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Introduction
Long steel suspended cables such as those used in suspension 

bridges are prone to vibrations induced by wind and traffic 
moving loads. Suspended cables supporting bridge decks are 
tensioned due to their own weight, the weight of the bridge deck 
and the traffic loads. When the suspended cable is subjected to any 
disturbance due to wind or moving vertical loads, and because of 
the coupling between the motion of the bridge deck and the motion 
of the suspended cables, the system behaves nonlinearly due to 
the flexibility of the suspended cables. The nonlinear dynamic 
response affects the safety and serviceability of these flexible 
structures. Researchers have studied the nonlinear vibrations 
of a suspended cable due to wind or periodic excitations. Abdel-
Rohman and Spencer [1] showed that introducing a small damping 
to the suspended cable improves tremendously its dynamic 
response. Passive control can provide, in some cases, a good  

 
control for the nonlinear vibrations response in the cable stayed 
bridges or suspension bridges [2-4]. Active control of flexible 
structures is a valuable new technology to enhance the flexible 
structures functionality and to ensure their safety. The control of 
the nonlinear vibrations response of the suspension and cable-
stayed bridges due to wind and/or traffic loading has attracted 
the interest of many researchers [5,6]. Because of the high cost 
of the active control technology, some attempts have been made 
to combine active and passive control, which is now called semi-
active control [7,8]. Spencer & Nagarajaiah [9] reviewed the recent 
and rapid developments in the semi-active structural control and 
their implementation in full-scale structures. Benchmark control 
problems for cable-stayed bridges were studied [10]. The design 
of the active control actions can be achieved using the classical 
and modern control design methods [11]. A reliable active control 
system depends on using a feasible control mechanism and good 
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Abstract

The flexibility and low damping of the long span suspension bridges make them prone to nonlinear vibrations due to wind and moving loads. 
The self-excited wind forces introduce additional nonlinear excitations in addition to the geometric nonlinearity of the bridge. In order to control 
the nonlinear dynamic response in the suspension bridges, one has to introduce more damping forces (passive damping or active damping or both) 
to the bridge. In order to introduce the passive and/or active damping forces, one has to propose a control mechanism. The feasibility of using any 
proposed control mechanism is assessed before its approval. This paper considers the nonlinear dynamic response of a suspension bridge subjected 
to wind and vertical load moving with a constant speed on the bridge deck. To control the nonlinear dynamic response of the bridge, two control 
mechanisms are proposed. The design of the control force is made first on a linear structural model before applying it on the actual nonlinear 
structural model. The paper shows the controlled response of the suspension bridge using the proposed control mechanism and compare it with 
the uncontrolled response. The comparison will indicate the efficient control mechanism to be used for the suspension bridge. The paper concludes 
that, the feasibility of the proposed control mechanism depends mainly on how it creates the control forces on the bridge and it does not consume 
large external energy to generate the required active control force. 
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design of the control actions to ensure the dynamic stability of the 
controlled structure.

In this paper, the responses of the nonlinear vibrations for the 
suspended cables and the suspension bridge deck due to wind and 
moving vertical loads are obtained. In order to introduce more 
damping to the bridge, two control mechanisms are proposed. 
The first control mechanism consists of a rigid vertical link or a 
pre-tensioned vertical cable connecting the bridge deck with the 
suspended cable by an electro-hydraulic actuator. The other control 
mechanism depend on using pre-tensioned cables and a rigid 
vertical link connected to the actuator to form a king-post truss 
[12]. The electro-hydraulic actuator response is designed to keep 
the controlled structure safe and serviceable at all times. The design 
of the actuator response utilizes the information received from 
the sensors, which are placed at specific locations on the bridge 
to measure the deflection, velocity and/or acceleration responses 
[11]. Since the design of the control forces for the nonlinear systems 
is more involved, this paper presents a simple design for the active 
control force to control the nonlinear dynamic response of the 
suspension bridges due to the wind and the moving vertical loads. 
The active control force is based on the velocity measurements 

taken at the control force location. The designed control force 
is first utilized on a linear structural model before applying it on 
the actual nonlinear structural model. Comparison between the 
controlled response using the suggested control mechanism and 
the uncontrolled response in addition to the assessment of the 
magnitude of the active control force will indicate the feasibility of 
the suggested control mechanism. 

