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Introduction
It has become standard in marine species distribution 

modelling (SDM) studies to use oceanographic proxies for prey, as 
hydrodynamic processes often are the main drivers of marine animal 
feeding habitats [1-3]. Yet, oceanographic proxies are typically  
used because of the fragmented nature of available surveyed prey  

 
data which makes them inappropriate for use in SDM. However, by 
relying entirely on the use of oceanographic proxies may limit the 
transferability of SDM as prey may constitute an important aspect 
of the realized niche [4] and could limit the ability to use the SDM 
for forecasting distributions because the relationships between the 
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Abstract 
Species distribution modelling (SDM) often relies on hydrodynamic processes as proxy for prey items, when estimating animal distributions 

at sea. This is due to the fragmented nature of prey data available, which makes the data ill-suited for SDM. However, the incorporation of prey data 
remains an unresolved potential with the outcome of studies so far being ambiguous. To assess the potential effect of including modelled data on 
prey density in marine species distribution models developed solely on dynamic variables we used a dynamic modelling framework MARAMBS for 
prediction of the fine-scale densities and movements of seabirds in the Barents Sea. We tested the effect of incorporating synoptic modelled data on 
calanoid zooplankton from the SINTEF SINMOD model into this SDM framework for the planktivorous Little Auk (Alle alle). Copepods constitute the 
main prey of the little auk which breeds in the northern parts of the Barents Sea and makes seasonal migrations out of the region to/from wintering 
grounds further south off the Norwegian coast. 

The approach consisted of a three-step process. Hydrodynamic variables were derived from a 3d oceanographic model developed, while prey 
information was derived from the SINMOD model. The derived information was coupled with observation data on the Little Auk in a generalized 
additive model (GAM) to predict the spatio-temporal distribution of the auk. Predictions were made in three-hour time steps, yielding a spatial 
timeseries on species density across the study area. GAMs were conducted with and without prey information to estimate model improvements. 
Furthermore, predicted species densities from GAMs were converted into spatio-temporal habitat suitability index (HIS), which served as a prey 
information for an Agent Based Model (ABM), simulating the migratory patterns of the Little Auk in the Barents Sea. Simulations were subsequently 
performed with initial HSI (no prey), prey HSI (HSI with prey information) and a simulation with baseline HSI and prey information separate but 
parallel. Simulations were validated against observations using Goodman and Kruskal’s gamma. 

Results showed that both GAM’s and ABM performed significantly better with the inclusion of prey information. The most significant 
improvement was seen when incorporating prey HSI, where the prey information was included in the GAM and used to drive predicted movements 
of Little Auks by the GAM. Thus, the results show that the addition of a prey item as a predictor variable is highly likely to improve SDM predictions 
in comparison with existing models driven alone by oceanographic variables. At the same time, replacing oceanographic predictors with the prey 
information resulted in poorer model performance indicating inefficient detection of prey patches by the seabirds. 
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proxies and prey distribution or density may change in a changing 
climate [5-7]. It is also worth stressing that the predictive power 
of hydrodynamic predictor variables obtained from limited in situ 
and modelled oceanographic data may not represent the fine-scale 
processes important to foraging, such as processes that aggregate 
prey into concentrations sufficient to trigger predator feeding 
activity [8, 9]. 

The enhancement of marine habitat and species distribution 
models by incorporation of prey data remains an unresolved 
potential, as results of studies testing the potential have been 
ambiguous. Torres et al. [10] showed that incorporating prey data as 
an explanatory variable into fine-scale models of habitat selection 
of bottlenose dolphins within a heterogeneous coastal environment 
did not improve predictive power. Conversely, several studies have 
demonstrated that the use of prey data improved the performance 
of ecological models for fishes [11-13], sharks [14], birds [15] and 
cetaceans [16,17]. However, recently [18] made formal assessments 
of the value of using modelled zooplankton prey versus physical 
variables for predicting bowhead whale (Balaena mysticetus) 
habitat use. They concluded that the best model included 
bathymetry and modelled hydrodynamic and prey variables. 
Inclusion of dynamic variables in SDMs produced predictions that 
reflected temporal dynamics evident from the survey data. Due 

to the stability of bowhead distribution bathymetry was the most 
influential variable in models that included that variable.

