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Background
From the onset of modern civilization, bridges have been iconic 

images and vital transportation components that have helped 
connect our world. From early design forms using natural resources 
to modern engineering techniques and advances in building 
materials, bridge construction has evolved with humankind’s 
increasing demands. Today’s bridges are a part of daily routes 
for most people, and as a result, transportation agencies face a 
myriad of challenges to optimize the flow of goods and people. 
From ensuring the operability of aging structures to planning,  

 
financing, rehabilitating, and constructing modern replacements 
that improve accessibility, finding solutions to bridge challenges is 
essential to our social and economic development. Bridges serve 
as critical features of an infrastructure system and require regular 
inspections to ensure their safe and operable condition for the 
public. According to a Federal Highway Administration (FHWA) 
report [2], approximately 600,000 bridges exist in the United 
States as of 2010, more than 25% of which are either structurally 
deficient or functionally obsolete and in need of maintenance, 

 
Abstract

Designing a new bridge structure or designing the rehabilitation of an existing bridge is a time-consuming process. It is important for bridge 
owners to proactively assess their structures to make sure that by the time rehabilitation or replacement is required, the design phase elements 
of such a project, including necessary permits, are ready. Assessing future bridge structure condition also helps the owner to evaluate a variety of 
design choices or options based on the risk imposed by each alternative. Federal regulations (MAP-21) have required state transportation agencies 
to implement asset management performance measures. Asset management performance strategies are arguably principal in guiding transportation 
infrastructure investments. Predicting future asset condition helps businesses and engineers to allocate and utilize the available resources in a 
direction that keeps the existing bridge inventory in the best possible condition, as well as serves the public. Prediction of bridge future condition 
also assists engineers and bridge owners in making decisions based upon quality information and well-defined and considered objectives [1]. The 
core element of any bridge management system is the database containing physical condition–rating data obtained through regular inspection and 
maintenance activities over a significant amount of time. Consequently, asset management relies on having an accurate inventory and condition 
assessment of assets in real time. One significant problem lies in the stochastic nature of traffic that transpires over time. This research focused on 
using the Markov process to predict future bridge condition state based on bridge inspection data inputs. Markov chain modeling was selected for 
this study because bridge condition ratings have a stochastic nature that requires an appropriate deterioration prediction method. The goal was to 
create a computational tool to predict bridge and highway degradation and assess such a structure’s long- term performance. As a proposed update 
to the National Bridge Inspection Standard, this study offers two methods for making changes to bridge inspection intervals. Both ways consider risk 
a significant contributing factor to the deciding criteria, for which this paper presents methodology to perform such a risk calculation.
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repair, rehabilitation, improvement, or replacement. The National 
Bridge Inventor y (NBI) database, compiled by the FHWA and state 
departments of transportation, contains detailed historical data 
on more than 600,000 bridges collected over the past 28 years. 
For instance, the Connecticut Department of Transportation has 
compiled and maintains inventory and inspection data on the 
bridges in it state.

Typical bridge databases include the following information: 
bridge designation, structural type, operational condition, 
geometric data, function descriptions, inspection records, etc. This 
information presents a tremendous resource for analysis, much of 
which has paramount potential for engineering insight. Researchers 
can discover inherent patterns and trends by investigating 
the relationships between data sets using novel data-mining 
approaches. Pertinent studies of these databases are therefore 
needed to better understand bridge deterioration patterns and 
related events.

Objective
Typically, bridge inspections occur every 2 years (or 24 

months). However, a delay of bridge inspections happens when 
there is a low likelihood for a structure-diminishing event to 
occur. Such an event would consequentially lower the condition 
rating of the bridge. Conversely, if these events happen frequently, 
then so do inspections. To quantify the possibility of these events, 
one can calculate risk. As a general rule of thumb, civil engineers 
mathematically define risk as

Risk Likelihood Consequence= ×
The likelihood is the probability of a bridge or a bridge 

component moving into a certain deteriorated condition in a 
given period. The consequence is calculated from the replacement 
or repair cost of that component to deliver the public’s required 
service level [3]. In that regard, probability, or the likelihood of 
such a deteriorated condition, can be a critical factor in proactively 
evaluating the risk level—and consequently, the reliability of a given 
bridge and its components. Current literature on this topic does 
not present accurate and straightforward methods for calculating 
the probability of a bridge’s condition or state as it changes over 
time. This work aimed to calculate the probability of a given bridge 
changing its condition rating based on stochastic methodology such 
as Markov modeling or based on condition ratings alone.

