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Abstract 
This is a study of the rock and paleomagnetic properties and 14C dating of a c. 205 m core from Site M0060 (Anholt Loch, BSB1 at Kattegat), 

recovering clays, (silty) sands and sandy clays and the very important correlation to the age-depth model based on an “ultra-high” resolution, 
80-meter-thick sedimentary succession from a marine continental shelf basin in the Kattegat Baltic Sea. There were 297 8cc samples at c. 50 cm 
intervals down-core. χ was measured along with AF demagnetization of the NRM up to 80 mT. ChRM was isolated between 0 and 25 mT. A weak VRM 
was removed at 5 mT. The intensity shows a positive relationship with χ. At Site M0060 the upper lithologic units (i.e. 0–100 mcd) show inclinations 
that vary within 10° on either side of the GAD prediction (i.e. +72°). Curie points indicate minerals with temperatures of 360–400, 520, 575 and 
610°C. We obtained calibrated 14C determinations for 15 levels, with the oldest age from 78.87 mbsf to c. 17 940 cal BP. The J, inclination, χ, ARM, 
SIRM, SIRM/χ and ARM/χ paleomagnetic (i.e. inclination) wave forms results from the top c. 100 mcd correlate well to the deglacial inclination 
wave forms master curve for Fennoscandia. The best correlation to this curve shows four oscillations of the inclination record of Site M0060 from 
11 to 14 ka BP. Shallow negative inclinations are characteristic of the deeper coarse-grained sediments deposited during the rapid wasting of the 
Fennoscandian ice-sheet.
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Introduction

One of the main objectives of Integrated Ocean Drilling 
Program (IODP) Expedition 347, The Baltic Sea Experiment, from  

 

the paleomagnetic/geomagnetic, rock magnetic, paleosecular 
variation (PSV) and relative paleo intensity (RPI) view point is to 
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determine the presence of potential geomagnetic field oscillation 
(i.e. centennial, millennial, geomagnetic jerks, Cryptochrons, Chron 
and Subchrons etc etc). In reality the oceanic sediments are archives 
of such records and if the sedimentation rates are high to very high 
(>than 1 m per thousand years) they represent high resolution 
records of the short-and-long term behavior of the geomagnetic 
field in the past. The drilling of several planned sites was achieved 
from the 12th of September until the 1st of November of 2013 of 
the platform operations and the subsequent Onshore Science Party 
(OSP) took place from the 22 of January until the 20th of February 

of 2014. Also, one of main objectives of such drilling experiment 
among other goals was produce and age-depth model for IODP site 
M0060 using calibrated radiocarbon years (14C) to calendar years 
before present and plot such results against depth and combined 
them with the determined sedimentation rates for such drilled site 
located at Site M0060 (Anholt Loch, BSB1 at Kattegat) see Figure 1. 
Both objectives were met and here we present of combined results 
to understand further the early response of the Fennoscandian 
Ice Sheet behavior with respect to the atmospheric and oceanic 
warming.

Figure 1: A modified figure of the location of Site M0060 studied belonging to the Kattegat-Skagerrak area. [1].

Rock Magnetic, Paleomagnetic and Relative Paleo 
Intensity (RPI) And Paleosecular Variation (PSV) 
Results

Paleomagnetic, rock magnetism properties, RPI and PSV 
results have been already published [1,2] and here is a summary 
of those results. Figure 2 shows a good summary of the results of 
the paleomagnetic findings. The Natural Remanent Magnetization 
(NRM) was determined by isolating the Characteristic Remanent 
Magnetization (ChRM) component by using stepwise alternating 
field (a.f.) demagnetization techniques from NRM up to 80mT at 

every 5 to 10 mT. The results of the pilot sample demagnetization 
indicated that an a.f. of 5 mT was sufficient to remove a weak 
viscous remanent magnetization (VRM) see the inclination results 
displayed on Figure 2. Low field susceptibility versus temperature 
(k-T) were conducted to characterize the magnetic mineralogy 
of the M0060 sediments and additional Transmission Electron 
Microscope experiments (TEM) to detect the presence of Greigite 
as well as First Order Reversal Curves (FORC’s). These experiments 
showed the presence of Titanomagnetite (Fe3-xTiSO4) as well as 
secondary Greigite (Fe++Fe+++2S4).
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Figure 2: Data from sediment core M0060A. Inclination, intensity of magnetization (J), magnetic susceptibility (χ), anhysteretic remanent 
magnetization (ARM) and saturation isothermal remanent (SIRM) [1,2].

