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Introduction

Civil structures are invariably designed to function robustly 
for a selected period of time, which is often referred to as the 
economic cycle of the structure. After exceeding this period of time, 
structures might be susceptible to deterioration that it is necessary 
to inspect those structures on regular basis. Also, civil structures 
which are subjected to dynamic and cycling loading experience 
fatigue stresses, leading to cracks and loss of local stiffness and 
material discontinuities [1]. Another major cause of structures 
deterioration is natural disasters; like earthquakes, tornadoes and 
floods, and post- disasters inspection of structures is a vital process 
for public safety. The conventional on-site inspection approaches  

 
of civil structures are time-consuming and human dependent. The 
results may be limited by the inspectors’ visual ability, knowledge, 
and might be subjective to personal perception. In addition, not 
all civil structure elements are accessible to inspectors especially 
after natural disasters. Accordingly, applying automated techniques 
such as computer vision can improve the assessment procedure 
significantly. For many years, the engineering research communities 
have been working on proposing structural health monitoring 
(SHM) techniques to prevent any unpredicted structural failure 
that can lead to loss of lives and major economic loss. Many of 
these proposed methods are local damage identification methods 
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and they can be included in one of the following categories: visual 
or localized experimental methods such as ultrasonic or acoustic 
methods, magnetic field methods, radiography, thermal field 
methods or eddy-current methods [2]. Also, other global vibration-
based damage identification methods were presented and reviewed 
by Doebling, et al. [3]. More recent work on vibration-based 
damage identification using numerical methods are proposed by 
Rabinovich et al. [4]; Chatzi et al. [5]; Cha & Buyukozturk [6]; Teidj 
et al. [7]; Hou et al. [8].

Due to the fast-growing advancement in visual sensing 
technologies (e.g., digital cameras), consumer-grade and 
smartphones high quality cameras are becoming available at a 
lower cost than ever before, which have been proven effective for 
advanced structural health monitoring and dynamic applications 
[9]. This accelerated research work on Computer Vision (CV) 
methods for damage detection and identification, primarily using 
Image Processing Techniques (IPTs) (Abdel- Qader et al. [10]; 
Yamaguchi et al. [11]; Prasanna et al. [12]; Chen et al. [13]; Cha 
et al. [14]). Koch et al. [15] categorized several state-of-the-art 
computer vision methodologies which are used to automate the 
process of the defect and damage detection. These methods are 
primarily developed based on IPTs, such as edge and boundary 
detection, template matching, filtering, background subtraction, 
region growing, texture recognition and histogram transform. 
These techniques have been used, tested, and evaluated to identify 
different defect and damage patterns in concrete bridges and 
buildings, precast concrete tunnels, underground concrete pipes 
and asphalt pavements [15]. CV techniques to date detect different 
types of damage such as cracks, corrosion in steel and concrete, voids 
in steel and concrete, delamination, and loosed bolts [16]. Current 
existing crack detection and assessment algorithms for concrete 
bridges are classified as, edge detection, segmentation, percolation, 
machine learning (ML) methods, morphology operations, ground 
and aerial robot photography, template matching, among other 
techniques [17].

According to LeCun et al. [18], Machine Learning Algorithms 
(MLAs) have more practical adaptability, and, recently, many 
research groups have implemented MLAs-based classifications 
combined with IPT-based image feature extractions, however, the 
results are still affected by the false- feature extraction of IPTs 
[19-23]. Different types of Artificial Neural Networks (ANNs) 
have been developed and implemented in research and industrial 
fields. Convolution Neural Networks (CNNs) which are inspired 
by the visual cortex of animals [24], unlike the standard NNs can 
effectively capture the grid-like topology of images. In addition, 
CNNs require fewer computations due to the sparsely connected 
neurons and the pooling process [14]. Furthermore, CNNs can 
classify a large number of classes [25]. The aforementioned aspects 
make CNNs the most efficient image recognition method to date 
[26, 27]. Recently, CNNs have been increasingly used in automatic 
crack detection, and have achieved very promising results, placing 
them as the state-of-the-art CV method used in crack detection [14, 
28-32]. A more comprehensive discussion of these developments 
will be presented in the literature review section.