In order to assess the potential effect of including modelled 
data on prey density in species distribution models developed 
solely on dynamic variables we used a dynamic modelling 
framework MARAMBS for prediction of the fine-scale densities and 
movements of seabirds in the Barents Sea [19]. We tested the effect 
of incorporating synoptic modelled data on calanoid zooplankton 
from the SINTEF SINMOD model [20,21] into this SDM framework 
for the planktivorous Little Auk (Alle alle). Copepods constitute the 
main prey of the little auk which breeds in the northern parts of the 
Barents Sea and makes seasonal migrations out of the region to/
from wintering grounds further south off the Norwegian coast [22]. 

Method

Study area and species

The models used for species distribution modelling in this 
research was developed in the project Marine Animal Ranging 
Assessment Model Barents Sea [19], which focused on the species 
distribution of the Little Auk (Alle alle) in the Barents Sea, which 
subsequently also was the study area used in the current research 
(Figure 1).

Figure 1: Map of study area including bathymetry.
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Modelling framework	

We used the MARAMBS model framework which incorporates 
fully integrated 3-D hydrodynamic models, dynamic habitat 
suitability models and agent-based models [23]. For detailed 
information on hydrodynamic, static, and observational data, 
please see MARAMBS report [19].

Observational data	

Observational data on the Little Auk was derived from the 
Norwegian Ecosystem Surveys in the Barents Sea (Prozorkevich & 
Sunnanå, 2017), which covered surveys from the period 2004 to 
2016. 

Hydrodynamic model data

The study included data on hydrodynamic conditions in the 
study area over the period 2004-2016, which was derived from 
using DHI’s 3-dimensional flexible mesh model package MIKE 3 
FM https://www.mikepoweredbydhi.com/products/mike-3,which 
includes both meteorological, tidal and oceanographic effects. 
Modelled oceanographic data included sea surface temperature, 
salinity and ice cover, along with a measure of distance to the Polar 
Front. 

SINMOD configuration and plankton modelling

Zooplankton data have been produced by SINMOD, a fully 
coupled hydrodynamic-ice-chemical-biological model system. 
The hydrodynamic component of the model system, which is 
responsible for calculating the basic physical properties of the 
ocean like velocity, water temperature and pressure, is based on the 

so-called primitive Navier-Stokes equations. The model is forced by 
atmospheric data: wind, heat exchange, tides and freshwater run-
off from land [20]. The ice model is like that of Hibler [24]. The ice 
momentum equation is solved together with an equation for the ice 
internal stress, using the elastic-viscous-plastic (EVP) dynamical 
model of [25]. 

The ecosystem model component of SINMOD is primarily 
nitrogen (NO3, NH4) and silicate based. It is formulated in a Eulerian 
framework. The state variables describe basic components of the 
microbial loop food web (bacteria, heterotrophic nanoflagellates, 
diatoms and autotrophic flagellates, ciliates) as well as two key 
mesozooplankters: the Atlantic Calanus finmarchicus and the 
arctic C. glacialis. SINMOD operates with 2 boxes for detritus, 
one fast and one slow sinking. An explicit bacterial component is 
included into SINMOD, which also includes DOC dynamics to assess 
losses resulting of algal leakage and zooplankton sloppy feeding 
(leading to breaking of algae cells under conditions with high food 
concentration).

Growth of phytoplankton is simulated as a function of available 
light and nutrients [21]. Light penetration beneath ice is calculated 
following a model by Pegau et al. [26]. In ice covered waters, primary 
production in each grid cell is calculated as the sum of production 
under ice covered part and the open water part of the grid cell. The 
model domain of SINMOD with 4 km horizontal resolution is shown 
in Figure 2. The model is nested to a regional model setup with 20 
km horizontal resolution. More information about model setup and 
forcing can be found in Wassman et al. 2021 and [27].