Induced Magnetization Experiments-Results

Figure 3: Thus far the relative paleo intensity (RPI) created records that have the characteristic to mimic the behavior and evolution of the 
geomagnetic field in the past. The obtained records in general terms represent the minimization of the undesirable effects of mineralogical or 
concentration variations throughout the sediments of M0060 from 0-10m. Such records.
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Figure 4: Data from sediment core M0060A. Inclination, intensity of magnetization (J), ARM/NRM (RPI), Saturation Isothermal Remanent 
Magnetization normalized with respect to (χ), χ anhysteretic remanent magnetization (ARM) normalized with respect to saturation isothermal 
remanent magnetization (SIRM) [1,2].

In addition to the NRM and rock magnetic properties of the 
M0060 sediments a study of the Relative Paleo Intensity (RPI) was 
conducted to investigate to potential oscillations of the top of the 
sediment core down to about 100m that straddle the boundaries 
of sedimentary Units IV and V which is the most paleomagnetic (i.e. 
Inclination record) reliable behavior that correlates well with the 
Geomagnetic Axial Dipole hypothesis (i.e. GDA=+72 degrees) see 
Figure 3. In order to obtain a Relative Paleo Intensity proxy for the 
sediments of M0060A there was induced an Anhysteretic Remanent 
Magnetization (ARM) and Saturation Isothermal Remanent 
Magnetization (SRIM) fields to 297 discrete c. 8 cc cubes from 
the 1.5 m sections targeted for the sampling studies. Laboratory 
analyses for paleomagnetic and rock magnetic characterizations 
were performed at the Magnetic Materials Paleomagnetics and 
Petrofabrics Laboratory of the SOEST-Hawaii Institute of Geophysics 
and Planetology of the University of Hawaii at Manoa. After we 
applied an AF field stepwise, we imparted an ARM at 0.5 Gauss DC 
field using a Helmholtz coil and superposed on an alternating field 
of 70 mT applied by a Schonstedt AC demagnetizer model GSD-1 
to all the samples. In addition, and after demagnetizing the same 
samples at high AF fields there was imparted an SIRM field of 1.0 
T using an ASC Scientific Model IM-10 impulse magnetizer. All 
these induced experiments on the specimens under question were 
measured on a JR5 Spinner magnetometer built by AGICO (Brno, 
Czech Republic). The results are shown in Figure 4. The results of 
the induced magnetization experiments (Figure 4) showed that for 
the most reliable part of the record (i.e. inclination and J), mainly 
from 10 m to about 100 m down-core, represented by Units II to IV, 
agrees well with the GAD prediction of 72°, (i.e. inclination record 

of the top 100 m of the core.

Relative Paleo-Intensity (RPI) Experiment Results

To understand and evaluate the strength of the geomagnetic field 
in this case fine laminated and rapidly deposited sediments (.0.02 m 
per year, from Unit III) of SiteM0060 that have successfully recorded 
inclination and intensity (i.e. J) changes during geomagnetic jerks 
and excursions, it was necessary to performed normalization of the 
NRM/ARM, SIRM/χ and χARM/SIRM as depicted in Figure 4. The 
normalized signals (i.e. SIRM/χ and χARM/SIRM) are very similar 
to the ARM/NRM trend and the oscillation of the top 100 m (i.e. 
Units I–III) that represent geomagnetic field behavior attest for 
the success of the relative paleo intensity results of the experiment 
(Figure 4).

