial [29,30]. The main difficulty in maximizing 
the UAV for infrastructure inspections is striking a balance 
between payload capacity and compatibility, endurance, vehicle 
stability, navigational capabilities, and cost. These parameters 
play a pivotal role in UAV platform selection. By considering these 
parameters and inspection purposes, infrastructure inspections 
can be conducted with enhanced efficiency and data accuracy. 
A vehicle with a stabilizing gimbal that can change the camera 
pointing angle to any vertical angle, a camera with optical zoom for 
capturing high-resolution imagery while at a safe standoff distance, 
a vertical takeoff and landing capability, and the capacity to hover 
in place during the flight are examples of parameters and vehicle 
characteristics appropriate for infrastructure inspections [31].

The purpose of an infrastructure inspection mission is to 
collect data using designated sensors. UAV and payload selection 
should be done simultaneously because some UAVs come with fixed 

payloads while others can be customized with different payloads. 
Also, there are some UAVs that have fixed payloads, but other 
payloads can be added too. Therefore, considering the inspection 
purpose, UAV and payload selection are relevant to each other, and 
as mentioned before, if the UAV is customizable, payload capacity 
and compatibility of the drone are effective parameters for payload 
selection too [24]. Generally, the choice of the best sensors for 
infrastructure inspection depends on several factors, including 
cost, flight time, mission objectives, the UAV’s payload capacity and 
compatibility, the payload’s controllability, and navigational needs 
[31]. Although in the infrastructure inspection purposes section, 
the payloads are briefly described, Table 1 gives a summary of 
3 commonly used payloads and some other information that is 
effective for the suitable payload selection. It is worth mentioning 
that if needed, using multi-sensors is possible if they are compatible 
with the UAV platform. Also, other than these three common 
payloads, there are other payloads such as Sound Navigation and 
Ranging (SONAR) sensors which can be used for surface mapping 
while flying UAVs and obstacle detection [32]. Moreover, magnetic 
sensors can be used to generate magnetic maps and defect maps for 
ferrous materials like steel girders [33]. One of the major challenges 
related to visual cameras is the rolling shutter issue. Usually, UAVs 
are equipped with low-cost rolling-shutter cameras. Unlike in 
global-shutter cameras, when the aircraft collects the data with a 
rolling-shutter camera, each row is exposed in turn and thus poses 
differently [36]. Consequently, moving roller-shutter cameras often 
produce more image distortion [37]. Also, global-shutter cameras 
are more expensive and may not be affordable for inspection which 
means that new methods are needed for the use of the rolling-
shutter cameras or image distortion correction methods should be 
used during the data processing phase.
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Table 1: Specifics of different common payloads and their limitations [15,31,34,35].

Payload Type Weight Range (kg) Mission Limitations

Visual Camera 0.1 - 1

-Crack Detection 
-Fatigue 

-Delamination 
-Corrosion 

-3D Modeling

- Vibration and wind effect 
- Lightning condition 

- GPS-deprived navigation

IRT Camera 0.2 – 1.5 -Fatigue 
-Delamination

- Low pixel resolution 
-Inspection time affects the results

LiDAR Sensor 1.3 – 2.8 -3D Modeling - High weight 
- High price

Besides the impact of hardware on the data quality, safety 
regulations and pilot capabilities are two important factors at all 
steps of data collection. The pilot’s ability and comfort level during 
flight operations have a significant impact on the quality of the 
data obtained [38]. Considering the above-mentioned parameters 
for hardware selection and the challenges of this process, some 
of the recent studies of data collection and hardware selection 
are represented in Table 2 considering the UAV and the payload 
that they have used [39-59]. These studies investigate the effect 
of hardware selection on infrastructure inspection or the effect 
of the hardware that they used for inspection case studies which 
can be beneficial for future research in this area. Also in Figure 2, 
the general effective considerations for UAV and payload selection 

are shown. Some of these parameters are common between UAV 
and payload selection. In addition, Figure 3 represents the above-
mentioned challenges and limitations for hardware selection. 
Regarding payload selection, camera calibration is another area 
that has been studied in recent years. Camera calibration is 
necessary for UAV-based inspection due to the use of nonmetric, 
lightweight cameras that are not intended for photogrammetric 
accuracy [60]. Camera calibration is an essential step to extract 
metric data from 2D photos in 3D computer vision for correction 
of the image distortion [61]. In aerial images, pre-calibration or on-
the-job calibration is frequently used to handle camera parameters, 
such as intrinsic parameters and lens distortion coefficients. 

Table 2: Research related to hardware selection and data collection.

