
Page 1 of 7

Application of Hidden Markov Models (HMMS) for 
Multispecies Identification of Dolphins (Cetaceans)

Marek B. Trawicki*
Mathematical and Statistical Sciences, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA

ISSN: 2687-8089                                                                                                                         DOI: 10.33552/AOMB.2025.04.000589

Advances in 
Oceanography & Marine Biology

Research article Copyright © All rights are reserved by Marek B. Trawicki

This work is licensed under Creative Commons Attribution 4.0 License  AOMB.MS.ID.000589.

Abstract 
Hidden Markov Models (HMMs) were developed and applied to distinguish among the 12 available Dolphins (Cetaceans) species ranging from 

the Atlantic Spotted Dolphin (Stenella Frontalis) to the White-Sided Dolphin (Lagenorhynchus Acutus). The primary goals of the analyses were to 
investigate how varying frame duration and frame shift, dimensions of the feature vector, and number of states for feature extraction and acoustic 
models affect classification accuracy. In the studies utilizing 41 Mel-Frequency Cepstral Coefficients (MFCCs) extracted from the vocalizations 
with 5ms frame size and 2ms step size, HMMs comprising 14 states with an individual Gaussian Mixture Model (GMM) achieved classification 
performance spanning 63.89% (4 classes) to 100.00% (1 class) with a discrimination accuracy of 80.25% (12 classes). Based on the outcomes, the 
system could be extended to the study of other marine mammals for investigation of vocalizations and species.
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Introduction

Recently, the utilization of machine learning techniques (e.g., 
Hidden Markov Models (HMMs) [1] and Gaussian Mixture Models 
(GMMs) [2]) to bioacoustics has started to attract more interest [3]. 
In more precise terms, HMMs have proven effective in classifying 
song-types and identifying speakers across various mammalian 
species [4] such as the African Elephant (Loxodonta Africana) [5], 
Norwegian Ortolan Bunting (Emberiza Hortulana) [6], and Tiger 
(Panthera Tigris) [7]. In contrast, there has been rather limited 
research on classifying and detecting dolphin sounds [8] and dol-
phins themselves [9] using HMMs and GMMs. Given the promising 
findings, HMMs can be utilized to differentiate vocalizations of oth-
er mammals, particularly various species of marine mammals [10].  

 
Dolphins (Cetaceans) are aquatic marine mammals consisting with 
forty living species varying in length and weight from 1.7 meters 
and 50 kilograms to 9.5 meters and 11 short ton [11].

While the species is spread around the world, the dolphins typ-
ically prefer the warmer waters of tropic zones [12]. In the water, 
the dolphins feed, mate, and birth along with escape from few ma-
rine enemies [13]. Through the Atlantic Spotted Dolphin (Stenella 
Frontalis) to the White-Sided Dolphin (Lagenorhynchus Acutus), 
dolphins generate a wide array of vocalizations, encompassing 
clicks (burst pulses) and whistles (frequency modulated), by vi-
brating connective tissue akin to the function of human vocal cords 
[14]. In order to enhance our understanding of the species, HMMs 
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can automate the classification of dolphins from their vocalizations 
utilizing HMMs for species identification [15]. The rest of the paper 
is arranged into the subsequent sections: Data (Section 2), Methods 
(Section 3), Results (Section 4), and Conclusion (Section 5).

Data

The Watkins Marine Mammal Sound Database [16] compris-
es around 2000 distinct recordings from over 60 species of ma-
rine mammals such as dolphins, seals, and whales, including over 
15,000 annotated digital sound files representing over 70 years of 

research conducted at the Woods Hole Oceanographic Institution 
(WHOI). Within the database, the “Best of Cuts” section encompass-
es 1694 high-quality sound files with minimal noise, which rep-
resents 32 distinct species. Figure 1 provides the time series and 
spectrograms of individual vocalizations, which offers insights into 
the complexity of the sounds. By relying solely on visual inspection, 
the discernment of patterns in the vocalizations is a challenge from 
simply the spectrograms. As a result, the vocalizations of the dol-
phins will be investigated through machine learning to discrimi-
nate between the different species (Table 1).

Figure 1: Time Series and Spectrograms.
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Table 1: Summary of the 760 Recordings Spanning 12 Dolphin Species.