Discussion of The Rock Magnetic and Paleomagnetic 
Results

The paleomagnetic data presented here, which were obtained 
during the OSP, as well as at the SOEST-HIGP Paleo magnetics 
Laboratory of the University of Hawaii, enabled to use the regional 
PSV deglacial master curve of Lougheed et al. [3] to identify the 
period of steep inclinations for the past 14 ka. A combination of 
such deglacial PSV curve with Fennostack led the authors of the 
work to assess the general patterns in inclination for the past 14 ka, 
and compare these to a general prediction of regional inclination 
for the last 14 ka, based on an extrapolation of the latitudinal and 
longitudinal NGP periodicity noted by Nilsson et al. [4]. These results 
suggest that the Fennoscandian PSV of the last 14 ka should reveal 
at least four recurring intervals of generally steeper inclination 
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due to a dominant NGP longitudinal band in Europe. The recent 
geomagnetic field intensity changes in Sweden between c. 13.5 
and c. 11.7 cal ka BP indicate that the high-resolution sedimentary 
data were that significant century-scale increases and decreases 
in relative field intensity between 14 and 11 cal ka BP and were 
associated with abrupt changes (i.e. spikes) in the direction of the 
geomagnetic field of the Earth’s magnetic vector.

Archaeomagnetic spikes younger than 14 ka were not 
reproduced in these multiple sediment cores study since the work 
of Snowball & Sandgren [5] and does not extend beyond 9 ka. A 
preliminary age–depth relationship based on interpolation between 
the inclination tie points is shown in the right side of Figure 5. The 
positions of four 14C determinations obtained from foraminifera 

(Exp. 347 scientists) are also shown for a rough comparison, and 
these are all older than the paleomagnetically inferred ages. The 
paleomagnetic results from Sweden, the Baltic Sea and NW Russia 
[3] on the other hand, similarly to the pseudo-thellier (PT) and 
RPI of Kruiver et al. [6] and Snowball & Sandgren [5] results, show 
century- to millennial-scale trends between 14 and 11 cal ka BP 
that are coherent with archaeomagnetic datasets from western 
Europe and Central Asia [7]. This agreement indicates that paleo 
intensity may be used as a relative dating technique across this 
region. The paleomagnetic (i.e. declination and inclination results 
of the Fennostack record, Lougheed et al. [3]) correlation to this 
curve (Figure 5) shows four oscillations of the inclination record 
from 11 back to 14 ka BP.

Figure 5: A deglacial paleomagnetic master curve for Fennoscandia, providing a dating template and supporting millennial-scale geomagnetic 
field patterns for the past 11–14 ka. On the left side of the diagram are the AF demagnetized inclination results of this study and on the right-
hand side of the figure are the inclination and declination results for Fennoscandia. The blue tilted lines represent the possible correlation 
of the geomagnetic spikes (i.e. A–A′, B–B′ C–C′ and D–D′) between the IODP Expedition 381, Site M0060 between the Baltic Sea and the 
Fennostack records [2,3].

One important observation is that the inclination dataset 
includes positive and negative inclinations. Relatively shallow 
inclinations, including negative values are characteristic of the 
deeper, relatively coarse-grained sediments that were probably 
deposited during the rapid wasting of the Fennoscandian ice-sheet 
(FIS). Finally, these deglacial PSV master curve findings indicate 
a strong correlation to the hypothesis of millennial-scale trends 
in geomagnetic pole motions motions in the region reported 
by Loughheed et al., [3]. In any case, the M0060 paleomagnetic 

dataset contains one of the highest resolution (i.e. .20 cm ka−1 
sedimentation rates) Holocene PSV datasets ever recovered from 
the marine realm [2].

The Age Model and Sedimentation Rates

In order generate an age model, 31 samples were measured 
(24 mollusk samples and seven benthic foraminifera samples) 
for radiocarbon (14C). The samples were analyzed at the Poznan 
Radiocarbon Laboratory (Poland), Lund Radiocarbon Dating 
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Laboratory and at the Zurich, Radiocarbon Dating Laboratory 
(ETH) in Switzerland, led by scientists of the University of Helsinki, 
and the Geologian tutkimuskeskus, Environmental Solutions group 
led by Dr Aarno Kotilainen, Finland. The interval 6 to 10 mcd was 
not recovered from Hole M0060A, so three samples from Hole 
M0060B were measured to increase resolution. They assumed 
the sediment surface to be modern (i.e. 2013, the year of coring). 
Calibrated radiocarbon (14C) years to calendar years before 
present (cal BP, BP = AD 1950) using OxCal 4.2 software [8] and 
the MARINE13 calibration dataset [9] without deviation from 
the Marine13 reservoir age. To justify this choice, they explored 
alternative reservoir ages. All subsequent ages discussed refer to 
calibrated ages in the years before 1950 BP.