Equations of Motion
The basic equations of motion of the suspended cables are 

defined by Abdel-Rohman & Spencer [1], Irvine, 1992 [13] and 
Luongo & Piccardo [14]. According to the displacements directions 
defined in Figure 1, the general equations of the suspended cables 
motion are as follows:
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Figure 1: Displacements Directions of Suspended Cables.

in which (s) is the spatial coordinate along the cable curved 
length. (t) is the time.  (x) is the horizontal coordinate along the 
cable span. y(s) is the cable static profile. U(s, t), V(s, t) and W(s, t) 
are, respectively, the displacements in the tangential, vertical and 
transversal directions. (T0) is the static tension. (τ) is the additional 
dynamic tension in the cable. (c) is the damping coefficient. (m) 
is the mass of the cable per unit length. (g) is the acceleration of 
gravity. The applied loading per unit length in the vertical direction 
is fv(s, t) and in the transverse direction is fw(s, t). The nonlinear 
strain-displacement relationship during the deformation of the 
cable is given by:

ds
dsds

EA

'

*

−
=

τ
                                                                                   (4)

where (E) is the modulus of elasticity and (A*) is the cross 
section area of the suspended cable.

The deformed cable segment (ds’) and the un-deformed cable 
segment (ds) are obtained from:

( ) ( ) ( )2222 W V y dU x d'ds ∂+∂++∂+=               (5)

222 dydxds +=                                                                            (6)

in which (x) and (y) are, respectively, the horizontal and vertical 
Cartesian dimensions.

A two-hinged bridge deck is supported by the suspended cables 
using vertical hangers located at (s = si) on the cable and at (x = xi) 
on the bridge deck. A control mechanism consists of a rigid vertical 
link or a pre-tensioned vertical cable connecting the bridge deck 
with the suspended cable using an electro-hydraulic actuator. The 
actuator is used to apply an active vertical control force u(t) at the 
mid-span of the bridge deck and at the mid-span of the suspended 
cables, as shown in Figure 2. The equations of motion for the 
suspension bridge model can be simplified based on the assumption 
of a small curvature regime and neglecting the tangential motion in 
the case of zero longitudinal loading to as follows:		
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Figure 2: Displacements Directions of Suspended Cables.
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in which (EI) is the flexural rigidity of the bridge deck. (cb) and 
(mb) are, respectively, the damping and mass per unit length of 
the bridge deck. (P) is the magnitude of the vertical load which is 
assumed to be moving with a constant speed ( v ) and at any time 
(t) is located at (x = xp = tv ). (ki) is the stiffness of the vertical 
hanger (i) which is located at (x = xi) along the bridge deck of span 
(


) and located at (s = si) along the suspended cable of span ( *


). u(t) is the vertical concentrated active control force which is 
located at the mid-span, (

5.0x =  ) and ( *5.0s =  ). Z(x, t) is the 
vertical response of the bridge deck. 

The notations (Zi) and (Vi) indicate, respectively, the vertical 
deflection response of the bridge deck and the vertical deflection 
of the suspended cables at (x = xi) and (s = si). (δ) is the Dirac-delta 
function which is used to introduce the concentrated forces into the 
differential equations. The displacement functions W(s, t), V(s, t) 
and Z(x, t) are considered to be from the contribution of the first 
modes only. They are expressed as follows:

( ) ( ) ( )tLst,sW ×λ=                                                                         (10)

( ) ( ) ( )tAst,sV ×φ=                                                                       (11)

( ) ( ) ( )tBxt,xZ ×η=                                                                          (12)

where ( )s λ  and ( )s φ are, respectively, the first mode shape 
of the suspended cable in the transversal and vertical directions, 
which can be determined using the linear theory of cables to satisfy 
the boundary conditions [13]. For a hinged-hinged suspended 
cable, the first mode shapes for and which satisfy the boundary 
conditions are as follows: 
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where, ko is a constant chosen to make 1) 5.0( * =φ   , and 
(μ) is a constant used to satisfy the boundary conditions 

.0)(   and  0)0(  * =φ=φ 

For a simply supported bridge deck, the mode shape η(x) which 
satisfies the boundary conditions [Z(0, t) = 0 and Z(



 , t) = 0] is as 
follows:

)x( sin)x( 


π
=η                                                                                    (15)

Substituting equations (10) to (12) into equations (7) to (9) 
and applying an integral transformation, one obtains, respectively, 
the equations of motion of the suspended cable in the transverse 
direction, the vertical directions and the equation of motion of the 
bridge deck in the vertical direction as follows:
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in which (ξ ) is the damping ratio in the suspended cable. ( wω
) and ( vω ) are, respectively, the natural frequencies of the cable in 
(W) and (V) directions. ( bξ ) is the damping ratio in the bridge deck. 
( bω ) is the natural frequency of the bridge deck. )/v ( π=Ω  , 
where ( v ) is the speed of the moving load (P). P*= (2P) / (mb ×



), 
and the constants (ci) and (di) are given in the appendix.

