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Abstract

Heart Failure (HF) remains a leading cause of morbidity, mortality, and healthcare utilization worldwide, driven by population ageing,
multimorbidity, and improved survival after acute cardiovascular events. Although Left Ventricular Ejection Fraction (LVEF) remains central to
classification and therapeutic decision-making, it incompletely captures the biological and clinical heterogeneity of HF-particularly in heart failure
with preserved and mildly reduced ejection fraction. Traditional prognostic markers such as natriuretic peptides, renal function, sodium, and anaemia
underpin established risk scores but may underestimate vulnerability in older, frail, and socially disadvantaged populations. Emerging markers of
biological reserve, systemic inflammation, and nutritional vulnerability-including clinical frailty scales, temporal muscle thickness, neutrophil-to-
lymphocyte ratio, and nutritional indices-have gained increasing attention as accessible, low-cost predictors with potential incremental prognostic
value.

In parallel, Artificial Intelligence (AI) and machine-learning approaches offer opportunities to integrate multidimensional clinical data,
identify phenotypic clusters, and improve prediction of mortality and readmission. However, their clinical adoption requires methodological rigor,
transparency, interpretability, and validation in real-world settings. This narrative state-of-the-art review synthesizes contemporary evidence across
HF phenotypes, classical and emerging prognostic markers, multidisciplinary HF care models, and explainable Al-enabled prognostication. We
highlight key knowledge gaps and discuss clinical and organizational implications for implementing integrated, parsimonious, and interpretable risk
stratification tools within multidisciplinary HF units. Together, these dimensions support a translational pathway from multimodal data integration
to deployable prognostic tools capable of informing individualized care and optimizing resource allocation in real-world HF management.

Keywords: Heart failure; prognosis; frailty; temporal muscle thickness; inflammation; neutrophil-to-lymphocyte ratio; artificial intelligence;
multidisciplinary care

Abbreviations: HF: heart failure; LVEF: left ventricular ejection fraction; HFrEF: heart failure with reduced ejection fraction; HFmrEF: heart
failure with mildly reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction; CFS: Clinical Frailty Scale; TMT: temporal muscle
thickness; NLR: neutrophil-to-lymphocyte ratio; Al: artificial intelligence
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Introduction

Heart Failure (HF) is a complex clinical syndrome and a major
public health challenge, associated with high prevalence, recurrent
hospitalizations, and persistent mortality despite major therapeutic
advances. Its burden continues to rise globally due to population
ageing, improved survival after acute cardiovascular events, and
increasing multimorbidity. Prognostic stratification is therefore
central to HF management, guiding therapeutic intensity, follow-
up strategies, and allocation of healthcare resources, particularly
during vulnerable transition periods after hospitalization.
Although classification based on Left Ventricular Ejection Fraction
(LVEF) remains clinically useful and therapeutically actionable, it
only partially reflects the underlying pathophysiology and fails to
explain substantial within-phenotype heterogeneity. This limitation
is particularly evident in HF with preserved and mildly reduced
ejection fraction, where systemic comorbidities, inflammation, and
biological vulnerability play a dominant role.

In recent years, HF has increasingly been conceptualized as a
multisystem syndrome, in which frailty, sarcopenia, inflammation,
and nutritional status substantially influence outcomes. However,
these domains remain under-integrated into routine prognostic
assessment and clinical risk models. At the same time, advances
in Artificial Intelligence (AI) and machine learning have enabled
the integration of complex, multidimensional clinical data, offering
potential improvements in phenotyping and risk prediction.
The challenge lies in translating these advances into clinically
interpretable and deployable tools. This narrative review provides a
clinically oriented synthesis of evidence on prognostic stratification
in HF, focusing on the integration of classical and emerging
biomarkers, organizational models of care, and explainable Al
approaches, with emphasis on real-world applicability within
multidisciplinary HF units [1-20].

Discussion
Epidemiology and Burden of Heart Failure

HF affects approximately 1-2% of the adult population and
exceeds 10% among individuals older than 70 years. It remains a
leading cause of hospitalization and healthcare expenditure, with
recurrentadmissions representing a major driver of disease burden.
In Portugal and other ageing regions, HF prevalence and outcomes
are further shaped by multimorbidity, social vulnerability, and
geographic dispersion, underscoring the need for structured and
proactive care models [21-30].

Pathophysiology and LVEF-Based Phenotypes

Contemporary HF classification recognizes HFrEF, HFmrEF
HFpEF, and HF with recovered ejection fraction. While HFrEF
is predominantly characterized by systolic dysfunction and
neurohormonal activation, HFpEF is increasingly understood as
a multisystem disorder driven by cardiometabolic comorbidities,
systemic inflammation, endothelial dysfunction, and impaired
reserve. HFmrEF represents a heterogeneous and dynamic
phenotype, while recovered EF denotes improvement with therapy
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but persistent residual risk. These distinctions highlight the
limitations of LVEF as a sole prognostic descriptor [31-40].

Prognosis Across Ejection Fraction Phenotypes

Although prognosis varies across LVEF categories, substantial
overlap exists. Mortality and rehospitalization remain clinically
significant across all phenotypes, particularly in the early post-
discharge period. Importantly,
contribute substantially to outcomes in HFpEEF, reflecting systemic
disease burden. These observations support the need for prognostic
models that transcend LVEF-based classification [41-50].

non-cardiovascular  events

Classical Prognostic Predictors

Classical prognostic markers-such as natriuretic peptides,
renal dysfunction, hyponatraemia, anaemia, age, and comorbidity
burden-form the backbone of existing risk scores. Tools such as the
MAGGIC risk score and the Seattle Heart Failure Model integrate
these variables to estimate survival. However, their performance
may be suboptimal in older, frail, and socially vulnerable
populations, where biological reserve and functional status are
critical determinants of outcome [51-60].