Methods
In mathematics, “stochastic” is often synonymous with 

“random.” Therefore, stochastic models are based on random trials, 
whereas deterministic models always produce the same output 
for a given starting condition. A stochastic process consists of a 
sequence of indexed random variables separated by spaced points 
in time. The random variable in such a process is denoted by 𝑋𝑛. The 
spaces in time are used as the index for the independent variable, 
declaring 𝑛 = 1,2,3 as the period’s designation. At a  given point in 
time, a random variable can contain a range of values called states. 
These states can fall into one or more mutually exclusive categories. 
A Markov chain quantifies the probability of a process where the 
outcome of a series of events can influence the next event in the 

process; it consists of states and transitions governed by random 
variables resulting from a random phenomenon. The Markov 
model is a mathematical system introduced by 19th-century 
Russian mathematician Andrey Markov, best known for his work 
on stochastic processes, which later became known as Markov 
chains and Markov processes [3]. Historically, using a Markov chain 
quantifies the probability of a process where the series of events 
can influence the next likely event in the process. A Markov chain 
consists of states and transitions governed by random dependent 
variables defined based on a given event; it is a conversion model 
that considers any current system’s state and then processes the 
transition from one state to another using probability theory [4]. 
This mathematical process is based on the transition through 
different states using the law of total probability, which claims that 
any distribution toward the next state is solely dependent on the 
current state rather than on the sequence of preceding events.

On the contrary, a stochastic process describes some random 
variable’s history as it evolves with time [5]. Each state has its 
predetermined probability for either transforming states or 
remaining in its current state. In this study, applying the Markov 
model to existing bridge data established a stochastic model for 
bridge inspection condition data. The random variable is the 
condition rating, 𝑋𝑛. In this case, period 𝑛 refers to the year at 
which a condition rating of an individual bridge is received. State 
𝑖 refers to the state that a  bridge is in, i.e., its condition rating 
itself. The Markov chain is one of the most applied categories of 
random processes. The simplicity of the Markov model lies in the 
assumptions necessary to specify such a process:

1.	 The distance sequence of observed states is equal.

2.	 Given the current state of a random process, the next 
state’s conditional probability depends only on the current state. 
It is independent of the prior states throughout the history of its 
process.

The last assumption is known as the Markov property. If this 
property is not assumed, then preliminary information about the 
process would need to be given to categorize a process in the same 
manner. By applying these assumptions to the working bridge 
model, the following assumptions were made:

1.	 Each condition rating is recorded at equal points in time. 
For this study, each condition rating is assigned yearly.

2.	 Each condition rating is independent of the condition 
ratings given prior. In other words, the rating of a bridge does not 
depend on the ratings it has received before that.

For this research project’s duration, the National Bridge 
Inspection Standard (NBIS) metric system developed by FHWA 
was adopted and used; it consists of 10 condition ratings, 0 being 
the worst and 9 being the best case. The first two condition ratings 
of 0 and 1 indicate that the highway is not safe to travel. A bridge 
containing the highest level of 9 indicates excellent condition, 
i.e., there are no working issues impacting the bridge’s quality. 
The condition ratings of 4 through 6 are good candidates for 
maintenance work, whereas bridges containing condition ratings 
less than 4 are considered for rehabilitation or even replacement 
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entirely. If a bridge is considered a significant bridge, no closure can 
occur because these major bridges are responsible for necessary 
routes for daily commutes. Suppose the present inspection 
outcome’s knowledge cannot be considered sufficient to predict 
the next or future inspection outcome. In that case, both the 
present and previous inspection ratings can provide the prediction 
of the outcome. In other words, any future structure rating has 
a relationship with the structure’s present and past inspection 
ratings. Therefore, a prediction for the structure’s deterioration is 
possible if the history of transitions from one rating state to another 
can be estimated.

