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Abstract
Heart Failure (HF) remains a leading cause of morbidity, mortality, and healthcare utilization worldwide, driven by population ageing, 

multimorbidity, and improved survival after acute cardiovascular events. Although Left Ventricular Ejection Fraction (LVEF) remains central to 
classification and therapeutic decision-making, it incompletely captures the biological and clinical heterogeneity of HF-particularly in heart failure 
with preserved and mildly reduced ejection fraction. Traditional prognostic markers such as natriuretic peptides, renal function, sodium, and anaemia 
underpin established risk scores but may underestimate vulnerability in older, frail, and socially disadvantaged populations. Emerging markers of 
biological reserve, systemic inflammation, and nutritional vulnerability-including clinical frailty scales, temporal muscle thickness, neutrophil-to-
lymphocyte ratio, and nutritional indices-have gained increasing attention as accessible, low-cost predictors with potential incremental prognostic 
value.

In parallel, Artificial Intelligence (AI) and machine-learning approaches offer opportunities to integrate multidimensional clinical data, 
identify phenotypic clusters, and improve prediction of mortality and readmission. However, their clinical adoption requires methodological rigor, 
transparency, interpretability, and validation in real-world settings. This narrative state-of-the-art review synthesizes contemporary evidence across 
HF phenotypes, classical and emerging prognostic markers, multidisciplinary HF care models, and explainable AI-enabled prognostication. We 
highlight key knowledge gaps and discuss clinical and organizational implications for implementing integrated, parsimonious, and interpretable risk 
stratification tools within multidisciplinary HF units. Together, these dimensions support a translational pathway from multimodal data integration 
to deployable prognostic tools capable of informing individualized care and optimizing resource allocation in real-world HF management.
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Introduction

Heart Failure (HF) is a complex clinical syndrome and a major 
public health challenge, associated with high prevalence, recurrent 
hospitalizations, and persistent mortality despite major therapeutic 
advances. Its burden continues to rise globally due to population 
ageing, improved survival after acute cardiovascular events, and 
increasing multimorbidity. Prognostic stratification is therefore 
central to HF management, guiding therapeutic intensity, follow-
up strategies, and allocation of healthcare resources, particularly 
during vulnerable transition periods after hospitalization. 
Although classification based on Left Ventricular Ejection Fraction 
(LVEF) remains clinically useful and therapeutically actionable, it 
only partially reflects the underlying pathophysiology and fails to 
explain substantial within-phenotype heterogeneity. This limitation 
is particularly evident in HF with preserved and mildly reduced 
ejection fraction, where systemic comorbidities, inflammation, and 
biological vulnerability play a dominant role.

In recent years, HF has increasingly been conceptualized as a 
multisystem syndrome, in which frailty, sarcopenia, inflammation, 
and nutritional status substantially influence outcomes. However, 
these domains remain under-integrated into routine prognostic 
assessment and clinical risk models. At the same time, advances 
in Artificial Intelligence (AI) and machine learning have enabled 
the integration of complex, multidimensional clinical data, offering 
potential improvements in phenotyping and risk prediction. 
The challenge lies in translating these advances into clinically 
interpretable and deployable tools. This narrative review provides a 
clinically oriented synthesis of evidence on prognostic stratification 
in HF, focusing on the integration of classical and emerging 
biomarkers, organizational models of care, and explainable AI 
approaches, with emphasis on real-world applicability within 
multidisciplinary HF units [1-20].

Discussion

Epidemiology and Burden of Heart Failure

HF affects approximately 1–2% of the adult population and 
exceeds 10% among individuals older than 70 years. It remains a 
leading cause of hospitalization and healthcare expenditure, with 
recurrent admissions representing a major driver of disease burden. 
In Portugal and other ageing regions, HF prevalence and outcomes 
are further shaped by multimorbidity, social vulnerability, and 
geographic dispersion, underscoring the need for structured and 
proactive care models [21-30].

Pathophysiology and LVEF-Based Phenotypes

Contemporary HF classification recognizes HFrEF, HFmrEF, 
HFpEF, and HF with recovered ejection fraction. While HFrEF 
is predominantly characterized by systolic dysfunction and 
neurohormonal activation, HFpEF is increasingly understood as 
a multisystem disorder driven by cardiometabolic comorbidities, 
systemic inflammation, endothelial dysfunction, and impaired 
reserve. HFmrEF represents a heterogeneous and dynamic 
phenotype, while recovered EF denotes improvement with therapy 

but persistent residual risk. These distinctions highlight the 
limitations of LVEF as a sole prognostic descriptor [31-40].

Prognosis Across Ejection Fraction Phenotypes

Although prognosis varies across LVEF categories, substantial 
overlap exists. Mortality and rehospitalization remain clinically 
significant across all phenotypes, particularly in the early post-
discharge period. Importantly, non-cardiovascular events 
contribute substantially to outcomes in HFpEF, reflecting systemic 
disease burden. These observations support the need for prognostic 
models that transcend LVEF-based classification [41-50].

Classical Prognostic Predictors

Classical prognostic markers-such as natriuretic peptides, 
renal dysfunction, hyponatraemia, anaemia, age, and comorbidity 
burden-form the backbone of existing risk scores. Tools such as the 
MAGGIC risk score and the Seattle Heart Failure Model integrate 
these variables to estimate survival. However, their performance 
may be suboptimal in older, frail, and socially vulnerable 
populations, where biological reserve and functional status are 
critical determinants of outcome [51-60].