This paper aims to build a concrete cracks detection classifier 
using Deep Convolution Neural Networks (DCNNs), and asses its 
detection performance on real-life problems of images having 
cracks in environments with complex backgrounds such as raw 
images of cracked beams in labs surrounded by machines and 
other distractions like tools, cables and/or windows. Similarly, 
raw images of cracked walls in fully finished houses. In addition, a 
novel approach is adopted to overcome the challenge of the limited 
training dataset, which affects the accuracy of the trained network. 
This approach aims to enlarge the authentic crack datasets by 
creating synthetic cracked beams images using the extended finite 
element method (XFEM) in ABAQUS software, which effectively 
increased the training and validation accuracies. The trained 
network achieved accuracy and precision of 98.2% and 90.6% 
respectively by testing the proposed classifier on raw images 
captured in environments with very complex backgrounds.

Literature Review
Crack detection

Concrete structures can experience several types of defects such 
as cracking, delamination, spalling and so forth. Since cracks are the 
most common distress type, many crack detection algorithms have 
been developed and presented in the literature. Abdel-Qader et al. 
[33] compared between four different edge detection algorithms: 
Fast Haas Transform (FHT), Fast Fourier Transform (FFT), Sobel 
and Canny. His study was tested on 50 concrete images divided 
equally into images with and without cracks. The results concluded 
that FHT was significantly the most reliable method in the process 
of crack detection and identification. Abdel- Qader et al. [10] 
used a Principle Component Analysis (PCA) based algorithm for 
unsupervised bridge crack detection for the purpose of automating 
the inspection process. PCA is a dimensionality reduction technique 
that improves the training process by enhancing the computational 
efficiency. The accuracy of results in this paper varied with camera 
pose and distance from where images are taken. Yamaguchi et al. 
[34] proposed a novel percolation based IPT to detect cracks on 
concrete surfaces. They were motivated by the fact that conventional 
image-based approaches, edge detection methods, performance 
were still questionable in noisy concrete images due to concrete 
blebs, stains, insufficient contrast and shading.

Yamaguchi et al. [11] presented another paper using scalable 
local percolation- based IPTs for fast crack detection on large 
surface images, and according to Koch et al. [15] they proved 
to be efficient and accurate. Prasanna et al. [12] presented a 
histogram-based classification algorithm for concrete bridge deck 
cracks detection. Histogram-based method was used for features 
extraction, coupled with a Support Vector Machine (SVM) to train 
and classify the data. The classification algorithm was tested on 
118 crack and non-crack regions, and the results showed the need 
for improving the accuracy. However, the training images were 
captured from different locations on the bridge to build the training 
data of the classifier, and the testing process using this classifier 
could be performed on various locations of similar composition. 
Lattanzi & Miller [35] created an automatic culturing method for 
segmentation based on Canny and K-means filters to obtain efficient 
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crack detection process in different environmental conditions and 
at lower computational cost. Their work is vital when training 
data are obtained from various locations as a key to reflect real 
world situations where the environmental variability exists due 
to the variable lighting and shading conditions at different spots. 
Torok et al. [36] combined image-based 3D scene constructions 
with other techniques to develop 3D crack detection algorithm. 
Their experimental results illustrate that the 3D crack detection 
algorithm worked efficiently in detecting cracks on different 
building elements, in addition to reconstructing 3D profiles, and 
calculating geometrical characteristics. Simler et al. [37] generated 
crack maps by detecting cracks using radiometric, geometric and 
contextual information captured from monochrome concrete floors 
images and used an adaptive intensity –threshold-based method 
that handles radiometry information.

