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Abstract

Background: This study investigates the dynamics and phase portraits of the SEIQR (Susceptible - Exposed - infectious - Quarantined -
Recovered) epidemiological model, an extension of the classical SEIR framework that explicitly incorporates quarantine measures.

Materials and Methods: By introducing a quarantined compartment, the model captures the effects of isolation strategies on disease
transmission, offering a more realistic representation of epidemic control and equilibrium R‘,:%. We analyze the system’s behavior through
mathematical formulations, stability analysis, and graphical phase portraits, highlighting the impact quarantine rates, exposure progression, and

recovery dynamics on the spread of infection.

Results: The findings provide a comprehensive understanding of how targeted quarantine interventions influence epidemic trajectories,
offering valuable insights for designing effective public health policies. The endemic equilibrium represents a state where the disease persists
in the population (E1,Q>0). To find this point, we set the derivatives to zero and solve for the non-zero values of S,E,[,Q,R. From the equation:

dl/dt =cE—(a+y)I=0-

Conclusion: This simulation of the Susceptible, Exposed, Infected, Quarantined, and Recovered model provides a clear, dynamic representation
of infectious disease spread within a closed population. By adding a dedicated “Quarantined” compartment, the model is able to more accurately

reflect public health interventions such as contact tracing and isolation.

Keywords: SEIQR model; mathematical formulations; stability analysis; graphical phase portraits; infections

Introduction

The SEIQR (Susceptible-Exposed-Infectious-Quarantined-
Recovered) model represents an extension of the classical SEIR
framework, incorporating quarantine measures as a separate
compartment. This modification allows us to capture more realistic
epidemic control strategies, particularly for diseases where isolation
and quarantine play a significant role in mitigating transmission.

By explicitly modeling quarantined individuals, the SEIQR system
provides valuable insights into the effects of quarantine rates,
progression from exposure, and recovery dynamics on overall
disease spread [1-6].

Mathematical models play a central role in understanding
the spread and control of infectious diseases. Among these,
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compartmental models provide a systematic framework for
describing disease transmission by dividing a population into
distinct epidemiological classes. In this work, we consider the SEIQR
model with demography, an extension of the classical formulation
that incorporates quarantine as a separate compartment and
accounts for natural birth and death processes [7-11].

The total population is subdivided into five compartments:
susceptible individuals S(t)S(t), exposed individuals E(t) who are
infected but not yet infectious, infectious individuals I(t) who]. The
model dynamics admit two fundamental equilibria: the disease-
free equilibrium (DFE), representing the absence of infection in the
population, and the endemic equilibrium, where the disease persists
at a constant level. The stability of the DFE is determined by the
basic reproduction number, , which quantifies the average number
of secondary infections caused by a single infectious individual in

fu<y1 susceptible population (Al-Jebouri,2024, Cliimm). When

, the DFE is locally asymptotically stable, indicating disease

elimination, whereas leads to sustained transmission and the
possibility of endemicity [12-16].

This formulation provides a realistic framework for analyzing
the impact of quarantine and demographic factors on epidemic
dynamics. In particular, it highlights the role of quarantine rates,
recovery rates, and natural turnover in shaping the threshold
dynamics, offering valuable insights for both theoretical exploration
and practical public health interventions.

Materials and Methods
Model Formulation: SEIQR Model (with demography)

The population is divided into five

compartments:

epidemiological

S(t): Susceptible individuals.

E(t): Exposed but not yet infectious individuals.

: Infectious individuals capable of transmitting the disease.

Q(t): Quarantined individuals,
population.

isolated from the general

R(t): Recovered individuals with immunity.

The governing system of differential equations (with
demography) is given by:
cji_]f =0 % —cE—-ukE
%=UE—(7+Q+/U)I
L g1, + w0
Z—If =yl+y,0-uR
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Where N=S+E+I+Q+R
Parameters:
3: Transmission rate.

o: Progression rate from exposed to infectious (1/01/\sigma =
mean incubation period).

y: Recovery rate of infectious individuals.
g: Quarantine rate.
74 : Recovery rate of quarantined individuals.

: Natural birth and death rate.

Equilibria and Threshold Dynamics
The model admits two major equilibria:
Disease-Free Equilibrium (DFE):
(S,E,LQR)=(N,0,0,0,0),
stable if R <I.

