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Introduction

Anemia defined by hemoglobin concentrations ([Hb]) is used 
predominantly as the main threshold for transfusions of packed 
red blood cells (RBC) in clinical practice. However, ongoing 
controversy exists regarding [Hb] as a threshold since Hb is only a 
rough estimate of oxygen delivery. Despite the majority of existing 
guidelines do not even list a hemoglobin trigger as an indication 
for transfusion (See Table 3 in [1]), clinical practice is determined 
more by the numbers derived from transfusion strategy trials- 
against the general knowledge that [Hb] alone is inadequate 
for determining a trigger for RBC transfusion. This is due to the 
also well-known fact that as a concentration value, Hb g/dL, is 
influenced by volume status that can lead to hemoconcentration or 
hemodilution. Moreover, other patient variables such as assessment 
of patient volume status, symptoms, vital signs, bleeding, and co-
morbidities are listed as supplementary decision factors. However, 
there is no gold standard for the measurement and interpretation 
of any of the listed factors nor is there convincing evidence to what 
extend a comorbidity is of relevance. This might be the reason that 
clinical practice of transfusion management worldwide mainly is 
oriented on that [Hb] number resulting in inappropriate dosing, i.e. 
overtransfusion [2-6] in 20% to 50% and probably in underdosing  
[7] as well.

 
Even in clinical trials for “transfusion strategies”, with a few 
exceptions (i.e. the FOCUS trial, [8]), practicability succeeds over 
precision. Protocol derived transfusion frequently is indicated by 
a [Hb] number in the absence of a variable that is easy and quickly 
at hand.  Thus “liberal” strategy is aiming at a[Hb] of 7 to 10g/dl as 
opposed to “restrictive” in a corridor of 6 to 9g/dl, notwithstanding 
that [Hb] solely is not a reliable target as a solid base for a clinical 
strategy.

In this article we raise the question, if this is an acceptable 
procedure or if we should intensify our search for a more precise 
basis for the decision to transfuse or not. We will demonstrate that 
[Hb] as a sole treatment decision is unacceptable.

Reasons why [Hb] should not be used alone: 
Intravascular volume and relative anemia

Imprecision of [Hb] due to fluid imbalance

As a concentration, [Hb] is dependent on intravascular 
volume. Unfortunately, there is no gold standard for assessment of 
intravascular volume. This is a major problem for the transfusion 
indication since intravascular volume is deviating exactly in 
transfusion relevant situations- perioperatively and during critical 
illness. Among others, the reasons are dehydration, fasting, oliguria, 
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hypotension, inadequate fluid therapy, acute kidney injury [9], fluid 
shifts to the interstitium in the size of 34.1  11.1 mL/min [10] and 
cardiovascular malfunctions [11].

The size of the error provoked by unmonitored fluid therapy 
is estimated by a [Hb] decrease of 1 g/dl in adults by 500 ml of 
fluid. In healthy volunteers,  fluid intake [12] orally or infusion of 
crystalloid solutions resulted in a reduced [Hb] of > 0.5 g/dL for 
at least 7h [13]. Existing calculations regarding the size of error 
range from fluid loading induced [Hb] variations can span from 8% 
[14] to 30% [15] depending on the patient and/or the underlying 
disease. To conclude, without a reliable method of measurement 
of intravascular volume, our present modes of calculation and or 
estimation regarding perioperative volume effects are insufficient 
[16] and may have  a detrimental outcome [17]. 

Although various monitoring methods of i.e. urine output, HR, 
BP (sometime orthostatically measured), CVP, respiratory variation 
in BP by invasive or non-invasive measures, exist, they seem not to 
be able to correct the deviations of intravascular volume. Due to 
this “relative anemia” [18], over transfusion results [19], especially 
during the postoperative period and massive hemorrhage [20-22]. 
In contrast, treatment with furosemide can reduce the likelihood 
for RBC transfusions (OR 0.196; p = 0.005) with a reduction of the 
rate of RBC transfusion by half (62.5% to 31.3%; p = 0.009) [23].