Reference Year Content UAV Payload

[39] 2023
A survey of the limitations of using UAVs, data ac-

quisition, and data processing considering accuracy 
and economy

Multiple fixed-wing and 
multi-rotor UAVs

Multiple rolling shutter and global shutter 
cameras

[40] 2023

A comprehensive review of UAVs, types, swarms, 
classifications, charging methods, regulations, 
application scenarios, potential challenges and 

security issues

Multiple UAVs Multiple payloads

[41] 2023 A review of the challenges and future trends of 
UAV-based bridge and tunnel inspection Multiple UAVs Multiple payloads

[42] 2023 A study to ease the expenses and challenges related 
to sensor attachment for bridge inspection Customized NASIMI II Customized payloads and lasers

[43] 2023 A review of different robotics for inspection, their 
categorization, and comparison

Skydio 2+ and DJI Zenmuse 
L1 Different visual and non-visual sensors

[44] 2023 An overview of challenges and solutions for UAV 
application in underground space Flyability Elios 3 LiDAR sensors

[45] 2023 The principle of optimized views photogrammetry 
for accurate image acquisition

DJI M300 and DJI Phantom 
RTK

PSDK 102S, DJI Zenmuse, PhaseOne iXM-
RS150F, and DJI FC6310R

[31] 2022
An evaluation and review of the advantages and 
limitations of UAV application in various bridge 

inspections
Multiple UAVs Multiple payloads

[46] 2022
A review of the benefits and limitations of UAV-
based sensing systems in construction manage-

ment and civil engineering
N/A N/A

[47] 2022
UAS-based automatic damage detection and bridge 

condition evaluation on existing bridges for the 
entire bridge inspection process

Customized UAV 3D LiDAR

[48] 2022 A survey of major steps and challenges of UAV-
based 3D mapping N/A N/A

[49] 2022 A method to safely guide the UAV along the tunnel 
axis while avoiding collisions with its walls. Quadrotor UAV Multiple payloads
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[50] 2021
Recent advances in UAV technology and embedded 
hardware to develop ICARUS to integrate multiple 
sensors on the UAV for automatic data collection

DJI Matrice 300 DJI Zenmuse H20T, MicaSense Altum, and 
NVIDIA Jetson Xavier NX

[51] 2021
an automatic inspection method of building sur-

face, especially for the inspection data collection, by 
integrating UAV and BIM

DJI Phantom 4 N/A

[52] 2020
An evaluation of the recent developments in the 
field of autonomous robotic platforms structural 

health monitoring of bridges.
Multiple UAVs Multiple payloads

[53] 2020
A literature review and technical survey on (UAV) 

techniques for bridge inspection and damage 
quantification

N/A N/A

[24] 2020
A framework to systematically select a commercial-
ly available UAS that is the most appropriate choice 

for bridge inspection.
Multiple UAVs Multiple payloads

[8] 2020
A survey of the UAV-based civil structural health 

monitoring considering the literature over the last 
decade

N/A Multiple payloads

[6] 2019
A review of the applications, challenges, develop-

ments, and future trends for all phases of UAV-
based remote sensing

Multiple UAVs Multiple payloads

[34] 2019
A framework for automated UAV-based inspections 
of large bridges to facilitate an automated condition 

assessment
N/A N/A

[54] 2019
An artificial intelligence-powered UAV platform 
for underground spaces by collecting data from 

multiple payloads
Customized UAV LiDAR, IR, and visible light sensors

[55] 2019
An evaluation of the drone platform, detecting and 
surveying system, and post-data processing system 

considering the challenges and opportunities
N/A N/A

[56] 2018

The design and development of a smart UAV 
platform, Surveyor with Intelligent Rotating Lens 

(SWIRL), customized for autonomous operation in 
tunnels

Customized UAV Customized payload

[57] 2018
A literature review of the state of practice for the 

United States bridge inspection programs consider-
ing applications, challenges, and future needs