Emerging Biomarkers of Biological Vulnerability
Frailty and Sarcopenia

Frailty is highly prevalent among HF patients and consistently
associated with mortality, rehospitalization, and reduced tolerance
to guideline-directed therapies. Sarcopenia and cachexia reflect
advanced HF biology and catabolic imbalance, conferring additional
risk through inflammatory and metabolic pathways [61-70].

Temporal Muscle Thickness

Temporal Muscle Thickness (TMT), measured opportunistically
on routine cranial CT imaging, has emerged as an objective
surrogate of sarcopenia and biological reserve. Evidence across
clinical contexts supports its association with mortality and adverse
outcomes, with good reproducibility and feasibility for automated
assessment. In HF populations, TMT offers a pragmatic avenue to
quantify vulnerability beyond traditional metrics [71-80].

Systemic Inflammation and Neutrophil-To-Lymphocyte
Ratio

Chroniclow-grade inflammation is a hallmark of HF, particularly
HFpEF. The neutrophil-to-lymphocyte ratio (NLR) integrates
innate immune activation and physiological stress and has shown
consistent associations with mortality and adverse events in HF. Its
low cost and universal availability make it an attractive candidate
for routine risk stratification [81-90].

Nutritional Vulnerability

Nutritional indices such as CONUT and the prognostic
nutritional index capture malnutrition and inflammatory burden,
both independently associated with adverse outcomes in HF. Their
integration may be particularly relevant in frail and advanced
disease states (Figure 1).
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Figure 1: Schematic representation of clinical challenges and emerging prognostic tools into data-driven approaches across the heart failure
spectrum.
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Multidisciplinary Heart Failure Units and Organization transitions. These programs facilitate coordinated optimization of
of Care therapy, patient education, and structured follow-up. In regions
characterized by ageing and social vulnerability, such models may
mitigate inequities and prevent avoidable decompensation (Tables
1&2).

Dedicated multidisciplinary HF units reduce rehospitalizations
and improve outcomes, particularly during post-discharge

Table 1: Classical Prognostic Markers in Heart Failure.

Haemodynamic stress NT-proBNP Ventricular wall stress, congestion Mortality, rehospitalization | Influenced by age, renal function
Renal function Creatinine / eGFR Cardiorenal interaction Mortality, progression Non-specific
Electrolytes Sodium Neurohormonal activation Advanced HF prognosis Late marker
Haematological Haemoglobin Oxygen delivery Functional decline, mortality Multifactorial

Table 2: Emerging Biomarkers of Biological Vulnerability in Heart Failure.

Clinical Frailty Scale Frailty Bedside clinical scale Mortality, rehospitalization Simple, validated
Temporal Muscle Thickness Sarcopenia Opportunistic CT Mortality, rehospitalization Objective, reproducible
Neutrophil-to-lymphocyte ratio Inflammation Routine blood test Mortality, adverse outcomes Low cost, accessible
CONUT / PNI Nutrition Laboratory-based Mortality, vulnerability Integrates nutrition & inflammation

CT — Computed Tomography
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Artificial Intelligence and Explainable Prediction in HF

Al and machine-learning approaches enable the integration
of complex multimodal data, supporting phenotyping and risk
prediction through non-linear modelling. However, clinical
translation requires careful attention to overfitting, bias,
calibration, and generalizability. Explainable Al techniques may
enhance clinician trust and interpretability but must be applied
within rigorous methodological frameworks aligned with reporting
standards such as TRIPOD and PROBAST [91-100].

Knowledge Gaps and Research Agenda

Key gaps include under-integration of frailty and sarcopenia

Table 3: Traditional Risk Scores vs Al-Based Prognostic Models.

into routine risk assessment, limited incorporation of social
determinants, and insufficient external validation of Al-based
models. Future research should prioritize
explainable models evaluated within multidisciplinary care

pathways and focused on clinically actionable endpoints [101-110].

parsimonious,

Limitations of this Review

As a narrative review, this work does not follow a formal
systematic review protocol, and selection bias cannot be fully
excluded. Nevertheless, emphasis was placed on high-level
evidence, methodological rigor, and real-world applicability (Tables
3&4).

Variables Limited, predefined Multidimensional
Interactions Mostly linear Non-linear
Interpretability High Variable (improving with explainable Al)
Adaptability Static Dynamic, updateable
External validation Established Often limited

Table 4: Clinically Relevant Prognostic Endpoints in Contemporary HF Care.

90-day HF rehospitalization Care quality, transitions

Frequent, actionable Competing risk with death

90-day composite (death or HF admission) Global instability Increased power Requires clear definitions
12-month all-cause mortality Hard endpoint Benchmarking Lower event rate
Conclusion References

HF remains a major clinical and organizational challenge
characterized by rising prevalence, multimorbidity, and recurrent
hospitalization. While LVEF-based phenotyping remains useful,
it is insufficient for precise individual prognostication. Classical
biomarkers are essential but do not fully capture systemic
vulnerability. Emerging markers of frailty, sarcopenia, inflammation,
and nutrition-particularly TMT and NLR-offer promising, accessible
additions with potential incremental value. Multidisciplinary HF
care models provide a compelling framework to operationalize
risk-stratified care, while explainable Al approaches may further
enhance prognostic precision. Together, these dimensions support
the development of integrated, interpretable prognostic tools
capable of informing personalized care and optimizing outcomes in
real-world HF management.
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