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Introduction

Hydrological models are useful tools that have been used in 
recent years to provide a visual representation of hydrological 
processes as well as accurate flow simulations, especially when 
evaluating the effects of land-use change and climate variability 
on hydrological cycles and water balance components [1]. They 
are helpful tools for managers, water resource planners, and 
academicians in understanding complex hydrological and water 
quality processes at the watershed scale, as well as decision support 
tools. Simulated discharges aid in anticipating the effects of various 
land uses and soil management methods on water resources,  

 
sediment yield, and water quality [2,3]. They are also used to 
forecast floods and droughts and for irrigation management. To 
accomplish these goals, the model must show that it can accurately 
simulate hydrological processes and forecast hydrological 
responses in the studied watershed, such as floods, droughts, soil 
erosion, and water quality [4]. The Soil and Water Assessment Tool 
(SWAT) continues to receive a lot of attention among the numerous 
hydrological models [4,5].

The SWAT is a watershed-scale, continuous-time, and semi-
distributed hydrological model that incorporates meteorological 
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Abstract 
Hydrological models are becoming more and more important instruments for hydrological base infrastructure planning, design, and 

management. However, there is uncertainty on using because of the varying nature. The key to establishing the uncertainty of a quantitative model 
is to analyze the sensitivity test of a hydrological model. The determination of the most sensitive parameters was the key and first step for model 
calibration and validation at the watershed scale. It is the process of identifying the model parameters that exert the greatest influence on model 
calibration or on model predictions. The SWAT is a watershed scale, continuous-time, semi-distributed hydrological model that predicts stream 
flow, sediments, nutrient loading, and pesticide transport by incorporating meteorological data, soil properties, land cover/use, and management 
methods. The model requires calibration and validation. Before the calibration and validation works are started the sensitive parameters of the 
model has to be determined. The most sensitive SWAT hydrological model parameters are base flow alpha factor (ALPHA_BF), soil evaporation 
compensation factor (ESCO), available water capacity (SOL_AWC), groundwater delay (GW_DELAY), saturated hydraulic conductivity (SOL_K), 
initial curve number (II) value (CN2), shallow aquifer flow threshold (GWQMN), effective hydraulic conductivity in main channel alluvium (CH_K2), 
manning′s n value for the main channel (CH_N2) and surface runoff lag time (SURLAG). The sensitivity depends not only on the physiographic and 
meteorological characteristics of the study area, but also on the sensitivity analysis methodologies applied. 
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elements, soil characteristics, land cover/use, and management 
practices to predict mainly stream flow, sediments, nutrient 
loading, and pesticide transport [6]. It enables the simulation of 
spatial details by dividing the whole watershed into a series of 
sub-watersheds. Each sub-watershed then comprises hydrologic 
response units (HRUs) that represent homogenous soil properties, 
land cover, and slopes. Surface runoff, soil water, nutrient cycles, 
sediment, and crop yields are calculated within each HRU (i.e., 
the smallest element), and they are subsequently lumped into 
the sub-catchment using the weighted mean method and finally 
routed into river systems. Four types of water storage are assumed 
for simulation: surface runoff, soil water, and shallow and deep 
aquifers. 

Data collection, database generation, and model simulation 
are all preliminary stages in the development of the SWAT model. 
The next step is to examine the model’s sensitivity test before 
performing calibration and validation. The key to establishing the 
uncertainty of a quantitative model is to analyze the sensitivity test 
of a hydrological model [7]. If a little change in the input parameter 
causes the output to alter dramatically, the output is particularly 
sensitive to the input parameter. Individual input contributions 
to the uncertainty in the model output are determined through 
sensitivity analysis. It will be determined based on the hypothesis 
that the input parameters are relevant, that the parameters interact 
with one another, that the parameters are constant, or that the 
input parameters are insignificant to the output. Focusing on the 
sensitive factors can provide insights and forecast values, reducing 
model uncertainty. As a result, it tries to streamline complicated 
system models in terms of time, effort, and costs associated with 
their use.