Figure 2.3 : SINMOD 4km model domain. Western Barents Sea is divided into polygons used to compare data from SINMOD with observations 
presented in Delpadado et al. (2020). The different polygons are South East (SE), Thor Iversen Bank (TIB), Bear Island Trench (BIT), Hopen 
Deep (HD), Central Bank (CB), Great Bank (GB), Franz Victoria Through (FVT), Svalbard North (SvN), and Svalbard South (SvS).
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Output from SINMOD have been saved daily for use in the 
MARAMBS framework from simulations with both 20 km and 4 km 
spatial resolution.

Habitat suitability modelling/Prediction using 
generalized additive modelling

The benefits of using information on prey distribution was 
initially tested using a generalized additive modelling approach 

for assessing the species distribution of the Little Auk in a Hurdle 
setup. Initially, the Hurdle model for the species distribution was 
made using dynamic hydrodynamic conditions as explanatory 
variables. The initial SDM was based on the SDM used previously in 
the MARAMBS project [19]. This model included the environmental 
variables listed in Table 1, as explanatory variables and species 
densities in each transect segment as dependent variable. 

Table 1: Environmental variables included in modelling. The depth at which each oceanographic variable was extracted from the hydrodynamic 
model is indicated.

Environmental variables Baseline Extended 4km Extended 20km

Distance to Polar Front 20 m X X X

Salinity 20 m X X X

Temperature 20 m X X X

Ice cover X X X

Calanus concentration 4km   X  

Calanus concentration 20km     X

The model was fitted as a generalized additive mixed model 
(GAMMs) using the “mgcv” R package (Wood, 2006). The presence-
absence component of the hurdle model was fitted with a binomial 
distribution, while the positive component was fitted a quasipoisson 
distribution. Each explanatory variable was fitted as a smooth term 
(k = 3) and the correlation structure was fitted using the time of 
observation. Potential residual autocorrelation was analyzed using 
the gam.check function in “mgcv”. 

Next, the SDM was expanded using the modelled distribution 
of Calanus derived from the SINMOD model. As the SINMOD model 
data was available in both 4 km and 20 km resolution, a first set 
of models were developed to estimate which resolution added 
the most, if any, explanatory power to species distribution model 
(SDM). This was completed on a single year (2016) of data, to 
speed up the modelling process. Secondly, the most appropriate 
resolution was then extracted to a full 9-year data series and a new 
SDM was developed, based on the existing model.

Subsequently, predicted densities were mapped based on 
both the initial and the extended model. The performance of each 
model was then evaluated by correlating the predicted densities 
to the observed densities using Goodman and Kruskal’s gamma. 
Comparisons were conducted on different spatial scales to estimate 
optimal scale for comparisons.

Agent based modelling

To expand the assessment of the potential effect of prey 
inclusion in SDM, we applied the prey information to an Agent Based 
Model (ABM) designed to simulate the migration patterns of the 
Little Auk in the Barents Sea. The ABM called CBIRD (for Seabird) 
was originally designed and implemented in the project MARAMBS, 

to simulate the dynamic species distribution of multiple seabird 
species in the Barents Sea on a fine spatiotemporal scale [19]. The 
backbone of CBIRD is a dynamic bioenergetic module, which has 
profound impacts on a seabird’s decision to move on both short and 
long spatiotemporal scales [19] (DHI, 2016). The ability to find and 
capture prey for a seabird is therefore essential to the performance 
of the bioenergetic module, and consequently movement and 
dispersal of CBIRD agents in the model [19]. A key assumption in 
the original implementation of CBIRD is that the utilized Habitat 
Suitability Index (HSI) does not only represent areas that birds 
actively seek and intrinsically prefer to stay in, but also that the 
value of HSI was directly linked to the agent’s probability of finding 
and capturing prey items. However, this assumption has historically 
been a topic of much debate seeing as HSI originally did not include 
prey items as a predictor variable.

