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Abstract
Xylazine, an α2-adrenergic agonist traditionally used as a veterinary sedative, has been introduced into clinics to treat pain. Despite its aesthetic 

effects, some studies suggest that xylazine may interact with endogenous targets to promote analgesia, such as the cannabinoid and opioid systems 
or even through HCN channel hyperpolarization; therefore, this study aimed to evaluate the peripheral and central roles of Ca2+-activated Cl- channels 
(CaCC) in xylazine-induced antinociception. Male Wistar rats were used to assess the nociceptive threshold with the mechanical paw pressure test. 
PGE2 (2 µg) was injected into the right hind paw as a hyperalgesia stimulus. Niflumic acid, a selective CaCC blocker, was injected into the hind paw 
(32 µg/paw) or via the intrathecal route (2, 4, and 8 µg). Xylazine exhibited peak antinociceptive activity 5 minutes after intrathecal injection (10 
µg) and also peripherally after hind paw injection (100 µg/paw). Niflumic acid reversed the xylazine-induced analgesic effect when injected into 
the spinal cord, but not in the hind paw. In conclusion, xylazine may induce activation of Ca2+-activated Cl- channels as part of its spinal analgesic 
mechanism in an acute pain model.
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Abbreviations: °C - celcius degrees; µl - microliter; AM - Ante Meridiem (before noon); CaCC - Ca2+-activated Cl- channels; DMSO - dimethyl 
sulfoxide; DRG - dorsal root ganglia; g - grams; HCN - Hyperpolarization-activated Cyclic Nucleotide-gated channels; Kg - Kilograms; L - liter; mg – 
miligrams; PGE2 - prostaglandin E2; PM - Post Meridiem (after noon); USA - United State of America; μg - micrograms; μmol - micromole

Introduction
N-(2,6-dimethylphenyl)-5,6-dihydro-4H-1,3-thiazin-2-amine, 

commonly known as xylazine, is a drug first synthesized by Bay-
er in 1962, which initially promoted its use as an antihypertensive 
agent [1]. Later, its anesthetic properties were identified, leading to  

 
its widespread use in veterinary medicine as a sedative, antinoci-
ceptive, and muscle relaxant [2]. However, due to its significant hy-
potensive effects and central nervous system depression, it was not 
approved for human use [3]. It was first described that the effects of 
xylazine were mainly mediated through α2-adrenoceptor agonism 
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[4]. Since then, several additional mechanisms of action have been 
reported. Specifically, in the field of analgesia, xylazine may induce 
antinociception through multiple pathways, including activation of 
postsynaptic α2-adrenoceptors [5], modulation of the endogenous 
opioid system [6], involvement of the endocannabinoid system [7], 
and inhibition of hyperpolarization-activated cyclic nucleotide-gat-
ed ion channel (HCN channel) currents [8].

Similar to HCN channels, Ca2+-activated Cl- channels (CaCCs) are 
present in excitable cells like smooth muscle and various neurons, 
including those in the dorsal root ganglion (DRG), spinal cord, and 
autonomic system [9]. When these channels open, they cause mem-
brane hyperpolarization, which depends on the chloride equilibri-
um potential and the resting membrane potential. These processes 
help produce an antinociceptive effect in afferent neurons through 
a hyperpolarization mechanism [10]. Based on the data presented, 
this study aims to determine whether peripheral and intrathecal in-
jections of xylazine produce antinociception in an acute pain model 
induced by PGE2 and if CaCCs are involved in this process.

Material and Methods
Animals

Male Wistar rats, weighing between 170 and 200 g and ob-
tained from the Central Animal Facility of the Federal University of 
Minas Gerais in Minas Gerais, Brazil, were used in the experiments. 
The animals were housed in plastic cages with bedding made from 
forage shavings, with free access to water and food, and kept in the 
testing room for 2 days prior to the experiments for habituation. 
They were maintained in a temperature-controlled environment 
(24°C ± 2°C) with a 12-hour light/dark cycle (7:00 AM to 7:00 PM). 
All tests were conducted during the light phase (8:00 AM to 5:00 
PM). All animal procedures and protocols were approved by the 
Ethics Committee on Animal Experimentation of the Federal Uni-
versity of Minas Gerais (protocol number 191/2023) and complied 
with the guidelines for assessing experimental pain in animals [11].