In the working bridge prediction model studied here, using a 
minimum of six states yielded significant results. State 3 represents 
a condition rating of 3, state 4 represents a condition rating of 4, and 
so forth. Considering that significant bridge structures cannot be out 
of service or nonfunctional, removing states 3 and below simplified 
the calculation. Conversely, this also applied to state 9 because its 
occurrence is rare. Each state’s probability was calculated from 
these bridges’ history as a group and not as individuals. It was 
noticed in the conducted literature review that prior work on this 
method has declared that a bridge structure maintains its current 
level or decays to the next lower level within 2 consecutive years. 
Therefore, if the probability of being in the current state is P, then 
the probability of moving to the next lower state is 1 – P. In such 
a model, only sequential movements or transitions between states 
require consideration. However, in this study, no restriction was 
given to the change from one state to another. In actuality, the 
probability of changing state was calculated based on the historical 
data. If past data suggested that no change between two states ever 
happened, then the possibility of such change was calculated as 0.

Transition and Transitional Probabilities
If at year 𝑛, the chain is in condition rating 𝐶𝑅𝑖, then the random 

variable would be

n iX CR=  (1)

Notation 𝐶𝑅𝑖 designates a condition rating for a given year. 
Subscript 𝑖 designates the condition rating for the process and not 
the actual year associated with the rating. The probability that a 
given bridge receives condition rating 𝐶𝑅𝑖 during a given year 𝑛 is 
denoted by

( )i
n n iP P X CR= =  (2)

The conditional probability that the given bridge receives 
conditional rating 𝐶𝑅𝑗 during the following year, n  + 1, given that it 
received rating 𝐶𝑅_𝑖 during year 𝑛  is

( )
( )( )1

1 |n
ij j n inP p X CR X CR+

+= = =  (3)

This expression equates to the transitional probability. The 
exponent is 1 because this transitional probability is for the period/
step between states and not for the individual states themselves. 
The transitional probability

1.	 represents the conditional probability that if the chain is 
in state 𝑖 at the current year, it arrives at state 𝑗 in the next year

2.	 represents a one-step transition because it is the 
probability of making a transition in one time period or step, in this 

case, a year

3.	 is assumed to be steady over time, meaning it does not 
change with time

The Markov property ensures that a transitional probability 
depends only on the present process,

𝑋𝑛. In other words, the history of the process occupied before 
the present state does not matter. Therefore,

( )
( )( ) ( )| |

n

m
ij j n i m j n inP P X CR X CR P X CR X CRδ+= = = = = =     (4)

where 𝑚 = 𝑛 +  δ𝑛 and δ𝑛 is any increment of steps. In general, 
the starting year has a subscript 𝑖,  and the subsequent year is 𝑗.  To 
indicate a year range in which the conditional probability consists 
of, we use n, the starting year, and m, the ending year. The use of a 
hyphen indicates the inclusion of the years in between:

( )|nm
ij m j n iP P X CR X CR= = =  (5)

Variable 𝑗 signifies a  different year, which is not necessarily the 
next year after the current.

The transitional probabilities for a Markov chain with 𝐶𝑅𝑖𝑗 
states are in a 𝐶𝑅𝑗 × 𝐶𝑅𝑗 square matrix called a one-step Markov 
transitional probability matrix, or a Markov Transitional Matrix 
(MTM), which is denoted by 𝑃. Each row of 𝑃  represents the present 
state, 𝑋𝑛, of a given bridge or range of bridges, at a given year, n. 
Each column represents the next state at another year, 𝑋𝑚. Because 
the probability of transition conditions itself on its present state, 
the entries in every row of 𝑃 sum to 1. Also, all entries are non-
negative, and no entry can be greater than 1. Matrix 𝑃 is called a 
stochastic matrix. A Markov chain with six possible states is shown 
in Table 1 (Table 1).