Prey information was incorporated into CBIRD by three overall 
approaches on two different spatial scales. First, normalized 
spatiotemporal prey densities (0-1) of Calanus were used to 
replace the original habitat suitability index (HSI) for little auk, to 
investigate if prey as a single variable can replace the composite 
HSI variable. Secondly, normalized spatiotemporal prey densities 
were added as a new input variable in the CBIRD model alongside 
the original HSI input variable. Thirdly, as a new updated Habitat 
Suitability Index map where the HSI was derived from the previous 
SDM using GAM analysis, where predictions were normalized to an 
index from 0 – 1 indicating areas of high and low habitat suitability. 

The following treatments were established to determine the 
best method for including dynamic Calanus densities within the 
existing architecture of the CBIRD model (Table 2).
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Table 2: Table of treatments done to the existing calibration of the CBIRD model for Little Auk. Note that Treatment ID’s in the far-right column will 
be used in the main text as reference to the specific treatments in following sections.

# Treatment Description Calanus HSI Treatment ID

1 This treatment replaces the original HSI input with normalized1prey densities of Calanus 
using the 4km resolution data set Yes, 4 km None P04

2 This treatment replaces the original HSI input with normalized prey densities of Calanus 
using the 20km resolution data set Yes, 20 km None P20

3 This treatment includes the original HSI input along with normalized prey densities of 
Calanus using the 4km resolution data set. See main text for details on this treatment. Yes, 4 km Original HP04

4 This treatment includes the original HSI input along with normalized prey densities of 
Calanus using the 4km resolution data set. See main text for details on this treatment. Yes, 20 km Original HP20

5 This treatment uses the new HSI input which has been developed in this study, which 
includes Calanus densities (20km) as one of its Predictor variables None This study NHSI

1Normalized values of Calanus densities were obtained by normalizing predicted densities for each timestep to the 95th and 5th percentile of the 

given timestep.

The treatments, P04 and P20, were made to investigate the 
hypothesis that the dynamic density-distribution of Calanus is 
sufficient to accurately predict the distribution of Little Auk in time 
and space, or in other words; is HSI even required when Calanus 
densities are available as direct model input. Both the 4km and 
20km Calanus datasets were used to understand which resolution 
is best suited for the underlying triangular flexible mesh resolution 
of the CBIRD model. No other parameter in the model was changed 
for these treatments.

The treatments, HP04 and HP20, were established to clearly 
distinguish Calanus density-distributions from the Habitat 
Suitability Index, by including Calanus as a separate input 
variable next to HSI. The treatment thus required a change to the 
CBIRD formulation of how an agent detects Calanus as well as its 
probability of catching Calanus. The original base formulation for 
probability of Calanus detection, P_d, in CBIRD is given in Eq. 1 and 
adapted from Esposito et al. [28].

Pd =1-e-γ*Ap 	 Equation 1

Where γ is a user-defined constant denoting the search 
efficiency of the agent and A_p is the relative Calanus abundance. 
The relative abundance has up until now has been represented by 
the Habitat Suitability Index, but for treatments HP04 and HP20 the 
variable A_p is instead linked to the normalized Calanus densities 
of 4km and 20km resolution. Once Calanus has been detected in 
the given timestep, the value of, P_d, is further used in the model 
to calculate how many of the foraging dives the agent will try to 
make in the given timestep duration that are successful. This is 
done by sampling from a binomial distribution with the probability 
of success being denoted by P_d and with n trials, where n is the 
model calculated number of dives the bird will attempt. The 
number of dives an agent will attempt depends on the size of the 
model timestep and its current satiation level, e.g. a hungry CBIRD 
agent will try to make more dives than an agent that is almost full.

Calanus ingestion in turn directly affects the satiation level 
(SL, range: 0-1) of the agent, which is a key parameter in CBIRD. 
The satiation level determines a number of important movement 
decisions in CBIRD, which can be summarized as follows:

•	 An agent will go into REST mode when Satiation Level is 
above a user-defined threshold. When in REST mode, the agent 
has no active movement and is dispersed via drifting relative to 
currents and winds only.

•	 An agent will be less likely to go into FLIGHT mode on a 
full stomach, but rather wait until consumed Calanus has been 
digested. 