Common Name Binomial Name Location Class Count

Atlantic Spotted Dolphin Stenella Frontalis Unknown ASD 57

Bottlenose Dolphin Tursiops Truncatus, Tursiops Gilli California, Florida BND 24

Clymene Dolphin Stenella Clymene Bequia, St. Lucia CMD 62

Common Dolphin Delphinus Delphis Canada, Canary Islands CND 47

Fraser’s Dolphin Lagenodelphis Hosei Dominica FRD 87

Pantropical Spotted Dolphin Stenella Attenuata Costa Rica, Dominica PSD 65

Risso’s Dolphin Grampus Griseus Canary Islands, North Atlantic, Selina, Ustica RSD 67

Rough-Toothed Dolphin Steno Bredanensis Malta, Sicily RTD 50

Spinner Dolphin Stenella Longirostris Hawaii SPD 111

Striped Dolphin Stenella Coeruleoalba Canada, Delaware, Italy STD 80

White-Beaked Dolphin Lagenorhynchus Albirostris Maine, Massachusetts WBD 57

White-Sided Dolphin Lagenorhynchus Acutus Brown’s Bank, Massachusetts, Stellwagen Bank WSD 53

Methods

To facilitate the discrimination of vocalizations through train-
ing of testing, recordings must initially be parameterized into 
speech vectors, which are subsequently used for recognition. By us-
ing a collection of training vocalizations corresponding to each spe-
cific model, the parameters are automatically determined through 
a robust and efficient re-estimation procedure called Baum-Welch 
Expectation Maximization [17,18]. Assuming the training data in-
cludes an adequate number of vocalizations, the models are de-
signed to implicitly grasp the diverse sources of variability. From 
the collection of testing vocalizations, the likelihood of each model 
generating the vocalization is calculated swiftly to determine the 
most probable model by Viterbi [19]. Based on the classification ac-
curacy, adjustments can be implemented to the feature extraction 
and acoustic models to enhance recognition.

Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) [20] represent 
the classical features utilized in vocalization parameterization for 

various speech recognition applications [21]. By adjusting to the 
frame duration and frame shift, features are extracted on a frame-
by-frame basis to take advantage of their stationary nature. Upon 
the application of the Hamming window, the Fourier Transform is 
computed for each short-duration frame. Given human perception 
of frequencies follows a log scale [22], the feature extraction that 
accommodates the non-linear frequency behavior across the entire 
audio frequency range provides a more accurate approximation of 
the auditory system response and enhances vocalization represen-
tation for recognition purposes. To achieve the desired non-linear 
frequency resolution, filterbank channels are organized as equal-
ly-spaced triangular filters with increasing bandwidths relative to 
the frequency f  on the Mel scale defined as

10( ) 2595log 1
700

fMel f  = + 
 

 (1)

Figure 2 reveals the distribution of the Mel scale filterbanks 
spanning frequencies up to the Nyquist frequency Nf .

Figure 2: Mel Scale Filterbanks.
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The cepstral coefficients ic  are obtained from the logarithm of 
the filterbank amplitudes jm utilizing the Discrete Cosine Trans-
form (DCT) as 1

2 cos ( 0.5)
N

i j
j

ic m j
N N

π
=

 = − 
 

∑  (2)

Figure 3: Feature Extraction of MFCCs.

Where N is the number of filterbank channels. Figure 3 exhibits 
the core process of deriving the MFCCs for each vocalization frame.

Acoustic Models

Hidden Markov Models (HMMs) [23] are statistical finite state 
machines used to model vocalizations, which are commonly consid-
ered one of the primary classification models in human speech pro-

cessing [21] and bioacoustics [3]. Table 2 states the fundamental 
elements of HMMs [21]. Together, the set of parameters of HMMs is 
referred to as ( , , )A B πΦ = . Figure 4 supplies an example of a 4-state 
HMM with individual Gaussian Mixture Models (GMMs) under each 
state. Each state corresponds to a single, predetermined statistical 
model, and the choice of states in the HMMs corresponds directly to 
the number of distinct temporal segments in the vocalization.

Figure 4: Example of 4-State HMM.

Results

Experiments aimed at discriminating between the 12 species of 
dolphins were conducted through cross-validation [24] on the 760 
vocalizations in the database, partitioned into 80% for training and 
20% for testing, utilizing the Hidden Markov Model Toolkit (HTK) 
[25]. The objectives of the experiments were to assess the impact 
of frame duration and frame shift, dimensions of the feature, and 
states on feature extraction and acoustic models on discrimination 
using 157 test vocalizations and 100 filterbank channels. Table 
3 displays the classification accuracy with the number of correct 
classifications indicated in parentheses for different configurations. 