The rows (𝐶𝑅𝑗) indicate the starting state, whereas the columns 
designate the subsequent state. For the element in the first row, 
second column, 𝑝12 represents the probability of going to state 2, 
starting at state 1. The initial-state probability for state 

m jX CR=
at the start of a process is defined in each row. An MTM contains a 
row vector of initial-state probabilities. These probabilities are in 
the corresponding row of the MTM. The designation is as follows:

( ) ( ) ( ) ( ) ( )
1 2 ... 1n n n n n

j i o i i jp p p p p+ + += + + + + =  (6)

A row matrix also serves as a designation denoted by 𝑥𝑛:
( ) ( ) ( ) ( )

1 2...n n n n
n i o i i jx p p p p+ + +

 =    (7)

If we apply the law of total probability, we can express this 
initial-state probability vector in the following terms:

0
1i j

ii i
p=

=
=∑  (8)

where 𝑖0 is the lower limit of the condition rating, and 𝑗 is the 
upper limit of the condition rating. Each row of the MTM indicates 
a different initial probability vector. Each vector also represents 
an initial probability distribution. Each term indicates the initial 
probability of a bridge receiving condition rating 𝐶𝑅𝑗 given that its 
initial rating was 𝐶𝑅i. Another formulation of this is in the form of a 
𝐶𝑅𝑗 × 1 matrix, which signifies the probability of being rated 𝐶𝑅𝑗 for 
a bridge starting at 𝐶𝑅i.

This concept can be used to predict the probability of a bridge 
changing state at any given year, 𝑛. The initial probability matrix 
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for another point in time can be found by raising the MTM to the 
desired number of years. For example, if an MTM comprises a year 
range of 1992 to 2011, the initial probability vector for 2015 can be 
found by raising the MTM to the fourth power and multiplying by 
a sparse initial probability row vector with a 1 in the index of the 
state that is desired to predict. For six states, the initial probability 
matrix is a 6 × 6 identity matrix:

4
2015 0x x P=   

 

                              
4

2015

1 0

0 1
x P

 
 =  
 
 



  



                           (9)

       

Approximately 100,000 inspection records of all bridge 
structures and 1,800 inspection records of significant bridge 
structures in the State of Connecticut were used to calculate the 
MTM spanning from 1992 to 2011. These data are referred to as 
the “actual.” The remaining inspection records from 2011 to 2015 
were used to create another MTM as a means of model prediction 
comparison versus the actual data to indicate the bridge conditions 
as inspected in the subsequent year.

Results
The results demonstrate that using Markov models for bridge 

condition prediction can prove to be useful (Figures 1 to 12). The 

results show the transitional probabilities of a bridge’s condition 
rating going to 3 through 5 (Table 2). The results also show the 
mean square error (MSE) and the mean absolute deviation (MAD) 
for each predicted year between 2014 and 2018. The prediction 
methodology works best for years closest to the last year in the 
actual data set. As the year range increases, so do the MSE and 
MAD until 2017. At that point, the MSE and MAD slightly decrease 
and then decline for the calculated following years. Overall, the 
error and deviation are under 10%, which is reasonable and 
within the acceptable margin, considering the size of the available 
data and the data’s stochastic nature. The prediction errors for 
states 3 and 8 are relatively large compared to the other states, 
suggesting that a bridge tends to move within one or two states. 
However, it is unlikely that a bridge degrades from an 8 to a 3 and 
vice versa. Even though this may be the case for this given data set, 
the Markov model can deal with any random data set because the 
transition probabilities update based on the amount of data. The 
developed Markov model can significantly improve the accuracy 
of the predicted future condition ratings of bridges, assisting 
agencies in their bridge program planning. These findings help to 
identify the most efficient maintenance activities and timing for an 
individual bridge or network of bridges. For future works, careful 
consideration of the condition rating limitations of the current 
study should be investigated, as well as individual characteristics of 
bridges, design types, data accuracy, and the intrinsic limitations of 
Markov models (Figures 1-12) (Tables 2,3).

Table 1: Probability of Transitions in Markov Chain.