Neural networks
Artificial Neural Networks (ANNs) have many types which 

have been developed by the scientific research community in the 
past years and the application of ANN in the civil engineering field 
was utilized by predicting compressive strength of concrete using 
neural networks [38,39]. CNNs, which are a more complex form of 
ANNs, have shown great success in the field of image recognition 
[27]. CNNs are inspired by the visual cortex of animals [24] and 
have been used in research purposes for many years, however, 
they have been highlighted in image recognition after the dramatic 
breakthrough of AlexNet in solving ImageNet Large Scale Visual 
Recognition Challenge (LSVRC) by Geoffrey Hinton and his team 
from university of Toronto in 2012. They used a deep convolution 
neural network (DCNN) to classify 1.2 million high resolution 
images into 1000 different classes and achieved a winning top 5 
error rate of 15.3% compared to 26.2% achieved by the second 
entry [25]. Since then, researchers started to pay attention to this 
Deep Learning (DL) revolution not only within AI community but 
also across other technology industries, including researchers 
working on defect detection and crack identification. CNNs can 
effectively capture the grid-like topology of images, unlike the 
standard NNs, and they require fewer computations due to the 
sparsely connected neurons and the pooling process. Furthermore, 
CNNs are capable of differentiating a large number of classes [25]. 
These features make CNNs an efficient image recognition method 
[26,27]. The previous dilemma of CNNs was the need for a vast 
amount of labeled data, which came with a high-computational 
cost, but this problem was overcome through the use of well 
annotated databases such as MNIST [40], ImageNet [41], CIFAR-10 
and CIFAR-100 [42], in addition to parallel computations using 
graphic processing units [43]. Due to CNNs excellent performance 
research groups in civil engineering researchers started to utilize 
this fast-growing technology in the field of defect detection and 
crack identification. In this section some of the published papers 
on concrete crack detection using DCNNs in the past few years are 
presented.

Zhang et al. [44] proposed a DL based method using CNNs; they 
demonstrated that learned deep features provide superior crack 
detection performance when compared with features extracted with 
existing hand-craft methods: boosting and support vector machine 

(SVM) methods. Cha et al. [14] developed a robust crack detection 
classifier using DCNNs and compared its performance with two 
well know traditional IPTs: Canny and Sobel edge detection. The 
proposed DCNN outperformed these two methods as both of 
them are quiet dependent on the image condition. Yokoyama & 
Matsumoto [45] developed a concrete cracks detector using DCNNs 
that automatically detect cracks from photographs. The detection 
rate of cracked part in concrete was high, while detection rate in 
concrete with stains is very low. Unlike previous crack detectors 
that classify images as a whole, Lee et al. [28] developed a crack 
segmentation-based network that outputs pixel-wise prediction 
for image segmentation. Li [31] used four supervised CNNs with 
different sizes of receptive field to automatically classify image 
patches cropped from 3D pavement images and found that CNN 
classification accuracy is sensitive to the receptive field size. In 
order to assess CNNs general application, Alipour and Harris 
[29] studied the adaptability of material-specific tailored models 
in crack detection performance across different construction 
materials (concrete and asphalt). They showed that changing the 
surface crack material can significantly reduce the CNN detection 
performance. Therefore, they proposed domain adaptation 
techniques namely joint training, sequential training, and ensemble 
learning to develop crack detection models that work on multiple 
materials. Also, Deng et al. [30] used faster region CNN to distinguish 
between cracks and crack-like handwriting scripts on concrete 
beams. Very recently, Yang et al. [32] aimed to improve the cracks 
representation capability of ResNet [46]. Specifically, they stacked 
a light-weight spatial attention network module in ResNet-50 to 
detect cracks. The proposed DCNN significantly improved the crack 
detection capability of the network.

Despite the fact that CNNs has proved to be a robust crack 
detector, almost all previous studies have assessed their deep 
CNN based models on crack images captured in controlled 
environments, and still their general application in real-world and/
or in complex environments is still questionable. In this paper we 
assess the performance of a deep CNN based model in real-world 
complex environment where raw images are cracked beams with 
complex surroundings such as machines, tools, windows and/or 
doors. In addition, this is the first work to our knowledge that uses 
synthetic cracked beams images using the extended finite element 
method (XFEM) in ABAQUS software [47] to enlarge an authentic 
crack dataset and effectively increases the detection performance 
recording accuracy and precision.

Methodology
A general crack detection classifier is designed by implementing 

four important operations: preprocessing, training, testing, and 
reporting, as illustrated in the following Figure 1. The detailed 
general crack detection process flow chart is explained in Figure 2. 
First, raw images are collected and processed to build a databank 
that is divided into training, validation and testing sets. Second, 
training and validation sets are used for training the CNN. Third, the 
trained CNN is tested on new images from the testing set. Finally, 
detected cracks are reported using a reporting system (Figures 1, 
2).
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Figure 1: Cracks classification process.

Figure 2: Cracks detection process flow chart.