Wind Loading on the Suspended Cables and the 
Bridge Deck

The aerodynamic forces on the suspended cables due to wind 
in the transverse direction can be estimated from the along-wind 
and across-wind forces Holmes [15] and Simiu & Scanlan [16] as 
follows:
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where (ρ) is the air density, (D) is the cable diameter, (CD) is 
the drag coefficient, (CL) is the lift coefficient, (γ) is the angle of 
attack and (Urel) is the relative wind speed with respect to the cable 
motion which is given by:

( ) ( ) ( )[ ] ( )t,sV t,sWt,sUt,sU 22
o

2
rel

 +−=     (21)

in which ( )t,sUo is the mean wind speed, ( )t,sW  is the 
transverse velocity response of the cable in W-direction and ( )t,sV  
is the vertical velocity response of the cable in V-direction.	

From Figure 2, one obtains the following relationships:
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Equations (19) and (20) can be written as follows:
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where ( )γWC and ( )γVC are the wind force functions 
defined as follows:
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The wind force functions and are usually obtained from the 
wind tunnel tests [17]. 

Curves that best fit the wind tunnel test data are used in the 
analysis. These functions can be expressed as polynomials in (tan 
γ) as follows:

( ) ∑
=

γ=γ
N

0i

i
iw tanaC                                                                 (29)

( ) ∑
=

γ=γ
N

0i

i
iv tanbC

                                                              
(30)

where (N) is the degree of the polynomial, (ai) and (bi) 
are constants to be determined from the wind tunnel tests. 
Substituting equations (29) and (30) into equations (25) and (26), 
the expressions for ( )tFw  and ( )tFv  in equations (16) and (17) are 
determined from the integral transformations as follows:
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Using equations (13), (14), (25) and (26) into equations (31) 
and (32), we obtain Fw(t) and Fv(t) in the following forms:
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where the coefficients wiC and viC  are obtained from the 
equations shown in the appendix.

It is obvious from equations (33) and (34) the effect of the 
aerodynamic self-excited wind forces on the stability of the system. 
In order to determine the critical (onset) wind speed at which 
galloping starts for the bridge, one sets the determinant of the 
linear damping matrix equal to zero Abdel-Rohman & Spencer, [1] 
and Den Hartog [18] and solve for the critical wind speed from the 
following equation:
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Design of the active Control Force 
The design of the active control force u(t) can be obtained by 

several methods. The design method used here is to express u(t) 
as function of the output response of the system without the need 
to estimate the state variables of the higher order modes. Since 
the system is nonlinear, one can base the design on a linear system 
model. A linear system model can be obtained by ignoring the 
nonlinear terms because most of the civil engineering structures 
are usually weakly nonlinear. One can also linearize the nonlinear 
system around an equilibrium state. The linear system model 
considered for the sake of the design of the control force is defined 
as follows:

( )tFLL2L *
w

2
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in which Fw*(t) and Fv*(t) contain the constant and the linear 
terms in Fw(t) and Fv(t) in equations (33) and (34). It is obvious 
from equation (36) that the linear time response L(t) in W- direction 
is uncontrollable due to locating the control force at the mid-span, 
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which is the node of the mode shape λ(s). However, Abdel-Rohman 
and Spencer [1] have shown that the lateral response W(s, t) due to 
wind is very small as compared with the vertical response V (s, t). 
Therefore, the design of active the control force u(t) shall depend 
on the linear system defined only by equations (37) and (38) which 
can be expressed in a state matrix form as follows:
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The active control force u(t) can be expressed in general as 
follows:

                                                                                  (41)

in which K is the general gain matrix of dimension (1×4).

The design of the elements of the gain matrix K requires the 
knowledge of the state variables )B,B,A,A(  , which represent the 
generalized coordinates of the first modes in V- and Z- directions. 
These state variables can be estimated using observers and filters 
and the design of the gain matrix K can be made by various methods 
such as the optimal control method or the pole-placement method 
[19]. The design method in this paper is based on the feedback of 
the measured velocity response at the same location of the control 
force [20]. The measured response shall include the contribution 
of all higher order modes. The design of the control force here 
depends on the assumption that the measured response are the 
contribution of the first modes only. In the case of using velocity 
feedback from velocity measurements collocated with the control 
forces locations, it has been proven by Balas [21] and was shown 
by Abdel-Rohman [22] that the higher order modes do not affect 
on the stability of the controlled linear system. The stability of a 
weakly nonlinear controlled system can be checked by studying the 
stability of a linearized system, which is obtained by perturbing the 
nonlinear controlled system about an equilibrium state [23]. 