The determination of the most sensitive parameters was the key 
and first step for model calibration and validation at the watershed 
scale. It is the process of identifying the model parameters that exert 
the greatest influence on model calibration or on model predictions. 
Generally, the sensitivity of the parameters used in a SWAT model 
is grouped into three categories: sensitive, less sensitive, and 
insensitive [8,9]. Sensitive parameters are the parameters that have 
a significant effect on the output. Less sensitive parameters are the 
parameters that have a little effect on the output in the presence 
of several changes in values, whereas insensitive parameters 
are the parameters that do not affect the output. These sensitive 
parameters will be selected based on the calculated value of t-stat 
and P-value. The larger the absolute value of t-stat and the smaller 
the p-value, the more sensitive the parameter is considered [10,11].

Most academicians and modelers face a challenge while 
simulating the SWAT model, since determining the sensitive 
parameters before calibrating and validating the model is 
essential. However, they spent a significant amount of time without 
considering the most sensitive parameters, resulting in a biased 

decision. Therefore, the objective of this paper was to review the 
most sensitive parameters of the SWAT model at a watershed level.

Hydrological Processes

Water can exist in three states: gaseous, liquid, and solid. Solar 
and planetary forces mostly circulate it on the planet Earth. Various 
hydrologic phenomena occur in nature as a result of this circulation. 
The hydrologic cycle is the ongoing chaining of hydrologic events. 
As a result, evaporation transports water from the ocean to the 
atmosphere as vapor, precipitation from the atmosphere to the 
land, and runoff from the land to the ocean. The hydrologic cycle, in 
general, is infinite since it has neither beginning nor end. As a result, 
hydrologic phenomena are exceedingly complicated, making them 
difficult to quantify and comprehend in depth. In the absence of an 
expert, they can be simplified using the system notion, which is a 
collection of interconnected pieces that constitute a whole [12,13].

The hydrological cycle is assumed to be a closed system in 
hydrology, meaning there are no gains or losses of water from the 
cycle. Unfortunately, the hydrologist will frequently encounter an 
open system that can only be characterized using a mass balance 
or water budget equation, in which the difference between input [I] 
and output (O) is proportional to the change in storage (DS) over 
time.

Because of these significant complexities, it is impossible 
to utilize exact physical principles to explain all of the physical 
processes occurring within the watershed. Instead, using the 
physical system approach, the work is focused on creating a 
model that represents the most significant processes and their 
interactions within the overall system. A conceptual understanding 
of the physical system will be important in determining the main 
processes and developing a simple but usable model. This form of 
study is known as conceptual modeling [12].

Overview of hydrological models

Mathematical models have become increasingly feasible for 
operational hydrology and water-resource system planning and 
management as a result of real-time forecasting, control, prediction, 
planning, and design [14]. They’re the instruments that decision-
makers can utilize to forecast and predict water supply and quality 
[15]. Some of these models may also forecast the effects of natural 
and anthropogenic changes on water resources, as well as quantify 
the resources’ spatial and temporal availability. The difficulties 
lie in selecting and applying these models to a specific basin and 
management strategy.

Models are becoming more and more important instruments 
for hydrological base infrastructure planning, design, and 
management. It’s widely utilized and has a significant impact on 
water management, policy development, and research [16]. Models 
are defined by the reason for application, which might range from 
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policy to scientific research. A model is a system methodology 
technique that aids in the definition and evaluation of several 
options that represent various possible compromises among 
conflict parties, values, and management goals [17].

Several models have been developed to simulate river basin 
water development and management regimes. Each of these models 
is built on a node-link network representation of the simulated 
water resource system. All include menu-driven graphics-based 
interfaces to make user interaction easier (18). These models are 
suitable for use in shared vision activities that include stakeholder 
participation in model development and simulations. One of the 
most often used hydrological models today is the soil and water 
assessment tool (SWAT) [19-23].

Description of SWAT model

SWAT model is one of the most recent models developed in 
the United States Department of Agriculture Agricultural Research 
Service during the early 1970s. It is a physically based watershed 
scale continuous time-scale model, which operates on a daily time 
step. It delineates a watershed, and sub-divides that watershed 
into sub-basins. In each sub-basin, the model creates several HRUs 
based on specific land cover, soil, and topographic conditions [24].