Emerging Biomarkers of Biological Vulnerability

Frailty and Sarcopenia

Frailty is highly prevalent among HF patients and consistently 
associated with mortality, rehospitalization, and reduced tolerance 
to guideline-directed therapies. Sarcopenia and cachexia reflect 
advanced HF biology and catabolic imbalance, conferring additional 
risk through inflammatory and metabolic pathways [61-70].

Temporal Muscle Thickness

Temporal Muscle Thickness (TMT), measured opportunistically 
on routine cranial CT imaging, has emerged as an objective 
surrogate of sarcopenia and biological reserve. Evidence across 
clinical contexts supports its association with mortality and adverse 
outcomes, with good reproducibility and feasibility for automated 
assessment. In HF populations, TMT offers a pragmatic avenue to 
quantify vulnerability beyond traditional metrics [71-80].

Systemic Inflammation and Neutrophil-To-Lymphocyte 
Ratio

Chronic low-grade inflammation is a hallmark of HF, particularly 
HFpEF. The neutrophil-to-lymphocyte ratio (NLR) integrates 
innate immune activation and physiological stress and has shown 
consistent associations with mortality and adverse events in HF. Its 
low cost and universal availability make it an attractive candidate 
for routine risk stratification [81-90].

Nutritional Vulnerability

Nutritional indices such as CONUT and the prognostic 
nutritional index capture malnutrition and inflammatory burden, 
both independently associated with adverse outcomes in HF. Their 
integration may be particularly relevant in frail and advanced 
disease states (Figure 1).
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Figure 1: Schematic representation of clinical challenges and emerging prognostic tools into data-driven approaches across the heart failure 
spectrum.

Multidisciplinary Heart Failure Units and Organization 
of Care

Dedicated multidisciplinary HF units reduce rehospitalizations 
and improve outcomes, particularly during post-discharge 

transitions. These programs facilitate coordinated optimization of 
therapy, patient education, and structured follow-up. In regions 
characterized by ageing and social vulnerability, such models may 
mitigate inequities and prevent avoidable decompensation (Tables 
1&2).

Table 1: Classical Prognostic Markers in Heart Failure.

Domain Marker Pathophysiological meaning Prognostic value Limitations

Haemodynamic stress NT-proBNP Ventricular wall stress, congestion Mortality, rehospitalization Influenced by age, renal function

Renal function Creatinine / eGFR Cardiorenal interaction Mortality, progression Non-specific

Electrolytes Sodium Neurohormonal activation Advanced HF prognosis Late marker

Haematological Haemoglobin Oxygen delivery Functional decline, mortality Multifactorial

Table 2: Emerging Biomarkers of Biological Vulnerability in Heart Failure.

Biomarker Domain Measurement Key prognostic associations Clinical advantages

Clinical Frailty Scale Frailty Bedside clinical scale Mortality, rehospitalization Simple, validated

Temporal Muscle Thickness Sarcopenia Opportunistic CT Mortality, rehospitalization Objective, reproducible

Neutrophil-to-lymphocyte ratio Inflammation Routine blood test Mortality, adverse outcomes Low cost, accessible

CONUT / PNI Nutrition Laboratory-based Mortality, vulnerability Integrates nutrition & inflammation

CT – Computed Tomography
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Artificial Intelligence and Explainable Prediction in HF

AI and machine-learning approaches enable the integration 
of complex multimodal data, supporting phenotyping and risk 
prediction through non-linear modelling. However, clinical 
translation requires careful attention to overfitting, bias, 
calibration, and generalizability. Explainable AI techniques may 
enhance clinician trust and interpretability but must be applied 
within rigorous methodological frameworks aligned with reporting 
standards such as TRIPOD and PROBAST [91-100].

Knowledge Gaps and Research Agenda

Key gaps include under-integration of frailty and sarcopenia 

into routine risk assessment, limited incorporation of social 
determinants, and insufficient external validation of AI-based 
models. Future research should prioritize parsimonious, 
explainable models evaluated within multidisciplinary care 
pathways and focused on clinically actionable endpoints [101-110].

Limitations of this Review

As a narrative review, this work does not follow a formal 
systematic review protocol, and selection bias cannot be fully 
excluded. Nevertheless, emphasis was placed on high-level 
evidence, methodological rigor, and real-world applicability (Tables 
3&4).

Table 3: Traditional Risk Scores vs AI-Based Prognostic Models.

Feature Traditional scores AI-based models

Variables Limited, predefined Multidimensional

Interactions Mostly linear Non-linear

Interpretability High Variable (improving with explainable AI)

Adaptability Static Dynamic, updateable

External validation Established Often limited

Table 4: Clinically Relevant Prognostic Endpoints in Contemporary HF Care.

Endpoint Clinical relevance Strengths Limitations

90-day HF rehospitalization Care quality, transitions Frequent, actionable Competing risk with death

90-day composite (death or HF admission) Global instability Increased power Requires clear definitions

12-month all-cause mortality Hard endpoint Benchmarking Lower event rate

Conclusion

HF remains a major clinical and organizational challenge 
characterized by rising prevalence, multimorbidity, and recurrent 
hospitalization. While LVEF-based phenotyping remains useful, 
it is insufficient for precise individual prognostication. Classical 
biomarkers are essential but do not fully capture systemic 
vulnerability. Emerging markers of frailty, sarcopenia, inflammation, 
and nutrition-particularly TMT and NLR-offer promising, accessible 
additions with potential incremental value. Multidisciplinary HF 
care models provide a compelling framework to operationalize 
risk-stratified care, while explainable AI approaches may further 
enhance prognostic precision. Together, these dimensions support 
the development of integrated, interpretable prognostic tools 
capable of informing personalized care and optimizing outcomes in 
real-world HF management.
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