EndemicEquilibrium:

Occurs when R, >1, with

R=—"F
yHq+p

This represents sustained transmission and non-zero values of
E\ILOLR
The stability of these equilibria can be analyzed via the Jacobian

matrix and its eigenvalues. Nullclines and stability diagrams
highlight the bifurcation that occurs when R =1.

Results

Phase Portraits and Simulation Results

Phase portraits illustrate the dynamic interaction between
compartments. For instance:

SvsIphase portraitshows how susceptibles decline as infections
grow, then recover as immunity builds (Figures 1A,1B). We created
phase-plane plots (S vs I) for the SEIQR model that show both the
vector field and sample trajectories, and [ marked the disease-free
equilibrium (DFE) and the endemic equilibrium (when it exists).
These portraits demonstrate trajectories converging toward
equilibrium states, depending on initial conditions and the value
of R,. Here is the graph of the SEIQR epidemic model over 160
days. It shows how each compartment like Susceptible, Exposed,
Infectious, Quarantined, and Recovered) evolves over time (Figures
2&3).

The SEIQR model highlights the importance of quarantine
measures in epidemic mitigation. Increasing the quarantine
rate q directly reduces the effective reproduction number and
shifts trajectories toward the disease-free equilibrium. Similarly,
recovery in quarantine (yq\gamma_q) accelerates the return of
individuals to the immune class. Simulation plots indicate that
effective quarantine strategies can flatten the epidemic curve and
significantly lower peak infection levels (Figure 1 A).
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Figure 1: A Phase Portrait S vs | for the SEIQR Model; Phase portrait for epidemic equilibrium points for SEIQR model; B, Phase Portrait S
vs | for the SEIQR Model, Phase portrait for endemic equilibrium points for SEIQR model.
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Figure 2: SEIQR epidemic model dynamics.
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Figure 3: Nullclines of the SEIQR Model in the (S, I) plane. When quarantine is effective, trajectories rapidly deviate toward the disease-free
equilibrium, reflecting successful containment (Figure 4).
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Conclusion and Future Directions

The SEIQR model provides a flexible framework for analyzing
the effects of quarantine interventions on epidemic dynamics.
Phase portraits reveal rich behaviors, including convergence to
disease-free or endemic equilibria, depending on parameter values
(Figure 1B).

Future research directions include

a. Extending the SEIQR structure to include vaccination (SEIQRV
model).

b. Studying stochastic and spatial variants of the model.

c. Integrating real-world epidemiological data for calibration
and policy planning.

d. Performing bifurcation analysis to understand threshold
phenomena under different control strategies.

SEIQR epidemic model

Here are the differential equations for theepidemic model,
which divides the population into:

e  S(t): Susceptible
e E(t): Exposed (infected but not yet infectious)
e [(t): Infectious

e Q(t): Quarantined

R(t): Recovered
e  Letthe parameters be:
e  (3: Transmission rate

e o: Rate at which exposed individuals become infectious (1/
incubation period)

e  q: Quarantine rate (rate of identifying and isolating infectious
individuals)

e  y:Recovery rate from infectious class
e  7,:Recovery rate from quarantined class

e N: Total population (assumed constant, N=S+E+I+Q+R

Special case: closed population (no demography)

Set p=0. The system simplifies to
s
dt

dE_ S
dt N

ﬂzaE—al—yl
dt

ST
p N

= _ gl -
& 7,0
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dR
—=yl+
7 7,9

Explanation:

a. Susceptibleﬂ—» Exposed: Contact with infectious

individuals at rate £ N
b.  Exposed — Infectious: At rate o (after incubation period)
c. Infectious - Quarantined: At rate a (quarantine action)
d. Infectious — Recovered: At rate y
e.  Quarantined — Recovered: Atrate 7,

f.  Susceptible (S) declines steadily as people are exposed to the
disease.

g. Exposed (E) rises and falls as new infections occur and
progress to being infectious.

h. Infectious (I) peaks and then drops as individuals are
quarantined or recover.

i.  Quarantined (Q) peaks earlier, indicating timely isolation of
infectious individuals.

j- Recovered (R) increases steadily, showing accumulation of
recovered individuals over time.

Epidemic and Endemic Equilibrium Points for SEIQR
Model

To find the epidemic and endemic equilibrium points for the
SEIQR model, we set the rate of change for each compartment
to zero (dS/dt=0,dE/dt=0,etc.)and solve the resulting system of
algebraic equations (Figure 4).