Imprecision of [Hb] due to physiological effects

Various interindividual facts such as age, gender, race, sodium 
content and hydration status, smoking and physical activity affect 
plasma volume and hemoglobin content. During blood loss, the 
volumes of plasma and hemoglobin do not change in parallel 
[24]. Although female might have a higher tolerance for anemia 
for unknown reason [25], normal female [Hb] is lower due to sex 
hormone dependent effects on erythropoiesis in men and women 
[26].  However, the relative loss of blood is greater in female patients 
[27] since they tend to have smaller body surface area and a smaller 
total blood volume [28]. Age increases the prevalence of anemia in 
elderly men and women (6.1% and 10.5%) due to compromised 
hematopoietic reserve in the presence of hematopoietic stress 
induced by an underlying disorder (e.g. infections, surgery, trauma) 
[29]. With the age induced chronic organ dysfunction of kidney, 
liver and heart, the intravascular volume increases resulting in 
an age dependent “established anemia of the elderly”. Without a 
reliable measurement of intravascular volume, this anemia hardly 
is to distinguish from true anemia due to chronic inflammation, 
chronic organ failure, chronic gastrointestinal blood loss and 
nutrient-deficiencies. However, the elderly population are common 
recipients of transfusions: According to the REDSIII-trial, transfusion 
incidence has a bimodal distribution with incidence peaks at 2 to 5 
and 70 to 89 years, especially in subjects with concomitant organ 
dysfunctions such as heart failure, kidney and liver dysfunction 
[30] and iatrogenic therapy with diuretics or steroids. In addition 
to these effects on the imbalance of hemoglobin content and plasma 
volume, circadian changes of cortisol and somatotropin release and 
diuresis [31] occur with time of day and changes [Hb] within the 
same subject by 0.3-0.5 g/dl [32].

Imprecision of [Hb] due to preanalytical error

Body posture at the time of blood probe withdrawal shifts 
fluids by gravitation to the lower parts of the body. Thereby, blood 
viscosity and plasma content are altered by extravasation of fluid 
from the intravascular compartment with concentration of blood 
cells in the sitting or upright position. Since usually the venous or 
arterial line for probe sampling is located on the upper half of the 
body, a decrease in comparison to the mean systemic [Hb] by up to 
0.3 or 0.7 g/dl occurs [33,34].  Ear lobe probes have been shown 
to overestimate [Hb] by as much as 2g/dl. Fingertip probes are 
poorly reproducible when different fingers of the same subject 
are analysed. Capillary blood is associated with poor sensitivity 
(41.3% for females and 18.6% for males) for anemia detection [35]. 
Further pre-analytical errors are incorrect filling, admixture with 
skin disinfection fluid or tissue fluid, air bubbles, moisture, storage 
or delayed measurement.

Is the measurement method of hemoglobin precise?

As recently described [36], accuracy and precision of common 
[Hb]- analysers is <6%, the reproducibility for the same probe < 
4% [37]. Current analysers (Sysmex, ABX) are deviating by 1.5 to 
3.1% (0.3-0.8 g/dl) [38] as opposed to photometers with multiple 
wave lengths (by 0.1g/dl) (i.e. ABL series from Radiometer or 
Siemens by 0.2-0.3g/dl. Point-of-care methodology (Hemocue or 
HemoControl [EKF Diagnostics, GmbH, Barleben, Germany] and 
non-invasive spectrophotometry (NIS) techniques (occlusion 
spectroscopy (NBM 200; Or Sense Co., Petah-Tikya, Israel), multi-
wavelength pulse CO-oximetry (Pronto-7; Masimo Co, Irvine, CA, 
USA), transcutaneous reflection spectroscopy (HemoSpect; MBR 
Optical Systems GmbH & Co. Wuppertal, Germany) are associated 
with an analytical error in the range of 0,1 to 0,5g/dl, in one study 
up to 5.9g/dl (36). According to the manufacturer’s information, 
the following devices are associated with those maximal errors:  
Pronto 7®, Masimo (Irvine, California, USA)  1.0 g/dl (1.08-0.82; 
max. 1.5 g/dl, the higher [Hb] rises); Radical 7®, Masimo (Irvine, 
California, USA)-1.0 g/dl (max. 1.5g/dl, the higher [Hb] rises); NBM 
200®, OrSense (Petah-Tikva, Israel)-0.86 g/dl (CI-1.59 to +1.78); 
[Hb]201+®,  Hemocue (Angelholm, Sweden)-<0.5 g/dl [39-41]. 
In conclusion, the clinical decision making for or against packed 
red cell transfusion requires not only the [Hb] values but also the 
method used and the analytical error.   

Is the problem clinically relevant?