Architecture description
Designing a CNN is the most crucial step in the process of 

building robust image recognition classifiers. The success of a CNN 
depends on customizing the architecture design to best fit the given 
problem. A hand-crafted CNN architecture is a challenging, time-
consuming process that needs many training and validation trials 
through an optimization process to best tune the architecture layers 
and hyper parameters. Besides, the need of an expert knowledge, 
due to the large number of architecture designs choices [48]. Cha et 
al. [14] proposed CNN architecture that was used in building their 
crack detection classifier and its training and validation results 
illustrated to be successful in crack detection problems, which is 
adopted in this research, while using two different Drop-Out Rates 

(DORs): 0.5 and 0.3.

The CNN architecture is composed of 14 layers; thus, it is 
defined as a Deep CNN. The first layer is the input layer of an RGB 
image of 256 × 256 × 3-pixel resolutions, where each dimension 
represents height, width and channel (e.g., red, green, and blue), 
respectively. Input images’ matrices are processed through different 
convolution, batch normalization (BN), max pooling, and drop-out 
layers, and are reduced to a 1 × 1 × 96 vector which is then fed 
into the Rectified Linear Unit (ReLU) layer. Lastly, the softmax layer 
predicts if the input image has a crack or not after processing the 
last convolution layer. Table 1 illustrates the detailed dimensions of 
each layer and operation (Table 1).

Table 1: Dimensions of layers and operations.

Layer Height Width Depth Operator Height Width Depth Number Stride

Input 256 256 3 C1 20 20 3 24 2

L1 119 119 24 P1 7 7 - - 2

L2 57 57 24 C2 15 15 24 48 2

L3 22 22 48 P2 4 4 - - 2

L4 10 10 48 C3 10 10 48 96 2

L5 1 1 96 ReLU - - - - -

L6 1 1 96 C4 1 1 96 2 1

L7 1 1 2 Softmax - - - - -

L8 1 1 2 - - - - - -
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Classifier
This section illustrates the classifier building blocks. First, the 

generation of the training and validation datasets is discussed in 
section 4.1, with presenting the adopted approach to enlarge the 
authentic images datasets with synthetic images. Second, the 
trained DCNNs, their hyper-parameters, training and validation 
results are discussed in section 4.2. Then, a summary of the used 
DCNNs and their performance results are provided. This research 
was performed using ASUS GL552JX machine with CPU: Intel® 
Core™ i7- 4720HQ @ 2.6GHz, GPU: NVidia® GeForce® GTX 
950M (CUDA Toolkit v7.5) and Installed memory (RAM): 16GB. 
MatConvNet [49] was used to develop this classifier on MATLAB®.

Training and validation data generation
Dataset 1: The first dataset was composed of 115 of raw images 

which are obtained from data center hub repository provided by 
Pujol [50]. To add some generalization to the training examples, 
3 more raw images were added to the dataset which are obtained 

from three online sources [51-53]; see Figures. 4(a)-(c). These 118 
raw images were cropped and filtered into 2500 cracks sub-images 
and 8000 background sub-images. In order to enlarge the cracks 
dataset, data augmentation was used which is a common simple 
approach that allows enlarging the training data and reducing 
over-fitting [25]. Data augmentation can be done by translation, 
rotation or mirroring. In the training and validation dataset 1, data 
augmentation by vertical mirroring was used with large portion of 
cracks sub-images, see Figure 5. This allowed nearly doubling the 
number of cracks sub-images to be 4000 sub-images instead of just 
2500 sub-image by mirroring 1500 sub-images. Data augmentation 
operations over background sub-images was not needed, since the 
process of cropping the raw images resulted in a sufficient number 
of background sub-images with respect to cracks sub-images even 
after its augmentation, and the followed ratio of crack: background 
was 1:2. The 12000 sub-images were randomly divided into training 
and validation datasets with a ratio about 4:1 (Figures 3-5).

Figure 4: The other three cracked concrete surface images from internet.

Figure 3: A cracked concrete beam image in lab from data center hub repository [50].
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Figure 5: Data augmentation examples by vertical mirroring.