The SWAT is a watershed-scale, continuous-time, semi-
distributed hydrological model that predicts stream flow, 
sediments, nutrient loading, and pesticide transport by 
incorporating meteorological data, soil properties, land cover/use, 
and management methods [24]. By separating the entire watershed 
into a succession of sub-watersheds, it allows for the modelling of 
geographical features. Hydrologic response units (HRUs) represent 
homogeneous soil qualities, land cover, and slopes in each sub-
watershed. Each HRU (i.e, the smallest element) calculates surface 
runoff, soil water, nutrient cycles, sediment, and agricultural yields, 
which are then lumped into the sub-catchment using the weighted 
mean approach and then routed into river systems. Mostly for 
simulation, four forms of water storage are assumed: surface runoff, 
soil water, shallow and deep aquifers [25,26]. The model implies 
that shallow groundwater flows as base flow into the river channel 
or evaporates back into the soil, whereas deep aquifer flows exit the 
watershed system.

The model works with spatial and temporal data [26-28]. 
Spatial data include elevation, soil type, slope and land use/cover. 
For delineation, the watershed Digital Elevation Model (DEM) 
grid, digitized stream network files have to be loaded using the 
watershed delineation tool. Land use and land cover is also one 
of the most important spatial input data in SWAT Model. It will 
be reclassified according to requirement of the SWAT model. The 
SWAT model also requires soil data as a spatial input. For different 
layers of each soil type, the SWAT model requires distinct soil 
textural and physicochemical parameters such as soil texture, 

accessible water content, hydraulic conductivity, bulk density, and 
organic carbon content [29]. Meteorological datasets and stream 
flow data constitute the model’s temporal input datasets. The SWAT 
model requires stream flows as supplementary temporal input data 
for calibration and validation. Arc SWAT requires stream flow data 
as an input for calibration and validation [30,31].

Calibration and validation procedures reduce uncertainty and 
boost user trust in the model’s forecasting abilities. Using a larger 
data set for model calibration increases the model’s simulation 
and prediction confidence [32]. The Nash-Sutcliffe coefficient of 
efficiency (NSE) [33] and coefficient of determination (R2) are 
commonly used to calibrate and validate the SWAT model.

Model calibration entails changing parameter values until 
the model-predicted output closely matches the observed output, 
as judged by objective error functions [24]. A statistical test that 
reduces relative and average error or optimizes the NSE is used as 
the objective function for model calibration [34-36]. The calibrated 
parameters must, however, be within realistic ranges for the 
watershed in question [24]. Validation processes involve testing 
the calibrated model’s ability to predict specific outputs using 
various data sets. Validation determines if the model was calibrated 
exclusively for a specific dataset or if it accurately represents the 
watershed’s hydrological behavior [37]. If the validation dataset’s 
objective function is not met, the calibration and/or model 
assumptions should be reconsidered.

Sensitivity analysis of the SWAT model

The sensitivity analysis method combines Latin-Hypercube 
and One-factor-At-a-Time (LH OAT) sampling to provide a global 
sensitivity analysis for a large number of parameters with a small 
number of models runs. SWAT comprises 26 parameters for stream 
flow, 6 for sediment, and 9 for nutrients.

Sensitivity analysis is a crucial aspect of model creation, and 
it entails a thorough assessment of input parameters to improve 
model validation and provide direction for future research. 
According to [33], seven SWAT sensitive parameters were 
identified under various temporal simulations, including the flow 
recession constant or proportional to the riverbanks (Alpha BNK), 
the initial SCS runoff curve number for moisture condition II (CN2), 
effective hydraulic conductivity in main channel alluvium (CH K2), 
Manning′s “n” value for the main channel (CH N2), and groundwater 
delay time (GW Del). Due to similarity of soil properties, there are 
no differences observed on the sensitive parameters for different 
spatial data resolutions.