Disease-Free Equilibrium (£,)

The disease-free equilibrium represents a state where the
disease has died out. In this state, there are no infected (I), exposed
(E), or quarantined (Q) individuals.

Let’s set the derivatives to zero:

dsS SI
_— —:O
dt 'BN
d—E=ﬁ£—O'E=O
dt N
£=0'E—a1—y1=0
dt
do
—=al - =0
5 7,0
dR
—=yl+ =0
7 7,0

From the conditions E=0,1=0,Q=0, we can see that the last four
equations are automatically satisfied.
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For the first equation, —/3% =0, if =0, this holds true regardless
of the value of .

Therefore, at disease-free equilibrium, all individuals are
susceptible or recovered. Since we are looking for a stable state
where the disease is not present, we can assume the entire
population is susceptible.

So, the disease-free equilibrium point is:

E, =(S,.Ey.1,,0,,R,)=(N,0,0,0,0)

From the equations for at equilibrium:

cE=(a+y)I

al=y,0

We can express E and Q in terms of [:

aty

E= 1

o

(24
0=
7q

Now, we can compute the gext generation matrix and find the
dominant eigenvalue to get ~ °. For this model, a simpler way
is to consider the chain of infections from a single individual. A
susceptible individual gets infected at a rate fS/N. They enter the
class and stay there for an average duration of . Then, they move to
the class and stay there for an average duration of 1/(a+y). From
there, some move to with a rate of and some tg with a rate of The
quarantined individuals () recover at a rate of * ¢, with an average

duration of 1/7/,,

The basic reproduction number is given by:

p_o_ B

R, = .
" a+y o a+y

The term is the infection rate of susceptibles. The average
infectious period for an individual is the sum of the average time
spent in the compartment, which is 1/(a+y). Since individuals move
from E to [ and only the I class is infectious, we need to consider the
rate of transition from E to I, which is o. Thus, the total number of
secondary infections from a single individual is

R BS L __ BN __ P
0

N 'a+7=N(a+7/)_a+;/

Endemic Equilibrium (£,)

The endemic equilibrium represents a state where the disease
persists in the population (E,1,Q>0). To find this point, we set the
derivatives to zero and solve for the non-zero values of S,E,I,Q,R.
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From the equation:

DI/dt=cE—(a+y)Il=0,

we have: « Aty

E' =

I*
(o}

mdQ/dt=aI—7/qQ=0

Fro ’ we have:

Q*zgl*
74

From dE/dt = [SI/ N —cE =0we can substitute Ex and
solve for *:

IBS*I* ~
N

sZ=L =0
(o2

ST :
ST (a+y)I =0
N
Since I[*#0, we can divide by I*:

BS”

—a+7:>S*=M *
N

=S =l
B R,

To find [*we need to use the total population equation.
Assuming a constant population size N (i.e,, births and deaths are
balanced and not explicitly included in the model), we have

S+E+I+Q+R=N.
S*+E*+*+Q*+R*=N

We need to make an assumption about the steady-state value
of R.

From the equations, at equilibrium, dS/dt=0,dE/dt=0,d1/
dt=0,dQ/dt=0,dR/dt=0.

dR/dt=yl+y_q Q=0. Since vy, yq are all positive parameters and
values, this only holds if [=0 and Q=0,which is the disease-free case.

This indicates that the model as stated does not have a non-
trivial, static endemic equilibrium if the total population is constant.
For a non-zero I* and Q*, the recovered population will always be
increasing, and the system would be in a dynamic steady state, not
a static equilibrium.

However, if we modify the model to include demographic
factors (births and deaths), we can find a true endemic equilibrium.
For example, if there is a birth rate and a death rate the total
population would be constant if A = uN

Let’s assume there is a constant total population N, and the
equations are modified to account for this (e.g., individuals who
recover become susceptible again, or there is a constant inflow of
new susceptible and outflow of deaths). In this simplified scenario,
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if the population is constant, the only possible endemic steady state
is a situation where [*>0.

If we assume a simple where

S*+E*+[*+Q*+R*=N a non-zero I* would mean a constantly
increasing R, which is not an equilibrium. The model as presented

closed population

is more suitable for an outbreak in a closed population where the
recovered population increases and the susceptible population
decreases over time, leading to the disease eventually dying out.
A true endemic equilibrium would require a constant influx of
susceptible individuals (e.g., through births or loss of immunity).