The active control force is obtained from the following velocity 
feedback control law: 

)t(B)t(B)5.0( )t,5.0(Z)t(u 



 ×α=×η×α=×α=             (42)

The gain factor (α) can be chosen to make the damping ratio of 
the first mode of the bridge deck reaches a certain value.

Numerical Example

Numerical computations are made for an equivalent suspended 
cable (instead of two parallel suspended cables) of length ( *



 = 200 

m), diameter (D =10 cm), mass (m =62 kg/m), tension in the cable 
(H = 2 × 106 N), axial stiffness (EA*= 1.57× 109 N), the damping 
ratio in the cable (ξ = 0.1%). The bridge deck parameters are: the 
span (


 = 180 m), the mass (mb = 104 kg/m), the flexural rigidity 

(EI= 3.29×1010 N.m2), the damping ratio in the bridge deck is (ξ 
b = 0.01), the speed of the moving load is ( v  = 27 m/sec). The 
active control force u(t) is applied at mid-span, ( =x 0.5  ) and at 
( *5.0s = ). The stiffness of the vertical hangers is assumed to be 
constant with (ki =107 N/m), and the spacing between the hangers 
is (10 meter) on the horizontal axis (i.e. x1 = 0, x2 = 10, x3 = 20, . . . to 
xN = 180 m). From these data, the natural frequencies for the cable 
and the bridge deck are determined from the expressions defined 
in the Appendix to be ( wω ) = ( vω ) = 2.8 r. p. s. and ( bω  ) = 0.552 r. 
p. s. The parameters defined in the appendix can then be calculated 
to obtain the following constants: 

d1 = 16163, d2 = -16197, c1 = 1.2196, c2 = 0.41, c3 = 0.578, c4 = 
0.565, c5 = 0.8015, c6 = 0.5634, c7 = 0.55, c8 = - 111.11, c9 =111.34, c10 
= -1.11×10-6 and c11 = 0.00016129. 

For a moving load of (P = 9×104 N), the value of (P* = 0.10) and 
(Ω = 0.4712 r. p. s.). 

The Uncontrolled Response

The uncontrolled response of the nonlinear system can be 
obtained from the numerical integration of equations (36) to (38) 
using the software (MATLAB) and considering the control force u(t) 
= 0 and assuming any assumed initial conditions. The uncontrolled 
response of the linear system model is obtained by solving equation 
(36) to (38) with neglecting the nonlinear terms in Fw(t) and Fv (t) 
and considering u(t) = 0 for the same assumed initial conditions. 
The initial condition for the displacement was considered equals 
(0.01 m) and for the velocity equals (0.01 m/sec). The response of 
the linear system model at the mid-span was found to be close from 
the response of the nonlinear system model, as shown in Figures 3 
and 4. 

The following performance indices were used to compare, the 
displacement responses of W(s, t), V(s, t) and Z(x, t) at the mid-span 
for the linear and nonlinear systems models:

 ∫=
T

0

2*
W dt )]t,5.0(W[J   	                                		             (43)	

	                

∫=
T

0

2*
V dt )]t,5.0(V[J                                                                               (44)

∫=
T

0

2
Z dt )]t,5.0( Z[J                                                                             (45)

The response indices for the uncontrolled linear system 
model are obtained for (T = 200 seconds) and compared with the 
response indices of the uncontrolled nonlinear system model as 
shown in Table 1. It is clear that the responses of the linear and 
nonlinear models are close to each other. One can then design the 
active control force for the linear system model and apply it to the 
nonlinear system model in order to obtain the controlled response 
of the nonlinear system model [24-28] (Table1).
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Figure 3: Uncontrolled Response of the Nonlinear System Model.
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Figure 4: Uncontrolled Response of the Linear System Model.

Table 1:  Comparison of the Uncontrolled Response Indices for Time Period T = 200 seconds.

Model JW JV JZ

Linear System Model 0.00679 74.644 74.574

Nonlinear System Model 0.00671 71.424 71.495
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The controlled response using the proposed control mechanism (1)

Figure 5: Controlled Response of the Nonlinear System Model using the control Mechanism (1).

One may consider the control objective is to select a value for 
the gain factor (α) in equation (42) to make the damping ratio in the 
bridge deck equal certain value. For a damping ratio 90% and using 
equation (38), one determines the gain factor (α) to be (α = 109). 