•	 When an agent achieves a Satiation level above 0.5, it will 
store the location in its memory as the place it will return to if 
future habitat does not produce the same foraging success.

No direct directional response to the new Calanus density was 
implemented, meaning that an agent cannot detect a gradient in the 
Calanus abundance beyond its sensory capacity and decide to follow 
it towards a higher abundance. An agent can however still detect 
gradients in the Habitat Suitability Index and move towards higher 
HSI. This logic follows the hierarchical patch dynamics paradigm 
[29] which implies that seabirds have an intrinsic understanding of 
their environment and select habitats which are beneficial to their 
fitness but may not necessarily be able to fully utilize the highest 
available Calanus densities.

The final treatment of NHSI, the new and updated Habitat 
Suitability Index, which includes Calanus densities as a predictor 
(this study) was used instead of the original HSI input. This 
approach is, relative to the original formulation and architecture of 
the CBIRD model, seen as the most fitting, seeing as there’s always 
been an underlying assumption in the design of the CBIRD model 
that HSI was also a proxy for where to find prey. 
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To assess the effect of each Treatment on the existing level of 
calibration, the Gamma Rank correlation coefficient for August and 
September observations was calculated on 10 different spatial scales 
for each Treatment and compared to the most recent calibration 
(without Calanus) for Little Auk in the year of 2016. To establish 
whether the change in calibration was considering statistically 
significant, a Student’s Paired T-test was made to compare the 
correlation coefficients between baseline and treatment.

 For further analysis relative to investigate changes in 
seasonal distribution and migration patterns, mean densities 
were calculated for the Autumn (Aug-Oct) and Winter (Nov-Dec) 
seasons, and compared relative to the calculated population loss 
due to migration.

Results

Evaluation of SINMOD results

Model output from SINMOD have previously been validated 
by Lee et al. [30] and Vernet, et al. [27], but last validation of 
zooplankton distribution was done by Ellingsen et al. [31] . In this 
study we have used observations reported on Dalpadado et al. [32] 
and compared onset of spring bloom start day and zooplankton 
biomass (Table 2).

The estimated start date of spring bloom from SINMOD 4 km 
resolution and satellite data are overall in good agreement, with 

some exceptions. The model predicts a later start of the spring 
bloom in TIB (Figure 2.3) both in 2013 and 2016. The satellite data 
show a very late bloom start for the FVT (Figure 2.3) polygon in 
2013 that is not captured by the model. In 2016, bloom start day 
estimates are very similar in this region. T In 2016, the satellite 
estimate gives also a later start than SINMOD in SvN (Figure 2.3) 
in 2016.

Mesozooplankton distributions

Observations of mesozooplankton biomass within the different 
polygons (Figure 2.3) are found in Dalpadado et al. [32] and 
compared to model estimates in Table 2. The spatial and temporal 
variability are higher in the observational data compared to the 
model data. Since the model results used estimates are averaged over 
the month (August), while the observations represent the biomass 
on the sample day, and less variability in the model estimates 
should thus be expected. Distributions of mesozooplankton 
biomass in 2013 and 2016 are shown in Figure 2.10. Simulated 
biomass of mesozooplankton is lower over the Svalbard Bank, the 
Central Bank and the Great Bank than in the deeper regions and this 
pattern is also found in measurements [32]. Observation data show 
generally higher biomass in 2016 compared to the 2013 data. The 
model estimates are more similar for the two years. The maximum 
simulated biomass in August, however, is generally higher in 2016 
than in 2013 (Figure 2.10). 

Figure 2.10: Predicted densities of Little Auk using models including the 20 km Calanus grid (left), 4 km Calanus grid (middle) and no 
Calanus.

Table 2.2: Results from SINMOD (4km model) and measurements from Dalapado et al. [32], data from supplementary document) for the different 
polygons shown in Figure 2. SINMOD provide biomass estimates in gC and a conversion factor of 0.525 has been used to convert to g dry weight [36].