Discussion

The stability of this equilibrium is determined by the basic
reproduction number (R;). R, is the average number of new
infections caused by a single infected individual in a completely
susceptible population. If, the disease dies out, and the disease-free
equilibrium is stable. If R >1 the disease can spread and become
endemic, making the disease-free equilibrium unstable [16-20] for
more knowledge about stability, transitivity, dynamical systems,
and bifurcation theory [ 21-23].

To find R for this model, we can analyze the infected
compartments E,I,Q.

The new infections are generated in the compartment at a rate
of BSI/N.

The transfers out of the infected compartments are oE (from E),
al and yI (from ), and 7,€Q (from Q).

The analysis of the SEIQR model with demography yields
several important insights into the role of quarantine and
population turnover in shaping epidemic outcomes. The system
admits two fundamental equilibria: the disease-free equilibrium
(DFE) and the endemic equilibrium. Through stability analysis, it
is established that the DFE remains locally asymptotically stable
whenever the basic reproduction number, R, is less than unity.
In this regime, initial outbreaks die out over time, leading to the
eventual elimination of the disease from the population [16,17].

When R, >1, the DFE loses stability, the system converges
toward an endemic equilibrium in which the infection persists at
a constant level. The presence of quarantine reduces the effective
transmission potential, thereby lowering, and can shift the system
toward disease eradication if quarantine rates are sufficiently
high. Moreover, demographic factors such as natural birth and
death rates maintain population renewal, ensuring the possibility
of disease reintroduction even after temporary suppression.
The trajectory overlay of the SEIQR model provides a powerful
visualization of epidemic dynamics by comparing the evolution of
different compartments under varying parameter conditions. By
superimposing multiple solution pathsin the state space, itbecomes
evident how changes in quarantine rates, transmission intensity, or
recovery processes alter the overall epidemic trajectory [16,17,20].

In contrast, insufficient quarantine or high transmission
drives the system toward endemic persistence, with trajectories
stabilizing around the endemic equilibrium. The overlay further
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illustrates the sensitive dependence of epidemic outcomes on
parameter values, emphasizing the nonlinear interplay between
exposure, infection, quarantine, and recovery. Overall, SEIQR-
trajectory overlays offer valuable insight into the comparative
effects of intervention strategies, enhancing our ability to design
and evaluate effective public health measures. Phase portrait
analysis further demonstrates how trajectories evolve in state
space, highlighting the transition from epidemic outbreaks to
long-term endemic persistence depending on parameter values.
These findings underscore the critical role of quarantine as a
control mechanism and emphasize the importance of demographic
structure in determining threshold dynamics and long-term
stability of infectious disease models [10,11,12,24]. This simulation
of the Susceptible, Exposed, Infected, Quarantined, and Recovered
(SEIQR) model provides a clear, dynamic representation of
infectious disease spread within a closed population. By adding a
dedicated “Quarantined” compartment, the model is able to more
accurately reflect public health interventions such as contact
tracing and isolation. The simulations demonstrated the critical
role of the transmission rate (3)the incubation rate o the quarantine
rate g, and the recovery rate y in shaping the epidemic curve. The
model’s output highlighted key epidemiological features, including
the initial exponential growth phase, the timing and magnitude of
the peak infection rate, and the eventual decline as herd immunity
is reached [1,12,19,25,26].

Conclusions

These results underscore the importance of early and effective
quarantine measures, as prompt isolation of exposed or infected
individuals can significantly reduce the number of transmissions,
thereby flatten the curve and preventing the health system from
being overwhelmed. This simulation of the Susceptible, Exposed,
Infected, and Recovered (SEIR) model provides a clear, dynamic
representation of infectious disease spread within a closed
population. By incorporating a latent or “Exposed” compartment,
the model more accurately reflects the biology of many real-world
diseases where individuals are infected but not yet infectious. The
simulations demonstrated the critical role of the transmission rate
(B), the incubation rate (o), and the recovery rate (y) in shaping the
epidemic curve. The model’s output highlighted key epidemiological
features, including the initial exponential growth phase, the
timing and magnitude of the peak infection rate, and the eventual
decline as herd immunity is reached. These results underscore the
importance of early interventions aimed at reducing transmission,
as even modest reductions in 8 can significantly flatten the curve
and delay the peak, thereby preventing the health system from
being overwhelmed.
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