(Xn = CRi)/( Xm = CRj) 3 4 5 6 7 8

3 𝑝33 𝑝34 𝑝35 𝑝36 𝑝37 𝑝38

4 𝑝43 𝑝44 𝑝45 𝑝46 𝑝47 𝑝48

5 𝑝53 𝑝54 𝑝55 𝑝56 𝑝57 𝑝58

6 𝑝63 𝑝64 𝑝65 𝑝66 𝑝67 𝑝68

7 𝑝73 𝑝74 𝑝75 𝑝76 𝑝77 𝑝78

8 𝑝83 𝑝84 𝑝85 𝑝86 𝑝87 𝑝88

Table 2: The error and deviation of the transitional probabilities for the predicted and actual data sets.

Prediction vs. Actual MSE** MAD***

2014 0.001615 0.024666

2015 0.005717 0.036034

2016 0.005886 0.044299

2017 0.028891 0.099916

2018 0.011464 0.054177

**Mean square error (below 10% is an acceptable model)

***Mean absolute deviation (below 10% is an acceptable model)

Table 3: The error and deviation of the transitional probabilities for all states.

Prediction vs. Actual State 3 State 4 State 5 State 6 State 7 State 8

2014
MSE** 0.30% 0.20% 0.20% 0.20% 0.10% 0.00%

MAD*** 2.30% 2.20% 3.30% 3.60% 2.30% 1.10%

2015
MSE 0.10% 0.10% 0.20% 0.10% 1.60% 1.40%

MAD 1.80% 2.50% 2.40% 2.70% 7.10% 5.30%

2016
MSE 0.90% 0.20% 0.20% 0.20% 1.00% 1.10%

MAD 4.60% 2.20% 3.20% 3.70% 7.30% 5.60%
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2017
MSE 3.30% 1.60% 1.00% 0.90% 5.00% 5.50%

MAD 8.90% 7.40% 7.10% 8.70% 16.10% 11.70%

2018
MSE 0.30% 0.20% 0.40% 0.30% 2.60% 3.20%

MAD 3.10% 3.00% 3.40% 4.60% 10.50% 7.90%

Figure 2: Likelihood of Bridge Overfall Condition Rating Moving from State 4, Predicted vs Actual for Year 2014.

Figure 1: Likelihood of Bridge Overfall Condition Rating Moving from State 3, Predicted vs Actual for Year 2014.

Figure 3: Likelihood of Bridge Overfall Condition Rating Moving from State 5, Predicted vs Actual for Year 2014.
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Figure 4: Likelihood of Bridge Overfall Condition Rating Moving from State 3, Predicted vs Actual for Year 2015.

Figure 5: Likelihood of Bridge Overfall Condition Rating Moving from State 4, Predicted vs Actual for Year 2015.

Figure 5: Likelihood of Bridge Overfall Condition Rating Moving from State 4, Predicted vs Actual for Year 2015.
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Figure 6: Likelihood of Bridge Overfall Condition Rating Moving from State 5, Predicted vs Actual for Year 2015.

Figure 7: Likelihood of Bridge Overfall Condition Rating Moving from State 3, Predicted vs Actual for Year 2016.

Figure 8: Likelihood of Bridge Overfall Condition Rating Moving from State 4, Predicted vs Actual for Year 2016.
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Figure 9: Likelihood of Bridge Overfall Condition Rating Moving from State 5, Predicted vs Actual for Year 2016.

Figure 10: Likelihood of Bridge Overfall Condition Rating Moving from State 3, Predicted vs Actual for Year 2018.

Figure 11: Likelihood of Bridge Overfall Condition Rating Moving from State 4, Predicted vs Actual for Year 2018.
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Figure 12: Likelihood of Bridge Overfall Condition Rating Moving from State 5, Predicted vs Actual for Year 2018.

Conclusions
For the current work, the State of Connecticut bridge condition 

data were analyzed over the past 22 years using a Markov chain 
model to forecast each bridge’s future condition. This forecasting 
allows owners of these structures to identify structural and 
financial requirements more accurately to maintain these major 
structures in an acceptable state. Any cost associated with repair, 
maintenance, or rehabilitation can be calculated more accurately 
from the bridge’s predicted condition. Further modeling processes 
can be conducted to establish future conservation and rehabilitation 
strategies by applying a Markov reward model to convert inspection 
condition data into a more practical cost-reliability analysis.
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