Dataset 2 using finite element model: Two cracked concrete 
beams are molded and loaded to cracking using the extended finite 
element method (XFEM) in ABAQUS software in order to generate 
synthetic cracks and background images to create the training 
and validation dataset 2 to use it in the DCNN training. The first 
concrete beam is a plain concrete beam with dimensions of 600mm 
and 250 mm for its depth and width respectively. The span of the 
beam is set to be 5 meters, while being fixed at its two ends. The 
beams’ concrete modulus of elasticity is set to be 25000 N/ mm2, 
and the Poisson’s ratio of concrete is 0.3. The second concrete beam 
is a reinforced concrete beam with dimensions of 600mm and 250 
mm for its depth and width respectively. The span of the beam is 
set to be 5 meters, while being simply supported at its two ends. 
The beam has two 12mm bars as bottom reinforcement, and two 
12mm bars as top reinforcement. The distribution of stirrups is one 

8mm bar stirrup at each 200mm. The beams’ concrete modulus of 
elasticity is set to be 25000 N/ mm2, and 200,000 N/mm2 for steel. 
The Poisson’s ratio for both concrete and steel is 0.3. The images 
of the resulting two cracked beams from the finite element models 
were then cropped and filtered into 3000 sub-images divided into 
1000 sub-images of cracks and 2000 sub-images of backgrounds. 
These synthetically generated sub-images were fed into the training 
and validation dataset 1 creating a new enlarged dataset of 15000 
sub-images with 20% synthetic sub-images. The new enlarged 
dataset is referred to as training and validation dataset 2, and some 
examples of it are illustrated here in Figures. 6 and 7. The training 
sub-images to validation sub- images ratio was maintained to be 
about 4:1. Table 2 summarizes the training and validation datasets 
information (Figures 6,7) (Table 2).

Figure 7: Examples of synthetic background sub-images.

Figure 6: Examples of synthetic cracks sub-images.
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Table 2: Training and validation data summary.

Data 
Summary

Total Size Real Images Synthetic Training 
Set (T)

Validation 
Set (V) T/V

(Online) XFEM

Dataset 1

12K 12K

100% 0% 9,611 2,389 4.023Crack Background Crack Background Crack Background

4K 8K 4K 8K

Dataset 2

15K 12K

80%

3K

20% 11,992 3,008 3.986Crack Background Crack Background Crack Background

5K 10K 4K 8K 1K 2K

DCNNs

Three DCNNs named; DCNN 1.1, DCNN 1.2 and DCNN 2 were de-
veloped and trained over training and validation datasets 1 and 2.

DCNN 1.1: DCNN 1.1 was trained over training and validation 
dataset 1 using a stochastic gradient descent SGD algorithm with 
a mini-batch size of 100 out of 12000 images. Weight decay and 

momentum were assigned by 0.0001 and 0.9. The logarithmically 
decreasing learning rate was used as recommended by Wilson 
& Martinez [54]. Dropout rate was assigned by 0.5. The training 
and validation results of DCNN 1.1 recorded accuracies of 94.6% 
at the 60th epoch and 91.63% at the 45th epoch, respectively, as 
illustrated in Figure 8. The training and validation time of 12000 
sub-images for 60 epochs was 4 hours and 10 minutes (Figure 8).

Figure 8: DCNN 1.1 Training and validation accuracies for each epoch.

DCNN 1.2: DCNN 1.2 was trained over training and validation 
dataset 1 using the same algorithm and by having the same hyper-
parameters assigned as DCNN 1.1, however, dropout rate was 
reduced to 0.3. The training and validation results of DCNN 1.2 

recorded improved accuracies of 95.17% at the 56th epoch and 
91.75% at the 46th epoch, respectively, as illustrated in Figure 9. 
The training and validation time of 12000 sub-images for 60 epochs 
was 4 hours and 8 minutes (Figure 9).
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DCNN 2: DCNN 2 was trained over training and validation 
dataset 2 using the same algorithm and by having the same hyper-
parameters assigned as DCNN 1.2. The training and validation 
results of DCNN 2 recorded improved accuracies of 96.85% at 

the 59th epoch and 93.15% at the 50th epoch, respectively, as 
illustrated in Figure 10. The training and validation time of 15000 
sub-images for 60 epochs was 5 hours and 59 minutes (Figure 10).

Figure 11 compares the training and validation accuracies of the 
three proposed DCNNs. Examining the figure indicates that using 
dropout rate = 0.3 increased the validation accuracy, see DCNN 1.1 

and DCNN 1.2 results. Also, Figure 11 indicates that introducing 
the additional 25% synthetic images has efficiently improved the 
validation accuracy achieving 93.2% (Figure 11).

Figure 10: DCNN 1.2 Training and validation accuracies for each epoch.

