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Introduction

The probabilistic explicit cracking model for fiber reinforced 
concretes (FRC) was developed in 2015 [1, 2]. In this model, the 
creation of cracks in the concrete matrix is represented by an elas-
tic perfectly brittle behavior. These cracks are modelled by using 
non-linear interface elements. These interface elements “open” 
when the tensile strength at their gravity center is reached (cre-
ation of a cinematic discontinuities representing explicitly cracks). 
The concrete tensile strength is considered as a random character-
istic (following a Weibull law) that depends on the finite elements 
size. By this way the cracks creation in the matrix (the concrete) 
is independent of the finite element mesh. The bridging effect of 
the fibers is described as following: normal and tangential stresses 
in the interface element linearly increase with normal and tangen-
tial displacements when a “broken” interface element re-opens to 
consider the elastic bridging effect of the fibers inside the crack. 
When a threshold value, ζ0, related to the normal displacement is 
reached, the normal stress is considered as linearly decreasing  

 
with the normal displacement in order to consider the damage of 
the bond between the concrete and the fiber, and fiber pullout. The 
decreasing evolution is obtained by using a damage model. Finally, 
the interface element is considered definitively broken when the 
normal displacement reaches a threshold value, ζc. This value cor-
responds to the state where the effect of fibers is considered neg-
ligible. At this point, its normal and tangential rigidities are set to 
zero. The post-cracking energy dissipated by the bridging effect of 
the fibers is considered randomly distributed over the mesh ele-
ments. The random distribution chosen is a log-normal distribution 
function with a mean value independent of the mesh elements size 
and a standard deviation, due to the heterogeneity of the material, 
increasing as the mesh elements size decreases [3].

Figure 1 presents the numerical mechanical behavior adopted 
to represent the experimental post-cracking behavior. Only the nor-
mal stress-normal displacement curve is considered in this figure. 
This model, that has been deeply validated [1, 2, 4-7], is very rele-
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vant to evaluate cracks opening for the service limit state situation 
of FRC structures (cracks opening ≤ 300 microns). The main limit of 
this modelling approach is related to the fact that cracks are mod-
elled by interface elements that induces the use of high number of 
nodes (the non-linear interface elements interface all the volume 
elements of the finite element mesh) during numerical simulations. 
Then the computational cost becomes very important when the 
rupture of large structures analysis is concerned. Consequently, it is 

important to use more relevant approach for simulating the behav-
ior of these large concrete structures. The development of a prob-
abilistic semi-explicit cracking model for FRCs has for objective to 
solve this problem. The basis of this new model is to use linear vol-
ume elements to model macrocracks propagation. This choice is to 
reduce a lot of computational time. The mechanical behavior asso-
ciated to these volume elements is based on the use of post-crack-
ing dissipative energy for considering the bridging effect of fibers.

Figure 1: Probabilistic explicit cracking model for FRC.

Basis of the Proposed Model

Existing diffused cracking models

These models do not consider cracks as real cinematic discon-
tinuities but as microcracked zones in which the density of microc-

racks continuously increases until creating a kind of hole (no more 
stresses are transmitted). Numerically speaking, in the framework 
of finite elements theory, the microcracked zones are modeled by 
using volume elements. In these models, that are generally deter-
mined, the non-linear mechanical behavior (related to the microc-
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racking process) of the volume elements is linked to the post-peak 
behavior in tension of the FRC. This post-peak behavior is generally 
characterized by two material parameters:

1. The shape of the post-peak (it means after the linear elastic 
part of the tensile behavior of the FRC) behavior of the tensile 
stress-strain curve.

2. The post-peak energy dissipation is related to the tensile 
stress-strain curve. This dissipation energy is very often called 
Gf.

To summarize, the diffuse cracking models, applied to FRC, are 
based on the use of non-linear finite elements method with volume 
elements. The non-linear behavior considered is that of the FRC in 
tension in the form of a relationship between the tensile stress and 
the tensile strain. It is important to note that, experimentally (and 
physically) speaking, the post-peak behavior of FRCs is related to 
the post-localization cracking, it means after the passage from dif-
fused microcracking to localized macrocrack [8]. Then, it clearly 
appears that the diffuse cracking models are not physically based. 
From a practical point of view, the post-peak behavior in tension 
used as main mechanical characteristic in the diffused cracking 
models comes from the experimental tensile stress-crack opening 
curve. So, to pass from the experimental tensile stress-crack open-
ing curve to the theoretical tensile stress-tensile strain used in the 
model, it is needed to introduce a length that permits to divide the 
crack opening value to get the “equivalent” tensile strain. In the ma-
jority of the diffused cracking models, this length is linked to the 
volume element size of the finite element mesh. This length chosen 
and used in the numerical simulation is very important because it 
permits, during the simulation, to transform the non-linear strains 
observed in crack openings.