Since in many critical ill and transfusion dependent subjects 
neither intravascular volume, co-morbidities and medications 
nor the size of measurement inaccuracy is known, [Hb] should no 
longer be used as a sole transfusion trigger. That is why most of 
existing guidelines do not list a hemoglobin trigger as an indication 
for transfusion. With convincing evidence, guidelines request 
to transfuse as restrictive as possible. However, in the absence 
of ischemic symptoms, [Hb] is the only easily accessible and 
established and quantifiable variable for the estimation of potential 
ischemia risk to walk the narrow path between being too liberal 
and provocation ischemic tissue damage.
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The lack of a gold standard measurement of intravascular 
volume together with the nonexistence of an easy-to-use non-
invasive measurement of tissue oxygenation and perfusion, 
requires trust in the clinical experience of physicians.

However, the question remains how misleading clinical 
orientation on [Hb] could be. Can the patient brought to severe 
organ damage if all information about a patient’s comorbidities, 
intravascular volume, organ perfusion, and active bleeding is 
inexistent and [Hb] remains the only value to guide consideration of 
transfusion? In an attempt to quantify the maximum error, the sum 
of all possible error’s accounts to max. 11.8 g/dl (Table 1).  Although 
this maximal size of false estimation surprises, the possibility is 
minor that all influences unidirectionally are erroneous. Thus, the 
uncertainty for the clinician remains as long as a size of under- or 
overestimation of the [Hb] is unknown.

Clinical relevance is given if treatment decisions depend on 
thresholds. For transfusion, liberal and restrictive transfusion 
triggers from controlled trials are given as [Hb] thresholds with a 
recommendation to act. However, the accuracy of a test depends 
on the ability of [Hb] to separate the group being tested into those 
with and those without the risk of ischemia, and it is quantified by 
the area under the ROC curve [42]. While this approach has been 
used for years to assess the accuracy of diagnostic tools [43], its 
main limitation is that it transforms the biological nature of a 
continuous variable into an artificially dichotomous (i.e., “transfuse 
or not”) statistical index that does not always accurately reflect 
the decision-making process applied to clinical management. The 
smaller, however, the separation area is chosen, i.e. the liberal 
and restrictive transfusion threshold, the predictive value of the 
estimation of [Hb] alone gets to what is done by flipping a coin. 
Applied to some of the controlled trials of transfusion strategy, the 
shrinkage of a predefined per protocol distinction between liberal 
and restrictive groups demonstrates the problem if only Hb is 
used for group division . The area of distance between liberal and 
restrictive transfusion is reduced (Fig 1a) to an even smaller area of 
separation when a small error size is added to the intention to treat 
transfusion thresholds (Fig 1b). Thus, for low predictable value, the 
decision to transfuse cannot be based on [Hb] alone. It generally 
should be combined by additional information.

The difficult search for a better specific decision-making 
tool

Due to the factors mentioned above, there is growing 
recognition among researchers that [Hb] as a single parameter for 
RBC transfusions is inefficient at best [44]. The use of a common 
parameter such as [Hb] as an investigational transfusion threshold 
offers the advantage of ease of use and is usual in daily practice. 
However, it bears a risk when the dependence on intravascular 
volume and measurement accuracy is not understood. One of several 
possibilities is the continuous tracking of the [Hb] changes during 
a procedure or a hospital stay. This method named “delta [Hb]” 
intended originally to demonstrate a greater tolerance capacity 
induced by chronic anemia. Several studies could demonstrate that 
the tolerance capacity for acute anemia inversely is related to the 

baseline [Hb] [45].  Larger delta [Hb] values were strongly associated 
with risk of perioperative complication [46,47], independent of the 
nadir [Hb].  For accuracy of this method, normovolemia is required 
since acute blood loss without volume substitution is not indicated 
by a greater delta [Hb] (see also Recommendation 10 of the actual 
resuscitation guideline in trauma [48]).