Year SW BIT TIB HD SvS SvN CB GB FVT Source

Mesozooplankton biomass (g m-2 dry weight*)

2013 7.3 7.5 4 3.7 3.3 6.8 1.8 3.2 8.9 Dalapado et al. [32]

2013 4.5 5 5.1 4.9 4 3.8 3.2 5.4 5.3 SINMOD

2016 12.5 10.5 4.9 7.2 4.3 12.7 3.6 2.9 7.7 Dalapado et al. [32]

2016 5 5.6 5.4 4.8 3.7 3.8 4 5.3 5.7 SINMOD
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Comparing Calanus model resolution

The baseline SDM and models with two Calanus resolutions 
were fitted for the 2016 data. Generally, the three models displayed 

the same R2 value (Table 3). The model with no Calanus data 
included exhibited the lowest degree of variance explanation, 
followed by the 4km resolution and then the 20 km resolution. 

Table 3: Overview of model results from three habitat models, with either no Calanus data, Calanus in 4 km grid resolution or 20 km grid resolution.

Parameter No Calanus 4 km grid 20 km grid

Adjusted R2 0.03 0.03 0.03

Sample (n) 9040 9040 9040

Deviance explained 37.70% 39.80% 40.90%

Parametric terms Estimate Estimate Estimate

(Intercept) -5.341 -5.294 -6.998

Smooth terms edf edf edf

s(Salinity, 20 m depth) 1.980* 1.942* 1.952*

s(Temperature, 20 m depth) 1.938* 1.886* 1.830*

s(Distance to front, 20m depth) 1.959 1.926 1.975

s(Ice cover) 1.992* 1.995* 1.995*

s(Calanus 4 km resolution) - 1.986* 1.995*

*p-value < 0.05

Comparing the three models using an Analysis of Variance 
(ANOVA), both models using Calanus showed a significant lower 
degree of residual deviance than the model with no Calanus data. 
Additionally, the model using the 20 km grid resolution also had a 
lower degree of residual deviance than the model using the 4 km 
grid resolution, however the difference was not significant (p > 
0.05). 

Despite the lack of significant difference in residual deviance, 
predictions of density from each model varied greatly (Figure 
2). The large aggregations predicted in the no Calanus model 
in the northern part of the study area were not present in both 
models which applied Calanus data. In the no Calanus model, this 
was seemingly an effect from the Ice predictor, which were less 
pronounced in the Calanus models. Between the Calanus models, 
there were a less effect on the distribution predicted, although the 
densities were predicted to be larger in the 20 km grid resolution, 
than in the 4 km resolution. Thus, based on the predictions above 
and the summary statistics on the models, the addition of Calanus 
did improve the habitat models. Additionally, while the difference 
between the 20 km grid resolution and the 4 km grid resolution was 
not very large, there was an indication of the 20 km grid resolution 

was better suited for the models than the 4 km grid resolution. 

Dynamic Habitat Predictions

The 20 km grid resolution plankton data was selected as adding 
most information to the 2016 model data. Subsequently, this data 
was extracted for the years 2004-2014 and was used to update the 
original MARAMBS model for Little Auk, which covered the same 
time span. Results from the updated model and original model can 
be seen in Table 4. As expected, the addition of the plankton yielded 
a slight increase in model fit. The updated model was then used to 
predict hourly densities across the study area, using the dynamic 
hydrodynamic and Calanus predictors. This yielded a spatial time 
series of densities, which were subsequently transformed into a 
habitat suitability index.

Agent based modelling

The P04 and P20 treatments both resulted in a significant 
reduction (p < 0.01) in correlation coefficient between the existing 
baseline calibration and the two treatments (Figure 3). The drop 
in correlation was most profound in the month of August, but 
September was consistently below original values as well. 
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Figure 3: Gamma Rank Correlation for P04 (left group), and P20 treatments (right group). Red lines denote the baseline correlation while 
blue denotes the treatment. The number denotes the number of pairs compared within each spatial scale. Both treatments produced a 
significantly reduced correlation for both August and September 2016.