It is possible to evaluate model-sensitive parameters by a 
multiple regression system calculation. The sensitivity can be 
determined using the t-test, and the significance of parameter 
sensitivity is determined by the value of p. The closer the value of 
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p is to zero, the greater the significance and sensitivity. A model 
parameter is identified as a sensitive one when the value of p 
is less than or equal to 0.05. Following the same methodology, a 
study conducted by [38] reveals that, at the significance level of 
0.05, the sensitive calibration parameters found using three-year 
discharge data are ALPHA_BNK, GW_DELAY, and SURLAG; whereas 
the sensitive parameters of calibration using one year of data are 
ALPHA_BNK, CN2, ESCO, GW_DELAY and SURLAG; the sensitivity 
parameters of calibration using only one year of data are ALPHA_
BF, ALPHA_BNK, and SURLAG; sensitivity parameters of calibration 
using another only one year data are ALPHA_BNK, ESCO, GW_REVAP 
and SURLA. The study reveals that the sensitive parameters derived 
from the four model calibrations are different, which indicates the 
information content in the four calibration datasets is different.

The importance of SWAT sensitive parameters varies 
depending on land use, topography, and soil types [39]. According 
to the study conducted by [15], 15 hydrologic parameters and 
13 sediment and nutrient parameters in the SWAT model were 
sensitive. The sensitive parameters were namely, 15 hydrologic 
parameters such as (ALPHA_BF (Base flow alpha factor), 
CANMX (Maximum canopy storage), CH_K2 (Effective hydraulic 
conductivity in main channel alluvium), CH_N2 (Manning′s n value 
for the main channel), CN2 (SCS runoff curve number), EPCO 
(Plant water uptake compensation factor), ESCO (Soil evaporation 
compensation factor), GW_DELAY (Groundwater delay time), GW_
REVAP (Groundwater “revap” coefficient), GWQMN (Threshold 
depth of water in the shallow aquifer required for return flow to 
occur), SLOPE, SOL_AWC (soil available water content), SOL_K 
(Soil saturated hydraulic conductivity), SOL_Z (Depth from soil 
surface to bottom of layer), SURLAG (Surface runoff lag time) and 
13 sediment and nutrient parameters (CH_COV (Channel cover 
factor), CH_EROD (Channel erodibility factor), NPERCO (Nitrate 
percolation coefficient), PHOSKD (Phosphorus soil partitioning 
coefficient), PPERCO (Phosphorus percolation coefficient), RCHRG_
DP (deep aquifer percolation fraction), SOL_LABP (initial soluble 
P concentration in soil layer), SOL_NO3 (Initial NO3 concentration 
in the soil layer), SOL_ORGN (Initial organic N concentration in the 
soil layer), SOL_ORGP (Initial organic P concentration in soil layer), 
SPCON (Linear parameter for calculating the maximum amount of 
sediment that can be reentered during channel sediment transport 
routing), SPEXP (Exponent parameter for calculating sediment 
re-entered in channel sediment routing), USLE_P (USLE equation 
support practice factor). The study revealed that the SWAT output 
variables were most sensitive to the hydrologic parameters. It also 
showed that water quality variables were potentially capable of 
contributing to the identification of water quantity parameters 
within the SWAT model, and a single parameter was correlated to 
multiple variables.

[40] studied the calibration and validation of the SWAT model, 
as well as the estimation of water balance components in the 

Shaya mountainous watershed in Ethiopia and found the following 
sensitive parameters among twenty-seven flow parameters: The 
groundwater parameters were found to be more sensitive to stream 
flow than the other sensitive flow parameters [40]. The most 
effective hydrologic parameters for the simulation of stream flow 
were found to be Soil evaporation compensation factor (ESCO), Soil 
depth (SOL Z), Threshold water depth in the shallow aquifer for 
“revap” (REVAP-min), Maximum potential leaf area index (BLAI), 
Available water capacity (SOL AWC), Maximum canopy storage 
(CANMX), Groundwater Delay (GW DELAY), Saturated hydraulic 
conductivity (SOL K), Surface runoff lag time ( SURLAG), Deep 
aquifer percolation fraction (RCHRG_DP), Initial curve number (II) 
value (CN2), Base flow alpha factor (ALPHA_BF), and Threshold 
water depth in the shallow aquifer for flow (GWQMN).