These models that are, presently, the more described in litera-
ture and the more used in practice, have a great drawback. As was 
said before in the paper, the diffused cracking models are not phys-
ically based because they “transform” a localized crack in a diffused 
microcracking zone. This strong physical approximation leads to 
get a strong approximation of the cracking pattern of a given FRC 
structure. Numerically speaking, Gf values being a lot larger for 
FRCs than for normal concretes, the diffused cracking models lead 
to spread a lot the damaged (microcracked) zones and to underes-
timate the cracks opening. Therefore, these models don’t lead to a 
fairly reliable and secure response to the durability of FRC struc-
tures. The more well-known diffused cracking models for FRC are 
damaged models [9-11] and smeared crack models [12-15] that 
are mechanically equivalent. It can be noted that the smeared crack 
model developed at Ecole Polytechnique of Montréal (Canada) 
[14,15] gives better evaluation of the cracks opening of FRCs than 
the others diffused cracking models. That is due to the fact that 
it uses an explicit algorithm of resolution while the other models 
used an implicit algorithm of resolution. This choice leads to a bet-
ter localization of the cracks. Despite this improvement, even the 
evaluation of the cracks opening.

The proposed cracking models

The semi-explicit cracking model has for first objective to avoid 

the mean default of the diffused cracking models. It means, it has 
to avoid too much diffusion of cracks leading to underestimate the 
opening of the larger cracks. To achieve this objective, two main as-
sumptions are made:

The matrix (the concrete) has a brittle behavior before the bridging 
effect of fibers.

The tensile strength of the matrix is a random parameter.

 So, these two assumptions are the same as that for the explicit 
cracking model evocated in the introduction. The main difference 
concerns the type of finite element used to model the crack cre-
ation and the crack propagation and also the scale of modelling. 
In the case of the explicit cracking model, cracks are modelled by 
using non-linear interface elements and in the proposed semi-ex-
plicit cracking model, cracks are modelled by using linear volume 
elements. This difference has a strong consequence on the model-
ling of cracks initiation and propagation, especially when a perfect 
brittle behavior of the material is considered. Indeed, it has been 
clearly shown [16] that, in this case, the cracks initiation and prop-
agation are not correctly modelled. In the case of FRC modelling, 
this strong approximation made on the matrix cracking can be 
considered as acceptable if the bridging effect of fibers is correctly 
considered in the model. This affirmation is supported by the fact 
that, physically speaking, the energy dissipation related to the ma-
trix cracking is very small compared to the energy dissipation due 
to the bridging effect of fibers. It is also important to specify that 
the semi-explicit model for FRCs is devoted to macrocracks propa-
gation in large structures. So, the size of the volume elements used 
in the numerical simulations should be also larger than those used 
for the explicit cracking model. To summarize the above and to give 
details, the probabilistic semi-explicit cracking model will have the 
following characteristics:

1. It will use linear volume elements (for reduction of simulation 
time).

2. The cracking creation will occur when the tensile strength at 
the gravity point of the volume element will reach the strength 
of the matrix (concrete without fibers). A perfect brittle of the 
matrix is considered.

3. The concrete strength is a random parameter (Weibull distri-
bution) will depend on the volume of the finite elements. The 
mean value and the standard deviation of the matrix tensile 
strength will decrease with the volume of the finite elements 
[1-7, 17].

To complete the mechanical model proposed for FRCs, it needs 
to specify how the bridging effect of fibers will be considered. For 
that, it is proposed to choose similar approach than for the explicit 
cracking model (Figure 1).

Similar but not identical. In the explicit cracking model, the 
bridging effect is considered through a very simple model (see in-
troduction) characterized by a random post-cracking energy. In the 
semi-explicit cracking model, that concerns macrocracks propaga-
tion with openings superior to or equal to 300 microns, the volume 
elements are much larger than those used in the case of the explicit 
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cracking model. Previous experimental research [3] demonstrated 
that the mean value of the post-cracking energy due to bridging ef-
fect is independent of the volume of material tested and that the 
standard deviation related to this energy decreases with this vol-
ume. So, it is decided, in relation with the objective of the present 
model (it means to model macrocracks propagation in large FRC 
structures) to simplify the modelling approach by considering a 
bridging effect dissipation energy (Gf) will be a deterministic pa-
rameter independent of the volume of the finite elements.

Mechanical aspects

The probabilistic semi-explicit cracking model works as follow-
ing:

1. First step: a crack (in fact, a hole) in the finite element occurs 
when the maximum principal stress (σ1) reaches the random 
material tensile strength (ft) at a given Gauss point. Then el-
ementary stiffness matrix of the element is set to a very low 
value (~10-10).

2. Second step: Two situations can exist:

	 The maximum principal strain (є1) decreases. In this case, 
the elementary stiffness matrix of the element keeps its very low 

value.

	 The maximum principal strain increases. In this case, the 
bridging effect is active.