Multiple UAVs Multiple payloads

[58] 2018
A summary of the context for UAV inspection of 
power facilities and structures considering chal-

lenges and applications
Multiple UAVs Multiple payloads

[59] 2018
An evaluation of the state-of-the-art methods in 

UAV spectral remote sensing considering and dis-
cussing the sensor technology

N/A Multiple payloads

Figure 2: Effective parameters for UAV and payload selection.
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Also, generally, there are two methods of camera calibration: 
reference object-based calibration and self-calibration. Reference 
object-based calibration can be performed using 2D calibration 
benchmarks (such as checkboard patterns) or 3D physical 
calibration fields where coded markers are distributed in three 
dimensions with known coordinates [62]. 3D calibration is a 
highly accurate method, but costly and unsuitable for frequent 
recalibrations. On the other hand, 2D calibration is low-cost 
and it has been indicated that this method can achieve accurate 
results close to the 3D method [63]. For self-calibration, special 
calibration benchmarks are not required, and it depends on the 

structural information detected in images. Because of the flexibility 
and efficiency of this method, it has become a research area in 
recent years [6]. The goal of camera calibration is to establish the 
relationship between the 3D world coordinates of the object and 
their corresponding 2D image coordinates, forming the projection 
matrix. In Table 3, some of the studies that are related to camera 
calibration for RGB, thermal, and LiDAR cameras, especially for UAV 
applications are shown. After considering the inspection purpose, 
UAV and payload selection, and camera calibration, the next step for 
the preflight phase is to plan for the flight which is described and 
discussed in the next section.

Table 3: Research related to UAV camera calibration.

Reference Year Content Camera Type

[64] 2023 A review of automatic targetless LiDAR-camera calibration methods by dividing these meth-
ods into four categories LiDAR

[65] 2022
A stereo camera calibration method using the UAVs as feature points, combined with the 

high-precision position information and suitable for large scene field environments and some 
complex field scenes

High-speed

[66] 2021 A study to find the optimum method to calibrate the Nikon EOS 6D camera – adaptable as a 
potential UAV sensor and mounted on a DJI S1000 UAV in this research Non-metric

[67] 2020 A literature review of existing calibration methods for a LiDAR camera system mounted on a 
UAV platform and a new versatile automatic and targetless calibration method of this system LiDAR

[68] 2020 An ambient temperature-dependent radiometric calibration function that enables more accu-
rate surface temperature retrievals to support field and UAV-based data collection efforts Thermal

[69] 2018 A 3D calibration field for the digital cameras mounted on UASs in terms of accuracy and 
robustness with case studies to show the efficiency of the method Digital

[70] 2017 An overview of the current scenario of cameras, often used in UAV applications with focus on 
the geometrical calibration of these cameras and testing 9 cameras Different types

[71] 2016 A brief theoretical introduction and camera calibration process, details of the calibration 
methods and models RGB

[72] 2015 Addressing the issues of small consumer-grade digital cameras by conducting calibration 
tests using two kinds of consumer-grade digital cameras Digital

[73] 2013 A camera calibration system, AprilCal, that yields more accurate calibration and applies to a 
variety of lenses Different types

[74] 2009
An algorithm to perform the calibration without any user interaction whatsoever, which 

works under almost all possible conditions and just uses some pictures of a checkerboard 
taken with the camera as the input

Different types

[63] 2000 A flexible technique to easily calibrate a camera and only requires the camera to observe a 
planar pattern shown at a few different orientations Different types

Figure 3: Hardware-related challenges and limitations of UAVs.
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Flight Planning

A good flight path is a crucial need for the use of UAS for 
inspection operations. Only if the mission is carefully planned to 
accomplish every inspection target can its full potential be used 
[75]. Path planning is challenging for UAV-based infrastructure 
inspection to find the optimal or near-optimal path.  The flight path 
is a set of camera positions in which the images will be captured 
from these positions. Camera positions consist of the horizontal 
and vertical distance from the object, and the angle of the camera. 
The purpose of the flight path computation is to specify a collection 
of camera positions and viewing angles that are arranged in such 
a way that the structure being inspected is entirely covered by 
overlapping images at the specified resolution. The control of the 
UAS will then use those viewpoints as waypoints to automatically 
capture images [75]. In the process of selecting camera positions, 
one of the key considerations is the Ground Sampling Distance (GSD). 
The Ground Sampling Distance refers to the distance between two 
consecutive pixel centers measured on the ground. It plays a crucial 
role in determining the spatial resolution of the image and the level 
of visible details. A larger GSD value corresponds to lower spatial 
resolution, resulting in fewer visible details in the captured images.

For the selection of appropriate GSD, Debus et al. propose 
three distinct levels of interest for conducting the inspection, [75]. 
2.0 mm/pixels, 1.0 mm/pixels, and 0.1 mm/pixels are defined as 
level 1(for rough geometry), level 2 (for detailed geometry), and 
level 3 (for crack detection) of interest respectively, which provides 
valuable guidance for tailoring the GSD and camera positions to 
effectively meet the inspection objectives. Also, according to the 
Specifications for the National Bridge Inventory 2022 (SNBI), the 
following quantitative standards are considered to categorize the 
cracks by their width and GSD can be selected based on the required 
crack detection:

a) Insignificant - crack width less than 0.004 inches 
(prestressed) or 0.012 inches (reinforced), or medium width 
cracks that have been sealed.

b) Medium - crack width ranging from 0.004 – 0.009 inches 
(prestressed) or 0.012 to 0.05 inches (reinforced).

c) Wide - crack width wider than 0.009 inches (prestressed) 
or 0.05 inches (reinforced).