According to the study conducted by [41], for the sensitivity 
analysis and evaluation of forest biomass production potential using 
SWAT model on local sensitivity analysis of seven crop parameters 
namely radiation use efficiency (kg/ha)/(MJ/m2) (BIOE), potential 
maximum leaf area index for the plant (BLAI), fraction of growing 
season at which senescence becomes the dominant growth 
process (DLAI), fraction of the maximum plant leaf area index 
corresponding to the 1st point on the optimal leaf area development 
curve (LAIMX1), fraction of growing season corresponding to the 
1st point on the optimal leaf area development curve (FRGRW1), 
plants potential maximum canopy height (m) (CHTMX), and 
maximum rooting depth for plant (mm) (RDMX) to predict forest 
biomass production and determined three parameters: DLAI , BIOE 
and BLAI as sensitive to predict forest biomass production. DLAI 
and BIOE are moderately sensitive and BLAI shows low sensitivity 
[41]. The sensitivity analysis conducted may provide baseline 
information about the sensitivity of seven crop parameters of SWAT 
to influence forest biomass production.

During model calibration for the Laou watershed, parameters 
linked to topographical variation and land use were more 
sensitive; also, parameters related to soil and groundwater were 
more sensitive for modelling this basin [26]. The analysis of these 
different physical and geomorphological (lithological) parameters 
allows a better understanding of the causes of variations in 
the hydrological regimes of the studied watershed area and, 
consequently, their contribution to the genesis of floods. Their 
interaction determines the variability of hydrological phenomena 
in time and space. Accordingly, from the selected 28 sensitive 
parameters, six parameters were identified as the most important 
sensitive parameters. The sensitive parameters were the initial 
SCS runoff curve number for moisture condition II (CN2), soil 
evaporation compensation factor (ESCO), available water capacity 
of the soil layer (SOL_AWC), base flow alpha factor (ALPHA_BF), 
manning′s n value for the main channel (CH_N2), Effective hydraulic 
conductivity in main channel alluvium (CH_K2) [26].
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Summary

Even though models are simplified versions of reality, they all 
go through some form of conceptualization, and their outcomes 
are only as realistic as the model assumptions and algorithms, the 
quality and quantity of inputs, and parameter estimations. Before 
deploying models for their intended purposes, it is critical to create 
a system that increases the quality of model estimates based on 
observable information available to the modeler. Identifying values 
of model parameters so that model simulations closely reflect 
actual behavior is a popular technique to perform this useful task. 
However, during selecting sensitive parameters, one of the most 
significant tasks is to reduce the number of parameters that should 
be carried for a specific task.

Although SWAT is a physically based model, some phenomena 
are represented by empirical functions, such as, runoff, for that 
reason CN is important during the modelling. ESCO soil evaporation 
compensation factor, this parameter enables to vary the quantity of 
water that can be extracted from the ground to meet the evaporative 
demand; the CH_K2 parameter influences the exchanges between 
the river and the groundwater and therefore makes the watercourse 
less impermeable.

According to various studies, the most sensitive SWAT 
hydrological model parameters are base flow alpha factor (ALPHA_
BF), soil evaporation compensation factor (ESCO), available water 
capacity (SOL_AWC), groundwater delay (GW_DELAY), saturated 
hydraulic conductivity (SOL_K), initial curve number (II) value 
(CN2), shallow aquifer flow threshold (GWQMN), effective hydraulic 
conductivity in main channel alluvium (CH_K2), manning′s n 
value for the main channel (CH_N2) and surface runoff lag time ( 
SURLAG). 

The sensitivity of the SWAT model’s hydrologic parameters 
depends not only on the physiographic and meteorological 
characteristics of the study area, but also on the sensitivity analysis 
methodologies applied. Variations in the number of iterations, the 
location of the fluviometric station, and the duration of historical 
records can also alter sensitive parameters.
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