Algesimetric method

Hyperalgesia was induced by injecting prostaglandin E2 (PGE2; 
2 μg) subcutaneously into the plantar surface of the hind paw. The 
mechanical nociceptive threshold was measured by assessing the 
response to a paw pressure test, as described by Randall and Selitto 
(1957) [12]. An analgesimeter (Ugo-Basile, Varese, Italy) was used 
to apply a steadily increasing force to the rat’s paw. The weight in 
grams (g) needed to trigger a paw withdrawal response was record-
ed as the nociceptive threshold. A cut-off value of 300 g was set to 
reduce the risk of paw injury. The nociceptive threshold, expressed 
in grams, was calculated as the average of three consecutive trials. 
The peak effect after PGE2 injection was considered to occur at 180 
minutes (the 3rd hour), at which point Xylazine was administered. 
For time-response experiments, measurements were taken at zero 
minutes and at 185, 190, 200, and 210 minutes. In delta (Δ) exper-
iments, measurements were recorded at zero minutes and during 
the 3rd hour, with Δ calculated as the difference between these val-
ues. An n=4 was used for all experimental groups tested.

Experimental design

In all experiments, PGE2 was injected into the subcutaneous 
plantar surface of the right hind paw in a final volume of 100 µl. For 
intrathecal administration, rats were shaved in the dorsal lumbar 
region. After sedation with isoflurane (3.5 %) (CRISTÁLIA®, Bra-
zil), xylazine and niflumic acid were injected in a volume of 20 µl 
using a 13 x 0,3 mm needle attached to a hypodermic syringe (BD®, 
Brazil) directly into the subarachnoid space between the sixth and 
seventh lumbar vertebrae [13]. This volume remains constant for 
the drugs and their respective vehicles. An animal group treated 
with 4 % lidocaine (20 µl) was used to confirm injection effica-
cy, showing temporary paralysis of the posterior limbs (data not 
shown). Prostaglandin E2 (PGE2, Sigma, USA) was dissolved in 2% 
ethanol. Xylazine (10% Syntec, BRA) was dissolved in physiological 
saline, and Niflumic acid (Sigma, USA) was dissolved in 10% DMSO 
in saline.

Statistical analyses

All results were analyzed using GraphPad Prism 10.1 and are 
shown as mean ± SEM. Statistical analysis was conducted using 
one-way analysis of variance (ANOVA) followed by Bonferroni’s 
post hoc test. A difference was considered significant when P < 0.01.

Results
When Xylazine was administered intrathecally (10 µg), it ful-

ly reversed PGE2-induced hyperalgesia, bringing the nociceptive 
threshold back to baseline (Figure 1A). When injected into the hind 
paw, xylazine produced antinociception at a dose of 100 µg (Figure 
1B). The maximum antinociceptive effect was observed 5 minutes 
after injection. Intrathecal administration of niflumic acid (2, 4, and 
8 µg), a CaCC blocker, dose-dependently reduced xylazine-mediated 
antinociception (10 µg), with the 8-µg dose completely reversing 
the effect (Figure 1A). However, when injected into the hind paw, 
niflumic acid (32 µg/paw) did not reverse xylazine-induced anal-
gesia (100 µg).  Niflumic acid alone did not alter the nociceptive 
threshold in animals injected with PGE₂ or vehicle in both routes of 
administration (Figure 1).

Discussion
Green, 1975 [14], described one of the earliest reports on xyla-

zine analgesia, highlighting the challenges in measuring antinoci-
ception due to sedative effects following intramuscular injection. 
The author subjectively noted that a dose of 12 mg/Kg produced 
“good” analgesia, although it was insufficient and suitable only for 
superficial procedures in mice used for animal experiments. The 
subjectivity of Green’s results underscores the importance of accu-
rate and controlled methods of algesimetry in animal research. The 
development of tests such as the paw pressure test [12], tail flick 
test [15], and von Frey test has provided researchers with reliable 
tools to characterize central and peripheral algesimetry [16].