To ensure comprehensive coverage and accurate data 
collection, it is generally recommended to have at least a 50% 
overlap of images between consecutive camera positions, as 

suggested by various studies [9]. This overlapping ensures that 
critical details are captured redundantly, minimizing the risk of 
missing essential information. For Infrastructure inspection using 
UAVs, there are two major methods for flight path planning: Manual 
Flight and Autonomous Flight. Also, an inspector may prefer to 
inspect with a combination of these methods. The principles for 
both methods are almost similar but it’s worth noting that in the 
past years, some research has explored autonomous flight path 
planning [27,34,76,77]. Obstacle avoidance especially in urban 
environments, multi-UAV path planning, and coverage path 
planning in 3D space are some of the challenges related to auto 
flight and some studies focused on addressing these issues [78-80]. 
Online or real-time path generation is another challenging area 
where the path is generated dynamically based on the data collected 
from the sensors and it is hard to ensure a sub-optimal path for this 
type of path generation. Some real-time path planners generate and 
modify their path while the dynamic obstacles are detected [81]. 
Another challenging area for path planning is to optimize flight path 
planning, especially for coverage problems and path planning for 
3D flights because finding the shortest path in a 3D environment is 
NP-hard [82]. This task poses a challenging optimization problem, 
as it involves minimizing the objective cost function considering all 
relevant parameters such as obstacle avoidance. Most of the studies 
define path length as the objective function [83]. However, some 
studies define flight time or energy consumption [84], or flight 
altitude [85] as the objective cost function. Different optimization 
methods such as graph theoretical methods and meta-heuristics 
can be used for this purpose. Meta-heuristic algorithms excel at 
handling complex optimization problems by simulating natural 
phenomena and efficiently exploring large search spaces but they 
can be computationally costly [86].

Some studies applied these algorithms for flight path 
optimization. Qu et al. presented two methods for UAV path 
planning during the multi-thread circumstance. The first method 
is based on genetic algorithms and is suitable for offline path 
planning. The other method is fit for computing in real-time on 
UAV and is based on A-star heuristically search [87]. In another 
research, Phung et al. studied the inspection path planning using 
the traveling salesman problem and then optimization was applied 
by using discrete particle swarm optimization [88]. Table 4 shows 
the studies related to flight path planning, especially for flight path 
optimization which is an area that gained more attention during 
the last years as illustrated in the table below. Also, Figure 4 shows 
the above-mentioned challenges for flight path planning [89-114].

Table 4: Flight path planning-related studies.

Reference Year Content Path Optimization

[89] 2023 A novel hybrid optimization algorithm namely HC-SAR for UAV path planning and a real-time path 
adjustment strategy to optimize the individuals Yes

[90] 2023
A multi-UAV cooperative path planning algorithm based on co-evolution optimization considering 

the cost function of multiple UAVs with the penalty function method to deal with multiple con-
straints

Yes

[78] 2023 A general approach to compute energy optimal flight paths UAVs in urban environments by exploit-
ing local wind phenomena, i.e., upwind and tailwind areas from the airflow around buildings Yes

[91] 2023
Addressing the gap between UAV inspection planning and risk-informed inspection optimization by 

a novel physics-informed framework for planning UAV inspections of deteriorating infrastructure 
and connecting UAV mission planning to structural inspection goals

Yes
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[83] 2023 A review of path-planning algorithms for drones to compute an optimal or near-optimal path con-
sidering limitations and some solutions Yes

[92] 2023 A new UAV flight path planning algorithm based on a version of the White Sharks Optimization 
(WSO) for complex 3D flight Environments Yes

[93] 2023
A new method based on Q-learning as a reinforcement learning technique that aims to reduce the 

power consumption of UAV missions in disaster scenarios to circumvent the negative effects of 
wind variations

Yes

[94] 2022 A novel hybrid particle swarm optimization (PSO) algorithm, namely, SDPSO, to access the optimal 
path rapidly in the complicated field Yes

[95] 2022 A methodology for bridge inspections in communication routes using images acquired by UAV 
flights and a systematized image/video acquisition method No