	 The elementary stiffness matrix of the element increases 
a lot of to consider the elastic bridging effect of fibers. This new 
elementary stiffness matrix (Eb) has to be, of course, inferior to that 
of the material before cracking (E0).

3. Third step: є1 reaches a critical value (є1c). σ1 decreases linear-
ly with є1 (descending branch). This decrease represents the 
progressive pull-out of the fibers. When є1 reaches a maximum 
value (є1m), fibers action is considered finished, and the ele-
mentary stiffness matrix of the element is set to zero. This soft-
ening behavior is modelled through the use of simple damage 
parameter (damage model). Only the values of the elementary 
matrix related the relation between the maximum principal 
stress and the maximum principal strain. The rest of the values 
of the elementary matrix remain equal to zero. By this way, the 
bridging action of fibers is considered as anisotropic. 

The complete mechanical behavior of a volume element is sche-
matized in Figure 2.

Figure 2: Probabilistic semi-explicit cracking model for FRC.

Numerical aspects

Numerically speaking, it will be used as a classical implicit res-
olution scheme. The fact that the proposed model is partly prob-
abilistic (the tensile strength is a random parameter) imposes to 
use the concept of the more dangerous element to get numerical 
simulations independent of the loading increments. This concept 
was developed and used with success in the frame of the probabi-
listic explicit cracking model [1-7, 18-22]. Its use, in the frame of 
the implicit numerical scheme proposed, is very simple. It can be 
presented as following:

1. A total increment of loading is chosen. From there, a first 
sub-increment is calculated to permit to “crack” only one vol-
ume element (its elementary matrix is set to a very low val-
ue), the more dangerous one. This more dangerous volume 
element is volume element for which the difference between 

its maximum principal stress and its tensile strength is larger. 
This element “cracked”, the stresses and strains fields are cal-
culated to get the equilibrium.

2. The second sub-increment is calculated to crack the second 
more dangerous element (its elementary matrix is also set to 
a very low value). After this second more dangerous element 
cracked, the equilibrium is calculated by considering new val-
ues of the elementary matrix of the first more dangerous ele-
ment (Eb in figure 2). All the sub- increments are determined 
in this way until the target total loading increment is reached.

3. During each sub-increment, when the maximum principal 
strain related to a volume element reaches the critical value, 
Є1c, the elementary matrix of this volume element is modified 
as presented in Figure 2 (Figure 2).
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4. Determination of the model parameters

In the proposed model, its parameters are determined as fol-
lowing: 

1. The mean tensile strength of the matrix, ft, and the standard 
deviation related to this strength (function of the volume of the 
finite element) are calculated using the formulas of Rossi et al. 
[17] deeply validated in the past [1-7,18-24].

2. The fibers bridging energy, Gf, is obtained by performing uni-
axial tensile tests on notched specimens [23, 24]. As previously 
said in the paper, the mean value of this energy is independent 
of the specimen size, but its standard deviation increases when 
the specimen size decreases [3]. So, to get a correct value of Gf, 
it is important to adapt the number of specimens tested to its 
size.

3. є1m is obtained from the tensile test on the notched specimen. 
It is the strain that corresponds to the lowest value of the ten-
sile stress related to the bridging effect of fibers.

In the tensile tests, only cracks opening is got. So, for the model 
(and the numerical simulations), it is necessary to transform the 
opening in strain. To achieve this transformation, it is chosen to 
use a classical method that consists to divide the crack opening by 
a characteristic length of the volume elements. The characteristic 
length proposed is 

1
31 ee V=  (Ve is the volume of the finite element).

4. σ1c is the larger value of the tensile stress related to the bridg-
ing effect of fibers.

5. Eb is easily calculated knowing the others values of the model 
parameters.

Since the numerical model is probabilistic (though the use of ft 
as random parameter), a Monte Carlo procedure must be used to 
provide statistically consistent results.

Conclusions

This paper presents the basis of a new model for FRC crack-
ing. It is a probabilistic semi-explicit cracking model. Its objective is 
to model macrocracks propagation in large FRC structures. In this 
model, it is proposed to simulate cracks propagation by using linear 
volume elements. The mean assumptions of this model are the con-
sequence of a critical analysis of existing models of literature (treat-
ing the same problem). These mean assumptions are the following:

	 The matrix (the concrete) has a brittle behavior before the 
bridging effect of fibers.

	 The tensile strength of the matrix that governs the cracks 
creation is a random parameter.

The bridging effect of fibers is modelled through a very simple 
deterministic damage model. The principles of the numerical algo-
rithm scheme of the proposed model is presented in detail. The way 
to determine the values of the model parameter is also presented in 
detail. This determination involves the use of a uniaxial tensile test 
on notched specimens. For the future, the numerical development 

of this new model has to be achieved and its validation has to be 
made by using results from literature.
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