The sedimentation rates were calculated and will be published 
in the literature. The mean sedimentation rate in Unit III (Hole A: 
79.52–23.84 mcd) is 2.95 cm a−1; the mean sedimentation rate in 
Unit II (Hole A: 23.84–6 mcd) is 0.53 cm a−1, and the sedimentation 
rate within these units is generally steady, with no evidence of 
abrupt changes in the sedimentation rate. In their age–depth 
model, Unit III top (23.84 mcd) was given an age of 15.9 ka. Their 
interpolation was based on the average sedimentation rate within 
Unit III. In a similar way, Unit II top (6.0 mcd) was estimated to be an 
age of 13.0 ka (+/−100 years). This estimation gives the minimum 
mean sedimentation rate for Unit I as 0.05 cm a−1 (or more). If this 
minimum rate is applied, the lower boundary of Unit I will be 8.4 
ka. This coincides relatively well with the discarded age of c. 9.2 ka 
from Hole B (7.21 mcd), which was interpreted to come from Unit 

I. These sedimentation rates results have been published already in 
the in the literature [10-15].

Correlation between Paleomagnetic 
Magnetostatigraphy, Rock Magnetic, Relative Paleo 
intensity (RPI), Paleo-Secular Variation (PSV) and 
Age-Depth Model for IODP Site M0060

It has been reported relatively recently a manuscript with 
the latest and most updated age-depth model coupled with the 
sedimentation rates of IODP 347 Site M0060 [16-19]. Here, it is 
displayed a composite figure including the detailed stratigraphic 
units and the age-depth model combined with the obtained 
sedimentation rates. Right: age–depth model for IODP site M0060. 
Radiocarbon age results are plotted against depth (m c.d.) and 
ages used in the model are indicated by black dots. F indicates 
that radiocarbon dates are obtained on foraminifera. Samples 
marked with a white/open diamond were omitted from the depth 
model. The age scale is given in years before present (cal. a BP). 
The dashed lines indicate the95.4% likelihood age range and the 
solid horizontal lines show the boundaries between Units I, II and 
III. Right: sedimentation rates (centimetres/year) for Units II and 
III based on the dated samples [20-26]. Samples gave scattered age 
estimates for Unit I and the unit shows indications of sedimentary 
reworking and redeposition, and depositional rates were therefore 
not calculated for this unit. Modified from Andren et al. [1] and 
Hyttinen et al [10].

Overall Conclusions

Figure 6: Left plot of the stratigraphy of IODP The Baltic Sea expedition 347 of site M0060.
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One important observation of the combined results is that 
relatively shallow inclinations were obtained from analyses of the 
deeper, relatively coarse-grained sediments that were probably 
deposited during the rapid wasting of the Fennoscandian ice-sheet, 
which may have implications for the interpretation of paleomagnetic 
data derived from glacial deposits [27-33]. The paleomagnetic 
(i.e. Inclination), relative paleo intensity (RPI) and Paleosecular 
variations (PSV) are restricted to the high paleomagnetic stability 
interval between ~9 meters corresponding to Unit 1 down to 
~95 meters corresponding to Unit 4 of the magnetostratigraphic 
record, See Figures 4-6. The most prominent archaeomagnetic 
jerks (i.e. oscillations) derived from these studies have occurred in 
Fennoscandia, with significant peaks in geomagnetic field intensity 
that have occurred at c. 11.7, c. 12.8, c. 13.2 and c. 13.5 cal ka BP [3]. 
The maximum field at 12.8 cal ka BP was associated with the most 
rapid change in the direction of the geomagnetic vector [34,35]. 
The recent geomagnetic field intensity changes in Sweden between 
c. 13.5 and c. 11.7 cal ka BP indicate that the high-resolution 
sedimentary data were that significant century-scale increases and 
decreases in relative field intensity between 14 and 11 cal ka BP and 
were associated with abrupt changes (i.e. spikes) in the direction of 
the geomagnetic field of the Earth’s magnetic vector [36-47].
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