[96] 2022 A summary of the most recent work and an overview of the trend in the use of AI algorithms in UAV 
swarms for path planning problems considering four groups of AI techniques No

[97] 2022 A review of different meta-heuristic algorithms for UAV optimum collision-free flight path planning 
and a method for less transportation cost Yes

[80] 2022 Minimization techniques to optimize the coverage path planning task for multiple UAVs with re-
al-world experiments using RGB and thermal cameras Yes

[98] 2022
An area coverage path planning method for a fixed-wing unmanned aerial vehicle (UAV) based on 

an improved genetic algorithm by using the good point set algorithm to generate a high-quality 
primary population for GA

Yes

[99] 2022 A survey of the studies of motion planning for UAVs that use bio-inspired algorithms considering 
contributions and limitations of each study Yes

[100] 2022
A systematic review of 115 journal articles published from 2007 to 2021 to understand the level 

of automation (LoA) of existing UAV-enabled bridge inspection approaches considering challenges, 
and to guide future research

No

[101] 2022
A UAV path planning algorithm based on improved Harris Hawks Optimization (HHO) with a 3D 

mission space model and a flight path cost function to transform the path planning problem into a 
multidimensional function optimization problem

Yes

[102] 2022 A survey of UAV path planning approaches classified into five main categories including classical 
methods, heuristics, meta-heuristics, machine learning, and hybrid algorithms Yes

[103] 2021
A new modification of the Bat Algorithm based on the characteristics of the standard BA and the 

artificial bee colony algorithm (ABC) for an accident-free, shorter, and safer flight path between the 
starting point and the endpoint in the complex three-dimensional battlefield environment

Yes

[75] 2021 A multi-scale flight path planning procedure, enabling higher resolution requirements for areas of 
special interest, while reducing the number of required images to a minimum. Yes

[104] 2021
an improved adaptive grey wolf optimization algorithm (AGWO) based on the grey wolf optimiza-
tion algorithm (GWO) aiming at the three-dimensional path planning of unmanned aerial vehicle 

(UAV) in a complex environment
Yes

[105] 2021 An analysis and study of the UAV route optimization method based on the two goals of confidence 
and ambiguity, and optimizing the method of drone route Yes

[106] 2021
A path planning algorithm based on A∗ and DWA to achieve global path optimization while satisfy-
ing security and speed requirements for UAVs to shorten the path length, reduce the planning time, 

improve the UAV path smoothness, and enhance the safety of UAV path obstacle avoidance
Yes

[107] 2020 A study on the path planning problem and an improved A* algorithm to produce the optimal flight 
path for UAVs Yes

[108] 2019
A study for generating 3D flight paths for a swarm of cooperating UAVs flying in a formation having 
a prespecified shape, in the presence of polygonal obstacles, no-fly zones, and other non-coopera-

tive aircraft
No

[109] 2019 A study on Dijkstra’s algorithm and a heuristic algorithm for the path planning of a UAV and com-
paring the results under different configurations Yes

[110] 2019 A framework of autonomous bridge inspection using a UAV which consists of a six-step process and 
uses several sensors, cameras, and LiDAR No

[111] 2018 A method to find the optimal path for a UAV flight considering 3 cost functions: path security cost, 
length cost, and smoothness cost Yes

[112] 2018 A survey on computational-intelligence-based UAV path planning considering offline and online 
planning, and 2D and 3D models No

[113] 2018
A method for autonomous tracking using radar to provide real-time feedback on target position, 

and then to perform dynamic path planning by combining the feedback data and the state estima-
tion result

Yes

[114] 20 18 An improved particle swarm optimization (PSO) algorithm, named GBPSO, to enhance the perfor-
mance of three-dimensional path planning for fixed-wing UAVs Yes
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Conclusions

With advancements and the expanding scope of research 
on Unmanned Aerial Vehicles (UAVs), addressing the issues and 
challenges associated with this platform holds considerable 
benefits, especially in fields like infrastructure inspection. The 
effectiveness of UAV-based inspections heavily relies on data 
quality, it becomes crucial to overcome challenges and limitations 
in pre-flight planning for optimal data collection. This review 
study delves into the pivotal phase of UAV-based infrastructure 
inspection, discussing the progress and remaining challenges 
related to the selection of hardware (UAV and payload), camera 
calibration, and flight path planning for UAVs. The increasing 
interest among researchers in achieving these advancements 
and addressing challenges is thoroughly explored. Furthermore, 
each challenge highlighted in this study presents an opportunity 
for future research endeavors aimed at optimizing UAV-based 
infrastructure inspection by resolving these issues.
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