Figure 9: DCNN 1.2 Training and validation accuracies for each epoch.
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Testing
Three different testing images examples are obtained to 

generate two different testing images datasets to assess the 
robustness of the trained networks DCNN 1.1, DCNN 1.2 and DCNN 
2. These examples include cracked lab concrete beam included 
in testing datasets 1 and 2, building’s cracks images taken by the 
author with a cell phone camera included in testing dataset 2, and 
finished wall cracks image obtained from the internet with complex 

surroundings included in testing dataset 2.

Testing data generation
Testing dataset 1: 370 unique new sub-images are used, 

extracted from the lab cracked concrete beams, and which were 
not used in training. Number of positive images (cracks) is 112. 
Number of negative images (background) is 258. See examples in 
Figs. 12 and 13 (Figures 12, 13).

Figure 12: Example of crack images.

*DOR: dropout rate, Dataset 1: 12000 sub-images (100%), Dataset 2: 15000 sub-images: 12000 reals (80%) and 3000 synthetic (20%)
Figure 11: Training and validation results of DCNNs 1.1, DCNN1.2 and DCNN 2.

Figure 13: Example of background images.
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Testing dataset 2: In testing dataset 2, three different raw 
images examples are used to assess the robustness of the trained 
networks DCNN 1.2 and DCNN 2, as illustrated in Figures. 14(a)-(c). 
In order to test DCNNs over raw images, a testing and a reporting 
system was developed that crop raw images to sub-images for 
testing then reconstruct the original raw images out the of the tested 

sub images with reporting their testing results crack or background. 
Reported sub-images labeled as a crack are highlighted in a red 
border, while sub-images labeled as a background are reported 
with no borders. The total number of dataset 2 sub-images is 1618 
(Figure 14).

Testing results
Dataset 1 testing results: In this section, the results of testing 

the three developed DCNNs: DCNN 1.1, DCNN 1.2 and DCNN 2 
over testing dataset 1 are illustrated in Figure 15 and summarized 
in table 3. Also sample of the tested sub-images are provided in 
Figures 16 & 17. An example of detected cracks in Figure 16 shows 
effective detection of cracks of different orientations, backgrounds 

color and textures and a wide range of crack sizes, from wide cracks 
to hair cracks. Similarly Figure 17 shows an example of the effective 
detection of different complex backgrounds with wide range of 
colors, patterns and dark edges that could confuse the network to 
be detected as cracks. Also, it should be noted the high predictions 
scores the network achieved in both cases as shown in Figures 16 & 
17 (Figures 15-17) (Table 3).

Figure 14: Testing dataset 2 examples.

Figure 15: Results summary of testing DCNN 1.1, DCNN 1.2 and DCNN 2 over testing dataset.
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Figure 16: Example of detected cracks.

Table 3: summarizes the testing results of DCNN 1.1, DCNN 1.2 and DCNN 2 over testing dataset 1.

DCNNS # of sub im-
ages

# of 
Ps

# of 
Ns # of TP # of 

TN # of FP # of FN Accuracy Precision Recall F1

DCNN 1.1 370 112 258 110 254 3 3 0.9838 0.9735 0.9735 0.9735

DCNN 1.2 370 112 258 110 255 3 2 0.9865 0.9735 0.9821 0.9778

DCNN 2 370 112 258 111 258 1 0 0.9973 0.9911 1 0.9955

Figure 17: Example of detected backgrounds.
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Dataset 2 testing results: In this section, the results of testing 
the DCNN 1.2 and DCNN 2 over testing dataset 2 are illustrated. The 
dataset was fed with new 1618 sub-images which has a more of real-
life situation images like; cracked lab concrete beam and building’s 
cracks images and this makes the testing process more challenging, 
however as shown in Figures 19-23, DCNN 1.2 and DCNN 2 achieved 
overall accuracies of 97.9% and 98.2%, respectively, see Figure 18. 
It is shown in Figure 19 how the DCNN 2 could effectively detect 

cracks while having very complex background. DCNN 2 increase 
of performance over testing dataset 2 may appear not significant 
comparing to DCNN 1.2 in terms of absolute values; however, in 
terms of relative performance, DCNN 2 achieved error reduction 
of 14.2%, 4.6% and 35.6% in accuracy, precision and recall values, 
respectively, as illustrated in Figure 18. The testing results are 
summarized in Tables 4 & 5 (Figures 18-21) (Tables 4,5).

Figure 18: Results summary of testing DCNN 1.2 and DCNN 2 over testing datasets 1 and 2.