Thus, the monitoring of intravascular volume could 
avoid interpretation errors of [Hb]. An actual feasibility trial 
demonstrated that [Hb] can be used after normovolemia is re-
established in all subjects [49]. In a small Danish study in vascular 
surgery patients, intraoperative fluid therapy was guided by 
cardiac stroke volume measurement. Although not designed for an 
outcome but a feasibility trial, liberal red cell transfusion at an [Hb] 
of almost 10g/dl lead to better outcome than restrictive. Although 
measurement of normovolemia is elaborate and not applicable 
for all patients, it changes outcome in high-risk subjects. The use 
of blood volume monitoring reduces mortality by avoidance of 
TACO or volume overload as shown in a recent study [50]. However, 
as recently reviewed in Critical Care Guidelines for Septic and 
Cardiogenic Shock [51], methodology issues still are existent. 
Dynamic functional hemodynamic markers such as pulse pressure 
analysis or stroke volume variation [52] during positive pressure 
breathing and mean flow changes with passive leg raising (PLR) 
are highly predictive of volume responsiveness [53]. Continuous 
volume monitoring is superior to intermittent measurements of 
intravascular volume. Hypervolemia (11%), anemia (17%), and 
mortality (16%) by intermittent volume monitoring can be reduced 
by continuous techniques [54]. Non-invasive methods allow 
continuous monitoring of both stroke volume and [Hb] but are 
less accurate.  The use of plethysmography indices (Sp [Hb]) and 
stroke volume variability (SVV) improved outcome by a reduction 
of mortality by 53%, complications by 14% and of length of stay by 
30% in high-risk abdominal surgery [55,56]. Since the use of these 
monitoring techniques in high-risk patients is indisputable [57], it 
should be applied also for transfusion recipients.

Future transfusion guidance might derive from alternate 
methods. Tissue and organ viability depend on a variety of factors 
that are not limited to perfusion pressure and oxygen content. For 
example, investigators emphasized the importance of vascular tone 
modulation by blood rheology, autoregulation, and blood viscosity 
[58-62]. Other factors that might be involved include vessel 
integrity and the glycocalyx. Hence, measured tissue perfusion 
might be a better indicator of therapy impact. A few trials have 
used direct measurement of tissue oxygenation and hemodynamic 
functionality of red cells by near infrared spectrometry (NIRS)  
[49,63,64] alone or together with fractional tissue oxygen extraction 
(FTOE) [65,66] for skin, muscle, intestinal, and brain vasculature. 
However, the penetration depth of non-invasive NIRS techniques is 
limited. Furthermore, the application at the wrong anatomical site 
is a basic potential error of this methodology.

Conclusion

[Hb] should no longer be used as a sole transfusion trigger. 
Although it is well recognized that the potential for error and other 
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limitations of [Hb] as a single measurement is unacceptable, no 
alternative or guideline recommendation is present so far. [Hb] is 
dependent on correct sampling and accurate measurement. In the 
absence of ischemic symptoms, its use for a transfusion decision 
requires additional information about intravascular volume, 

base line [Hb], perfusion pressure and oxygen consumption at 
tissue levels. From these sources of information, to date, only 
a combination between continuous stroke volume and [Hb] 
monitoring allows reliable decision making in transfusion practice.

Figure 1a: A Per Protocol Transfusion Triggers Liberal vs. Restrictive in RCTs.
Chosen were RCTs that gave both the intended triggers as well as the actual realized mean hemoglobin level per group.
The mean difference amounts 2.3  0.76 g/dl. Red line and squares- liberal. Green line and diamonds- restrictive.

Figure 1b: Realized Transfusion Triggers corrected for Analytical and Methodological Errors.
A mean error of 0.5 g/dl was added to the [Hb] actually achieved (Hb targets).
from the same trials (Fig. 2b). The triggers interfere with each other.
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Table 1: Error sizes with the use of hemoglobin concentration as transfusion trigger.

Category Mechanism Plasma Volume Estimated size (g/dl) in [Hb] 
over- or underestimation

Deviations from normovolemia 
by changes in plasma volumes

Dehydration due to preoperative fasting, diarrhea from 
enteral feeding and laxatives, drainage losses, etc. ↓ +    0.5 to 1.5

 Oliguria during hypotension and acute kidney injury ↑ -    0.5 to 1.0

 Volume resuscitation ↑ -    1.0 to 2.5

 Cardiac malfunction to failure ↑ -    1.0 to 2.5

Physiological inter-individual 
variation

Gender-associated relationship of blood volume to erythro-
cyte mass (in case of acute blood loss and volume replace-

ment)

Male  ↑  
Female ↓ ±   1.0 to 1.3

Intra-individual variations Circadian hormones, diuretic therapy, chronic hypertension ↑↓ ±   0.3-0.5 g/dl

 Body posture and blood vessel for testing ↑↓ ±   0.3 or 0.7  g/dl

[Hb] measurement inaccuracy Analyzers and photometers  ±   0.1  to  0.3  g/dl

 POCT and co-oximeters  ±   0.1 to 1.5  g/dl

 Preanalytical error, source of blood sample  ±   0.5 to 2.0  g/dl

Inaccuracy of hemoglobin concentration measurements from various sources is listed. POCT-Point of Care Testing.
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