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Introduction

Polymer and composite polymer materials proved an important 
class of structural materials with rheonomous properties. A variety 
of approaches to evaluation of the deformation of these materials 
and the time to failure can be found in the literature [1]. In general 
case the total strain under continuous loading is defined by the sum 
of four components: instantaneous-elastic, instantaneous -plastic, 
visco-elastic, and visco-plastic [2]:
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The components of the total strain deviator (Eq.1) are 
represented as:2
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or as:
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where ijS  is the deviatorial stress components; 𝝂 is the Pois-
son’s ratio; E – modulus of elasticity (in general case the non-lin-
ear elasticity should be considered);  is the von-Mises equivalent 

stress, S
i J223=σ  ; SJ2  is the second invariant of deviatorial 

stress; ( )ij ijfσ σ=  are the components of a characteristic stress; 

)( θτ −K  and ( )R τ θ−  are the cores of after action, τ θ ξ− =  is 
the time (it can be actual or dimensionless time); ( )τ θΩ −  and 

( )B τ θ− are the time functions; *ide  is the equivalent strain incre-

ment, 22 / 3i ij
ij

e e= ∑  , * 2 / 3ide dL=  ; kE  is the tangential modulus, 
/k i iE d deσ=  , 2( )ij

ij
L de= ∑∫  is the plastic strain path, Odlvist’s param-

eter. 
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For calculation of the relative change of a unit volume we 
suggest using a characteristic strain:

)()21(3 0 iE σσνεν −=  , (4)

where 0 1 2 3( ) / 3σ σ σ σ= + +  is the hydrostatic stress.

The non-linear law of instantaneous elasticity was defined in 
testing materials at fast (instant) unloading of specimen from the 
given level of stress attained at a high enough rate. To find out the 
dependence of instantaneous plastic component of the total strain 
on the stress the same tests were used, but the residual strains 
were measured after unloading and after holding a certain time 
in unloading. The instantaneous plastic strain component can be 
taken into account within the range of the visco-plastic component.

In description of the rheonomous components of the total 
strain the processes of shear are considered on condition of the 
volume stability of material. The visco-elastic component of strain 
is determined as:
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where sµ  is the Lode’s factor, *σ  is the dimensional constant. 
The function ϕ  has to be obtained by testing specimens at the 
complex stress state.

To define the visco-plastic strain component ''''
ije  is necessary to 

deduce (during the whole period of stationary mode of loading) the 
appropriate instantaneous and visco-elastic components from the 
total strain it. The visco-plastic component is described as follows 
from [3 – 4]:
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The calculation of strain components according to (2) and (3) 
at any unsteady loading condition and known constants is reduced 
to quadratures. The evaluation of the loading regime relative to the 
specified path of deformation (the stress relaxation under constant 
deformations should be considered as well) is carried by applying 
the step-by-step procedure in a general case. The constant and 
functional parameters of equations of mechanical state of polymer 
composite materials essentially depend on temperature. Methods 
of testing equipment and characteristics of the samples are 
presented in [1-13]. If only temporal parameters of the equation 
depend on temperature, then under some additional conditions the 
temperature-temporary analogy may be established, on which the 
process of no isothermal loading is reduced to the isothermal one 

within the given time. Within the range of physical nonlinearity of 
material on the temperature depend not only temporal, but also the 
force parameters of equations (2) and (3). 

In such cases a method of transformation of a stepwise non 
isothermal mode of loading to an equivalent isothermal mode is 
developed. The finite magnitudes of visco-elastic and visco-plastic 
components of the total strain are obtained by superposition of a 
series of loading impulses applied at actual or reduced moments 
of time.

The natural aging (aging time cτ ) and damage (Π ) under 
continuous loading affect the process of creep of material and the 
ultimate strain [14]. The accumulated strains and damages change 
the relationship between the components of the total strain at 
step-wise loading regimes (with partial or complete intermediate 
unloading). At long pauses after loading a number of concurrent 
processes develops in material, in particular, damage remedies and 
natural aging. Equations (2), (3) contain functional parameters 
(depending on cτ and Π ) [15], which should be obtained by 
analysing the additional tests results. The account for the damage 
measure П appears effective only by the description of strains 
directly preceding the moment of failure.

The obvious may be the application of the suggested equation of 
the mechanical states to the conditions of the cyclic stress state [16]. 
The instantaneous components of the total strain are calculated 
considering the maximal ones through the stress cycle. The visco-
elastic component can be calculated directly by substituting the 
variable stress. A number of approaches is suggested for calculation 
of the visco-plastic strain component [4]. The possibility of 
application of the simplified variant of the equation of mechanical 
states was considered. The process of deformation (creep) of 
tubular specimens of aged polyethylene (14 years) under various 
regimes of stationary and non-stationary loading by axial tensile 
load, internal pressure and torque may be described with sufficient 
accuracy by the accounting for the instantaneous elastic and 
rheonomous components of the total strain:
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The calculated strains deviate from the experimentally obtained 
ones by 20%, and under the loading conditions without torque the 
difference does not exceed 13%. The examples of experimental and 
calculated creep diagrams are given in Figures 1-6. The figures show 
the qualitative and quantitative differences between experimental 
creep curves and analysis (description) of figures is not necessary 
(Figures 1-6).
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Figure 1: Non-stationary static loading sample and creep diagrams of HDPE ( ):1 experimental curve; 2 – calculated curves.

Figure 2: Non-stationary static loading sample and creep diagrams of HDPE (n = 2)
1 – experimental curves; 2 – calculated curves.

Figure 3: Non-stationary static loading sample and creep diagrams of HDPE (n = 0.5) 1 – experimental curves; 2 – calculated curves.
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Figure 4: Non-proportional static loading sample and creep diagrams of HDPE: 1 – experimental curves; 2 – calculated curves.

Figure 5: Combined loading path and creep diagrams of HDPE: 0 – experimental and estimated curves.

Figure 6: Combined loading path and creep diagrams of HDPE: 0 – experimental; calculated curves.
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Summary

The above conclusions also can be extended on the cases of 
cyclic alteration of all or any one stress component. However, it is 
indicative that despite of nonlinearity of the genetic stress equation, 
the evaluation of strain components can be carried out considering 
the average stress magnitudes over the loading cycle. Analysis [17] 
shows that the rigorous account of the cyclic stress variation results 
in insignificant refinement of strain components [18–21]. In this 
paper above equations are applicable to a class of semi-crystalline 
polymeric materials such as low-density polyethylene, PVC and 
PTFE 4 and 4D [22–25].
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