Applying this control law to equations (36) to (38), the controlled 
responses of the nonlinear system model are obtained as shown in 
Figure 5. The increase in the cable vertical response, V(s, t), is due to 
the action of the active control force u(t) on the cable. Table 2 shows 
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the comparison between the response indices of the uncontrolled 
nonlinear system and the controlled nonlinear system using the 
control mechanism (1). The response index for the bridge deck (JZ) 
was decreased by more than 80%, but the vertical response index 
for the cable (JV) has increased by more than 275%. The active 
control force response for the control mechanism (1) is shown in 

Figure 6. In order to have favorable controlled responses for both 
the bridge deck and the suspended cable, the control mechanism 
(2) of Figure 7 is considered. In this mechanism, the active control 
force is applied on the bridge deck alone and the coefficient (c11) 
becomes (c11= 0) and is taken out of equations (37) and (40) 
(Figures 5,6,7) (Tables 2,3). 

Figure 6: Response of the Control Force when using the Control Mechanism (1).

Figure 7: Suspension bridge Model with the Control Mechanism (2).

Table 2: Comparison of the Controlled and Uncontrolled Response Indices for Time Period T = 200 seconds and using the Control Mechanism (1).

Model JW JV JZ JU

Uncontrolled Nonlinear  Model 0.00671 71.424 71.495 0

Controlled Nonlinear Model (1) 0.00655 268.1 11.78 2.55×1018

Table 3: Comparison of the Controlled and Uncontrolled Response Indices for Time Period T = 200 seconds and using the Control Mechanism (2).

Model JW JV JZ JU

Uncontrolled Nonlinear  Model 0.00671 71.424 71.495 0

Controlled Nonlinear Model (2) 0.00677 10.414 10.424 7.64×1011

The control law for the control force u (t), is given by equation 
(42), where the gain factor (α = 0.58×106) is determined from 
equation (18) to have a damping ratio in the bridge deck equal 
(50%). The responses of the controlled nonlinear system model 
are obtained as shown in Figure 8 and the control force response 
is obtained as shown in Figure 9. Table 3 shows the comparison 
of the response indices, when using the control mechanism (2), 
with the uncontrolled nonlinear system response. It is shown that 

the response index for the bridge deck was decreased by more 
than 85% and the vertical response index for the suspended cable 
has decreased by more than 85% as compared with the response 
indices of the uncontrolled nonlinear response. To compare the 
magnitude of active control forces of the two proposed control 
mechanisms, the following control force index is used:

∫=
T

0

2
u dt )]t(u[J                                                                                    (46)
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Figure 8: Controlled Response of the Nonlinear System Model using the Control Mechanism (2).

Figure 9: Response of the Control Force when using the Control Mechanism (2).
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Table 2 shows that the active control force index for using the 
control mechanism (1) is (Ju=2.55×1018) and Table 3 shows the 
control force index when using the control mechanism (2) is (Ju = 
7.64×1011). The consumption of the control energy for using the 
control mechanism (2) is too much smaller than that of using the 
control mechanism (1) (Figures 8,9). 

The vertical responses of the cable and the bridge deck are 
shown in Figures 5 and 6 when using the control mechanism 
(1). The vertical responses of the cable and the bridge deck are 
shown in Figures 8 and 9 when using the control mechanism (2). 
The comparison indicates that the control mechanism (2) is more 
efficient than the control mechanism (1) and consumes smaller 
control energy. This indicates that the feasibility of the active 
control in the civil engineering structures depends mainly on the 
type of the control mechanism, not only on the design method of 
the control forces.

Summary and Conclusion
To control the suspension bridges nonlinear vibrations due 

to wind and vertical moving load, two control mechanisms were 
proposed. The control mechanism (1) consists of a rigid vertical 
link or a vertical pre-tensioned cable connecting the bridge deck 
with the suspended cable by an electro-hydraulic actuator at mid-
span. The control mechanism (2) consists of pre-tensioned cables 
and a rigid link at mid-span in the form of a king-post truss. The 
active control force is generated by an electro-hydraulic actuator, 
which is installed between the rigid link and the bridge deck. The 
design of the controller is based on the feedback of the velocity 
measurements taken at the control force location. The design of 
the active control force is first made on a linearized system model 
before applying it on the actual nonlinear system model. The gain 
factor parameter (α) is determined according to specifying a certain 
damping ratio for the controlled linear model. The design method 
for the active control force was used for the two proposed control 
mechanisms. It has been shown that the control mechanism (2) 
in which the reactions of the control force are supported by fixed 
platforms is very efficient as compared with the control mechanism 
(1) in which the reaction of the control force is supported by the 
suspended cables. This indicates that the feasibility of the active 
control in the civil engineering structures depends mainly on the 
type of the control mechanism, not only on the design method for 
the active control forces. 
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