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Letter to Editor

In the practice of using polyvinylidene fluoride (PVDF) and a 
number of its copolymers as materials for the manufacture of sys-
tems for magnetic and electrical stimulation of tissues [1], capable 
of an electrical response to nanomechanical influence, as well as a 
response to the pulsating electromagnetic field of scaffolds [2] (as 
usually fibrous - obtained by electrospinning technologies, includ-
ing nanofibrous [3]; less often - 3D-printed composite [4]) the main 
inductive-biophysical function is performed by the electrophysics 
of the β-phase, which provides high pyro- and piezoelectric prop-
erties PVDF (due to maximum dipole moment). Ferroelectric poly-
mers based on PVDF, having a polycrystalline texture, after polar-
ization exhibit piezoelectricity with a non-classical mechanism that 
persists for a long time.

This allows us to consider the β-PVDF scaffold simultaneously 
as a sensor and a sonar - an actuator that implements both elec-
trical (electrophysiological) and acoustic and (or) electroacoustic 
stimulation of tissue, as well as recording its own signals, which 
translates controlled tissue regeneration using PVDF into a section 
of a special kind of theranostics, where the scaffold itself is a source 
of descriptors for the tissue regeneration it supports.

And if for the applicability of PVDF in bone tissue regeneration 
[5,6] this encounters difficulties in intraosteal signal registration, 
then for such excitable systems as: cardiomyocytes [7,8]; gland cells 
[9]; nervous tissue [10] (including Schwann cells [11]), bladder my-
ocytes [12,13], this is not impossible. Engineering of nervous tissue  

 
with induced orientation is carried out on electrospun microfiber 
PVDF scaffolds [14,15].

The electrical and (or) magnetoelectric [16] response of ex-
citable tissue can be the subject of non-contact non-invasive mea-
surements - such as electromyography (including with cutaneous 
electrodes), ECG and EEG, as well as their magnetic equivalents: 
magnetomyography, magnetocardiography and magnetoencepha-
lography. Implement this principle to analyze the response, taking 
into account the contribution of the reactivity of the “smart” PVDF 
scaffold (PVDF, as defined by the “Encyclopedia of Smart Materials” 
([17], belongs to the “smart materials” class), from the standpoint 
of modern metrology , is quite simple and rational, as shown in this 
reports / papers [18-20].
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