The treatments, HP04 and HP20 proved to be performing 
better (Figure 4) than the P04 and P20-treatments, however HP04 
still resulted in a significant drop in correlation between baseline 
and treatment (p < 0.01) during August and across all scales. For 
September, HP04 performed slightly better on small spatial scales, 
however the differences were not tested to be significant (p > 0.05). 
For HP20 there was a similar drop in correlation on small spatial 
scales (10-20km), but generally improved correlation on larger 

spatial scales. However, the differences for August were tested to 
be insignificant (p > 0.05). For September there was an almost 
consistent improvement in the correlation, which also tested 
to be statistically significant (p < 0.01). The results for HP20 are 
consistent with the earlier findings during the GAM revision, which 
also had the biggest increase in predictive power with the 20km 
resolution dataset. 

The final treatment (NHSI) using the new and updated HSI 
revealed a statistically significant (p < 0.01) high increase in the 
Gamma Rank correlation across nearly all spatial scales for August 

and September 2016 (Figure 5). Most noteworthy is the large 
increase in correlation for small spatial scales (10-20km) relative 
to previous calibrations.

Figure 4: Gamma Rank Correlation for HP04 (left group), and HP20 treatments (right group). Red lines denote the baseline correlation while 
blue denotes the treatment. The number denotes the number of pairs compared within each spatial scale.
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Figure 5: Gamma Rank Correlation for NHSI treatment. Red lines denote the baseline correlation while blue denotes the treatment. The 
numbers denote the number of pairs compared within each spatial scale. Correlations for treatments for both August and September were 
found to be significantly higher (p < 0.01) than baseline correlations.

As the NHSI treatment produced by far the largest increase in 
correlation, this treatment was selected for further inspection and 
analysis relative to initial model. Mean densities during the autumn 
(Aug-Oct) and winter (Nov-Dec) were calculated and compared to 
the results previously reported for Little Auk during the MARAMBS 
projects [19]. 

As seen in Figure 6, the NHSI treatment have a rather profound 
effect on the predicted distribution of Little Auks. The population 
from West Spitsbergen have moved further west, whereas the 

Bjørnøya population is seeking further northeast, rather than due 
north as they did in the initial predictions. The majority of agents 
from Franz Joseph Island has become ‘faster’ and more directional 
in their westward migration. Overall, the distribution in the fall 
has been become less aggregated than previously predicted, with 
many smaller high-density patches of Little Auk, which upon visual 
comparison with the 90% GLS Logger kernel densities from the 
SEATRACk project (www.seapop.no/en/seatrack/) seem to have a 
better fit.

By winter (Figure 7) a relatively larger part of population 
originating from the colonies in West Spitsbergen and Bjørnøya 
has migrated outside of the domain, which can be seen by the 
lower densities in these areas. The migration of colonies in the 
most northern Franz Joseph islands have however slowed by the 

increased densities relative to the initial baseline prediction. The 
changes in autumn and winter distribution patterns can also 
readily be seen in the ‘loss’ of the simulated agent population due to 
the short- and long-term migration of agents during the simulation 
(Figure 8).

Figure 6: Mean densities during Autumn of the previously reported baseline (left) and the NHSI treatment (right). Purple polygons denote 
the 90% Kernel densities from GLS logger data from the SEATRACK project (www.seapop.no/en/seatrack/).
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Figure 7: Mean densities during Winter of the previously reported baseline (left) and the NHSI treatment (right). Purple polygons denote the 
90% Kernel densities from GLS logger data from the SEATRACK project (www.seapop.no/en/seatrack/).

Figure 8: Population loss due to migration in the NHSI treatment relative to the initial (100%) population size in the CBIRD model for Little 
Auk.

