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Abstract
Neuroprosthodontics is an emerging interdisciplinary field integrating prosthodontics with neuroscience to enhance oral rehabilitation 

outcomes. The loss of teeth and associated sensory input leads to significant neuroplastic changes, affecting somatosensory cortical representation. 
Recent advances in artificial intelligence (AI), brain-computer interfaces (BCI), and implantable biosensors have enabled prosthetic designs 
that provide real-time sensory feedback, improving adaptation and function. This review discusses the role of neuroplasticity in prosthodontic 
rehabilitation, AI-driven sensory augmentation, and BCI applications in oral prosthetics. The integration of neuroprosthodontics could revolutionize 
patient care by enhancing sensory-motor integration and cognitive function.
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Introduction

The interplay between prosthodontics and neurology is becom-
ing increasingly recognized as critical for optimizing patient out-
comes. Tooth loss leads to structural and functional changes in the 
brain, including cortical reorganization and altered sensorimotor 
integration [1]. Conventional prosthetic interventions primarily 
focus on mechanical rehabilitation, often neglecting neural adapta-
tion. However, emerging evidence suggests that restoring mastica-
tion through prosthetic rehabilitation can enhance neuroplasticity, 
improving cognitive function and oral motor control [2]. The ap-
plication of AI, brain-machine interfaces (BMI), and biosensors in 
prosthodontics presents new opportunities for restoring lost neu-
rosensory function [3].

 
Neuroplasticity and Prosthetic Adaptation

Cortical Reorganization After Tooth Loss

Neuroplasticity refers to the brain’s ability to reorganize it-
self in response to injury or sensory deprivation. Functional MRI 
(fMRI) studies indicate that tooth loss alters the somatosensory 
cortex, leading to compensatory neural activity in adjacent cortical 
areas [4]. The absence of periodontal ligament mechanoreceptors 
reduces proprioceptive input, affecting occlusal awareness and 
fine motor control [5]. Dental implants and removable prostheses 
have been shown to partially restore cortical maps, but the degree 
of neuroplastic adaptation varies depending on the rehabilitation 
method [6].
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Masticatory Function and Brain Stimulation

Mastication plays a vital role in maintaining cognitive function 
by stimulating the hippocampus and prefrontal cortex [7]. Studies 
suggest a strong correlation between impaired chewing ability and 
an increased risk of neurodegenerative diseases such as Alzhei-
mer’s and Parkinson’s disease [8]. Restoration of occlusion with 
well-fitted prostheses has been linked to improved cognitive per-
formance, likely due to enhanced sensory input and neurotrophic 
factor release [9].

AI-Driven Sensory Augmentation in Implant-Sup-
ported Prostheses

Smart Prostheses with Sensory Feedback

Traditional dental prostheses lack the proprioceptive feedback 
necessary for fine motor control, leading to difficulties in mastica-
tion and speech. AI-integrated prostheses incorporating pressure 
sensors and vibrotactile feedback systems offer real-time sensory 
input, mimicking natural proprioception [10]. Advanced prosthet-
ic systems using piezoelectric transducers can convert mechanical 
forces into electrical signals, transmitting feedback to the brain via 
peripheral nerves [11].

Neural-Integrated Prosthetics

Recent developments in neural-integrated prosthetics have 
demonstrated the potential for direct communication between 
prosthetic devices and the central nervous system [12]. By incor-
porating intraneural electrodes, researchers have enabled bidirec-
tional sensory-motor communication in upper limb prostheses, a 
concept now being explored for dental applications [13]. Implant-
able biosensors that monitor occlusal forces and relay data to the 
trigeminal sensory pathways may improve adaptation and function 
in edentulous patients [14].

Brain-Computer Interfaces (BCI) and Future Appli-
cations in Neuroprosthodontics

Direct Neural Control of Prosthetic Devices

BCI technology enables direct neural control of prosthetic limbs 
and has shown promise for dental applications [15]. Studies in pri-
mates have demonstrated that intracortical microelectrode arrays 
can decode orofacial motor signals, allowing for precise prosthetic 
movement control [16]. The application of BCI in prosthodontics 
could allow users to adjust occlusal parameters and masticatory 
function through brain signals alone [17].

Cognitive Rehabilitation Through Prosthodontics

Neurofeedback from advanced prosthetic systems may play a 
role in cognitive rehabilitation, particularly in elderly populations 
suffering from dementia or stroke-related deficits [18]. AI-driven 
adaptive prostheses equipped with machine learning algorithms 
can analyse neuromuscular patterns and optimize occlusal function 
dynamically [19].

Conclusion

Neuroprosthodontics is a rapidly evolving field that integrates 
prosthodontics with neuroscience, AI, and BCI technologies to en-
hance sensory-motor function and neuroplastic adaptation. The 

development of AI-driven prostheses with sensory feedback and 
neural interfaces holds the potential to redefine oral rehabilitation. 
Future research should focus on optimizing neuroprosthetic adap-
tation and exploring clinical applications of BCI in prosthodontics. 
The convergence of these technologies promises to improve not 
only functional outcomes but also cognitive health and overall qual-
ity of life for patients requiring prosthetic rehabilitation.
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