With any specific frame size, the classification accuracy generally 
rose in value with the increase in step size corresponding to more 
overlap between adjacent frames (1ms – 3ms): 71.34% – 73.25% 
(4ms frame size), 65.61% – 80.25% (5ms frame size), 69.43% – 
75.80% (6ms frame size), and 63.06% – 71.97% (7ms frame size). 
Table 4 shows the classification accuracy corresponding to varia-
tions in the number of cepstral coefficients.

By augmenting the number of cepstral coefficients up to 41 
MFCC features along with the time derivative (41 delta and 41 del-
ta-delta) features resulting in a feature vector size 123, the classifi-
cation accuracy achieved its peak value at 80.25% (126/157 correct 
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classifications), which represents an enhancement of 18.47% over 
the smallest number of cepstral coefficients. Table 5 indicates the 
classification accuracy for variations in the states. With the increase 
in the number of states within the HMMs (transitioning from 1 state 
(GMM) to 14 states (HMM)), the classification accuracy improved 
significantly by 33.75% (53 additional correct classifications) to 
80.25% (126/157 correct classifications). Figures 5&6 illustrate 
the classification accuracies relative to the number of whale spe-

cies and all 12 available dolphin species. Upon exploration of frame 
duration and frame size and dimension of feature vector (feature 
extraction) and number of states (acoustic models) with 41 MFCC 
and 82 times derivative (41 delta and 41 delta-delta) features (fea-
ture vector size 123), discrimination ranged from 63.89% (4 class-
es) to 100.00% (1 class) with 80.25% (12 classes) using 5ms frame 
size and 2ms step size along with 14 states containing a single GMM 
underlining the states of the HMMs.

Table 2: Elements of HMMs.

Quantity Notation

Output Observations { }1 2, , , Mo o o=O 

Set of States { }1,2, , N= Ω

Transition Probability Matrices { }ija=A

Output Probability Matrices ( ){ }ib k=B

Initial State Distributions { }iπ=ð

Table 3: Classification Accuracy vs. Frame Size and Step Size.

Accuracy

1 ms

Step Size

2 ms 3 ms

Frame Size

4 ms 71.34% (112) 71.97% (113) 73.25% (115)

5 ms 65.61% (103) 80.25% (126) 73.89% (116)

6 ms 69.43% (109) 75.80% (119) 73.25% (115)

7 ms 63.42% (98) 63.06% (99) 71.97% (113)

Table 4: Classification Accuracy vs. Number of Cepstral Coefficients.

Cepstral Coefficients Feature Vector Size Correct Accuracy

5 15 97 61.78%

9 27 111 70.70%

13 39 105 66.88%

17 51 106 67.52%

21 63 105 66.88%

25 75 112 71.34%

29 87 107 68.15%

33 99 122 77.71%

37 111 120 76.43%

41 123 126 80.25%

Table 5: Classification Accuracy vs. Number of States.

States Correct Accuracy

1 73 46.50%

2 86 54.78%

4 103 65.61%
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6 105 66.88%

8 113 71.98%

10 120 76.43%

12 118 75.16%

14 126 80.25%

Figure 5: Classification Accuracy vs. Number of Classes.

Figure 6: Confusion Matrix for 12 Available Species of Dolphins.

For three species of dolphins, the classification accuracies 
were only 18.18% (2/11 correct classification, White-Sided Dol-
phin (WSD)), 18.75% (3/16 correct classification, Striped Dolphin 
(STD)), and 53.85% (7/13 correct classification, Pantropical Spot-
ted Dolphin (PSD)), which considerably reduced the overall classifi-
cation accuracy of the 12 classes of dolphins. In the end, the HMMs 
demonstrated capability to effectively differentiate among the di-
verse species of dolphins within the database.

Conclusion

Hidden Markov Models (HMMs) were developed and applied to 

discern among the 12 species of dolphins sourced from the WHOI 
database, which contains 760 vocalizations. The primary objec-
tives of the study were to assess the influence of frame duration 
and frame shift, dimension of the feature vector, and number of 
states for feature extraction and acoustic models on discrimination. 
From the analysis of the frame duration and frame shift (feature 
extraction), dimension of the feature vector (feature extraction), 
and number of states (acoustic models), the HMMs revealed robust 
classification accuracies between the individuals, including by in-
creasing the number of dolphin species. Through 41 MFCC and 82 
times derivative (41 delta and 41 delta-delta) features (feature vec-
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tor size 123), discrimination of the dolphins ranged from 63.89% 
(4 classes) to 100.00% (1 class) with 80.25% (12 classes) using 
5ms frame size and 2ms step size along with 14 states containing 
a single GMM under the states of the HMMs. In future research, 
HMMs offer potential applications in classifying and detecting vo-
calizations and species of other marine mammals.
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