As it is apparent from Figure 8, the new Habitat suitability has 
resulted in an earlier onset and steeper decrease in population from 
end September until end November. The reason for this is likely 
due to the spatial shift in HSI, which is now relatively higher at the 
western boundary of the Barents Sea and is thus allowing westward 
migration from the Barents Sea through areas of enhanced HSI. At 

the same time, the new HSI limits high latitudinal migration of some 
of the colonies from Franz Joseph Islands. This can be explained by 
the increase of HSI in the vicinity of Franz Joseph Islands (Figure 
9), which in turn results in the agents not migrating very far from 
Franz Joseph during their flightless migration period.
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Figure 9: Autumn average (Aug-Oct) of the NHSI index (Left) and average difference between the original and new HSI map during August-
October (Right). Blue colour bands marks areas have a reduced predicted HSI value relative to the original HSI predictions, whereas red 
colour bands marks areas where predicted habitat suitability has increased.

Discussion 

Both the habitat model and the agent-based model in the 
MARAMBS SDM framework benefited from the inclusion of 
modelled Calanus prey as a predictor variable. However, the effect 
was not the same for both models and varied with usage. 

Performance of habitat suitability model

For the habitat model, the addition of information on Calanus 
availability increased the model fit slightly, with a tendency for a 
coarser grid (20 km grid) having a better fit. This is likely due to a 
‘loose’ association between schooling zooplankton and Little Auk 
in offshore areas and it corroborates the general view of inefficient 
detection of prey by seabirds feeding on patchily distributed prey 
[33, 34]. Thus, the Calanus distribution served to a higher degree 
as an indicator of areas of high productivity, in concert with the 
hydrodynamic variables, rather than as an indicator of the location 
of patches of Calanus. Furthermore, transforming the models 
into dynamic predictions, the inclusion of a prey item greatly 
increased the correlation between model predictions and survey 
observations. Thus, while it is assumed that the hydrodynamic 
variables in the habitat models are proxies for areas with good 
food availability, adding an actual food source to the model seems 
to underpin the models and improve the spatiotemporal patterns 
predicted by the models.

In contrast, the application of the Calanus distribution into 
the agent-based model showed a varying effect, depending 
on the usage of the food availability. Applying only the food 
source resulted in poorer model performance than using only 
hydrodynamics, stressing the indications of inefficient detection 
of prey patches by seabirds. This was supported by the inclusion 
of the habitat suitability maps in the simulations, where both HSI 
and Calanus distribution worked in concert. This resulted in model 

fits equivalent to previous models, indicating that the HSI was the 
main driver of the distribution. However, incorporating the Calanus 
distribution into the HSI through the habitat suitability modelling 
resulted in improved model predictions, disproportionate to the 
level of improvement to the habitat model fit. This result indicated 
that the addition of Calanus distribution into the HSI map resulted 
in improved predictions of the zones of higher habitat suitability 
and a better fit to the observational data, allowing for more realistic 
migratory and feeding patterns to emerge from the ABM.

Ground truthing SINMOD

Results from SINMOD with regards to hydrography and Calanus 
have been compared to available data from measurements. SINMOD 
provide a good representation of hydrography horizontally and 
vertically compared to measurements, in accordance with previous 
studies [31, 35]. This is only achieved if the model also gives a good 
representation of ocean currents and circulation patterns. The 
spring bloom is an important feature of the phytoplankton dynamics 
in the Barents Sea. The model is shown to reproduce the start of 
the bloom in a realistic way. Estimates of zooplankton biomass in 
August are also reasonably well reproduced. These results indicate 
the model provide realistic estimates of mesozooplankton biomass. 

Conclusion
Thus, the following conclusions can be made with a high level 

of confidence.

•	 The addition of a prey item as a predictor variable is 
highly likely to improve SDM predictions in comparison with 
existing models driven alone by oceanographic variables.

•	 Relative to the key underlying assumptions and 
architecture of the MARAMBS SDM framework, replacement 
of predicted habitat suitability with a dominant prey source 
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resulted in significantly lower performance of the model. 

•	 Relative to the key underlying assumptions and 
architecture of the MARAMBS SDM framework, the inclusion of 
normalized prey densities in the estimation of habitat suitability 
on a 20 km scale significantly improved model performance. 

•	 Using the improved habitat suitability as a key driver in 
the agent-based model resulted in a statistically significant 
improvement in the match between predicted and observed 
densities of Little Auk.
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