Using the paw pressure test, our group previously demonstrat-
ed the effectiveness of xylazine in producing analgesia after hind 
paw injection, administered 5 minutes before the peak action of 
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PGE2, based on the dose and methodology used in this study [17]. In 
that research, the 100 μg dose completely eliminated pain respons-
es when injected into the right hind paw of rats. Both the effect and 
the efficacy of the antinociceptive response against the PGE2 model 
were confirmed, without systemic effects. Our group has also exam-

ined the peripheral mechanisms involved in that xylazine-induced 
analgesia. We have shown its reliance on the endocannabinoid sys-
tem [18], endogenous opioid pathways [19], and the l-arginine/ni-
tric oxide/cyclic GMP/KATP pathway [17, 20].

Figure 1: Effect of intrathecal (A) or Intraplantar (B) administration of Ca2+-activated Cl- channels (CaCC) blocker (niflumic acid) on xylazine-
induced antinociception: Niflumic acid was injected via intrathecal (2, 4 and 8 µg) or intraplantar (32 µg) 2h:45 min after 2 µg PGE2 administration 
in the right hind paw. Xylazine was injected via intrathecal (10 µg) or intraplantar (100 µg) 5 minutes before the third hour of PGE2 injection 
according to the peak of hyperalgesia induced. * Indicates a significant difference from the (PGE2 + Sal + DMSO 10%) injected group. # 
indicates a significant difference when compared with (PGE2 + Xylazine + DMSO 10%). p<0.01, One-way ANOVA followed by the Bonferroni 
post-test.

The central administration of xylazine has also been shown in 
the literature to produce dose-dependent antinociceptive effects at 
doses of 5, 10, and 20 μg via the intracerebroventricular route [6]. 
Goodchild et al. (1996) [21] reported that, when injected intrathe-
cally, xylazine depends on the adrenergic system for its antinoci-
ceptive effect; however, neither opioid nor Gabaergic propriospinal 
neurons are involved in mediating this effect. Several studies have 
shown that opening ATP-sensitive K+ (KATP) channels is the final 
step in the peripheral antinociceptive mechanism of certain drugs, 
leading to neuronal membrane hyperpolarization [22-24]. Howev-
er, hyperpolarization, which may block pain signal transmission, 
can also be mediated by hyperpolarization-activated cyclic nucle-
otide-gated (HCN) channels or Ca2+-activated Cl- (CaCC) channels 
[25].

It was demonstrated that thresholds for both mechanical and 
thermal nociceptive tests increased in a dose-dependent manner 
following xylazine administration (30 mg/kg and 40 mg/kg) in 
both HCN1+/+ and HCN1-/- mice [8]. However, in HCN1+/+ mice, 
these doses resulted in significantly higher thresholds compared 
to HCN1-/- mice. Whole-cell patch clamp recordings showed that 
xylazine inhibited HCN1 and HCN2 ion channel currents, causing a 
dose-dependent reduction of hyperpolarization-activated currents 
by xylazine (12.5-100 μmol/L). Similar to HCN channels, Ca2+-ac-
tivated Cl- channels (CaCCs) may also contribute to membrane 
hyperpolarization, and their role in the peripheral antinociceptive 
effects of opioids and cannabinoids has been reported [26, 27]. 
However, their part in xylazine-induced antinociception has not yet 
been studied.
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In our study, intrathecal injection of niflumic acid (2, 4, and 8 
μg), a selective CaCC blocker, dose-dependently reversed the an-
algesic effect of xylazine when given 5 minutes before its admin-
istration. In contrast, injecting niflumic acid (32 μg) into the hind 
paw did not affect xylazine-induced analgesia. This dose was the 
same as that which fully antagonized the peripheral antinociceptive 
effect of δ-opioid receptor activation [26]. These findings indicate 
that Ca2+-activated Cl- channels contribute to the central, but not 
peripheral, part of xylazine-induced antinociception through a hy-
perpolarization-dependent mechanism. 
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