Figure 19: Cracked lab concrete beam, raw image obtained from data center hub repository [50].
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Figure 20: Cracked finished wall, raw image obtained from internet [55].

Figure 21: Cracked finished wall.
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Table 4: Testing results summary of DCNN 1.2.

DCNN 1.2 Image 
No.

# of sub- 
images

# of 
Ps # of Ns # of TP # of 

TN
# of 
FP

# of 
FN Accuracy Precision Recall F1

Testing 
Dataset 1 - 370 112 258 110 255 3 2 0.9865 0.9735 0.9821 0.9778

Testing 
Dataset 2

1 520 76 444 67 422 22 9 0.9404 0.7528 0.8816 0.8121

2 176 15 161 14 158 3 1 0.9773 0.8235 0.9333 0.875

3 140 14 126 14 126 0 0 1 1 1 1

4 140 14 126 14 126 0 0 1 1 1 1

5 450 24 426 22 426 0 2 0.9956 1 0.9167 0.9565

6 192 16 176 16 176 0 0 1 1 1 1

Total 1988 271 1717 257 1689 28 14 0.9789 0.9018 0.9483 0.9245

Table 5: Testing results summary of DCNN 2.

DCNN 2 Image 
No.

# of sub- 
images

# of 
Ps

# of 
Ns

# of 
TP # of TN # of FP # of FN Accuracy Precision Recall F1

Testing 
Dataset 1 - 370 112 258 111 258 1 0 0.9973 0.9911 1 0.9955

Testing 
Dataset 2

1 520 76 444 68 427 17 8 0.9519 0.8 0.8947 0.8447

2 176 15 161 15 154 7 0 0.9602 0.6818 1 0.8108

3 140 14 126 14 126 0 0 1 1 1 1

4 140 14 126 14 125 1 0 0.9929 0.9333 1 0.9655

5 450 24 426 23 426 0 1 0.9978 1 0.9583 0.9787

6 192 16 176 16 175 1 0 0.9948 0.9412 1 0.9697

Total 1988 271 1717 261 1691 27 9 0.9819 0.9063 0.9667 0.9355

Figure 22: Cracked finished column.
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Figure 23: Cracked finished wall joint.

Conclusions
A concrete cracks detection system based on DCNNs is 

proposed. The training and validation data sets were built on using 
118 raw images obtained from the internet. These 118 raw images 
were cropped and filtered into 12000 sub-images. The first trained 
network recoded training and validation accuracies 94.6 % and 
91.63%, respectively. The network was trained after reducing the 
dropout rate to 0.3 instead of 0.5 and the network recorded an 
improved training and validation accuracies of 95.17% and 91.75%, 
respectively. In order to enlarge the training and validation dataset, 
synthetic images are added to the original training and validation 
dataset. The synthetic images were created by modeling two 
cracked concrete beams using ABAQUS software, and the images 
of the two beams were cropped and filtered into 3000 sub-images. 
The new developed synthetic sub-images were added to the original 
training and validation dataset creating a new enlarged dataset 
with 15000 sub-images with 20% synthetic images. The ratio 
between cracks and background sub-images was maintained to 
be 1:2 respectively. The trained network over the enlarged dataset 
with synthetic sub-images recorded an improved training and 
validation accuracies 96.85% and 93.15% respectively. The trained 
networks were tested over different testing images’ examples 
such as: (i) Images of cracked concrete beam in lab with complex 
surroundings like cables, windows, bearings, etc. (ii) Images of 
finished walls. The testing results showed the robustness of the 
proposed system in detecting concrete cracks in environments with 
complex backgrounds. The effectiveness of using synthetic images 
in enlarging crack training and validation datasets, and their 
positive impact in increasing the testing accuracy was illustrated. 
The trained network over 15000 sub-images with 20% synthetic 

sub-images recorded an average testing accuracy, precision and 
recall 98.2%, 90.6%, 96.7% respectively on a wide range of testing 
images with a total of 1988 sub-images. The proposed system was 
developed with a reporting system that facilitated and automated 
the testing process. Moreover, this system could be combined 
with remote control drones to facilitate and accelerate the process 
of damage detection and inspection of civil infrastructures, as a 
replacement of the routine on-site visual inspection process of 
civil structures. In future research work, a Deep CNN based system 
could be developed to detect and classify various concrete cracks/
damage types.
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