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Abstract

The mineral processing industry, a cornerstone of the global economy, is undergoing a rapid transformation driven by the integration of Artificial
Intelligence (AI) and Machine Learning (ML). This mini-review summarizes recent advances and current trends in AI/ML applications across key
domains of mineral processing, including ore characterization and sorting, process modelling and optimization, and predictive maintenance.
Particular emphasis is placed on how data-driven techniques contribute to enhanced mineral recovery, reduced energy and water consumption, and
improved workplace safety. The discussion highlights the transition from theoretical potential to demonstrated industrial value, while identifying
persistent barriers—such as data quality, model interpretability, and workforce skill gaps. Finally, future research directions are outlined, focusing
on deep learning, hybrid Al-physical modelling, and reinforcement learning for plant-wide optimization and autonomous operation.
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Introduction

The mineral processingindustryisa critical component of global
economic development and sustainable resource management,
particularly in the era of electrified mobility and renewable-energy
technologies. However, the sector faces twin challenges: declining
ore grades and increasing pressure to minimize its environmental
footprint, including water and energy use [1,2]. These challenges
expose the limitations of traditional process-control strategies,
which often struggle to manage the inherent complexity, non-
linearity, and variability of mineral processing circuits [3].

@ @ This work is licensed under Creative Commons Attribution 4.0 License | AMME.MS.ID.000523.

The emergence of the Fourth Industrial Revolution (Industry 4.0)
has created the technological foundation needed to address such
long-standing inefficiencies [4]. The proliferation of advanced
sensor networks, low-cost connectivity, and scalable computing
infrastructure has resulted in an unprecedented flow of data from
the plant floor. Modern mineral processing facilities are equipped
with vision systems, online analysers (e.g., prompt gamma neutron
activation analysis, laser-induced breakdown spectroscopy),
vibration sensors, and other smart instruments that collectively

generate large volumes of multidimensional, high-frequency
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data [1-5]. Yet this data deluge introduces its own challenge: the
information complexity far exceeds human analytical capacity,
making it difficult to translate raw data into actionable insights [6].

Within this context, Artificial Intelligence (AI) and Machine
Learning (ML) have emerged as pivotal technologies, marking a
paradigm shift from reactive control to predictive and prescriptive
analytics [7]. These methods can identify complex, non-linear
correlations within multivariate process data that are typically
imperceptible to human operators [8]. Early applications of Al in
mining and metallurgy-primarily in the form of rule-based expert
systems-date back several decades [9], but progress was limited by
computational constraints and data scarcity. Today, the convergence
of big data, high-performance computing, and advanced algorithms
has transformed Al from a theoretical concept into a practical
enabler of operational excellence [10,11].

This mini-review synthesizes current progress in integrating
Al and ML into mineral processing operations. It explores
transformative applications in ore characterization, process
optimization, and predictive maintenance, evaluates barriers
to large-scale implementation, and identifies future research
directions that may accelerate the transition toward intelligent,
autonomous mineral processing plants.

Key Application Areas

The application of Al and ML in mineral processing is diverse,
extending beyond proof-of-concept studies to deliver measurable
improvements in process performance, efficiency, and safety.
This section highlights three critical domains in which AI/ML
integration has demonstrated substantial industrial impact-from
ore characterization and sorting to process optimization and
predictive maintenance.

Ore Characterization and Sorting

The heterogeneity of run-of-mine ore is a primary source of
process variability, causing downstream fluctuations in grade,
throughput, and recovery. Conventional ore characterization
methods, such as laboratory assays, provide delayed and
discontinuous feedback, limiting real-time control. Al, particularly
computer vision and deep learning, is transforming this space.

Convolutional Neural Networks (CNNs) can now analyse high-
resolution images from conveyor-belt cameras or drone-based
inspections to perform near-real-time lithological classification
and grade estimation [12,13]. These networks identify and quantify
mineralogical features based on visual cues such as colour, texture,
and reflectance [14]. Such capabilities underpin modern sensor-
based sorting systems, which use Al-driven insights to trigger
pneumatic or mechanical separation mechanisms, rejecting
barren material prior to energy-intensive comminution [15]. This
pre-concentration step reduces energy and water consumption
per unit of valuable metal produced while stabilizing feed
quality for downstream processes [16]. Furthermore, integrating
hyperspectral and laser-induced breakdown spectroscopy (LIBS)

data with ML algorithms-such as principal component analysis
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(PCA) and clustering-enables a richer geochemical understanding
of ore variability in real time, enhancing sorting selectivity and
efficiency [17].

Process Modelling and Optimization

Core mineral processing operations, particularly comminution
and flotation, exhibit strong non-linearities,
dependencies, and time delays, making them challenging to control
through traditional Proportional-Integral-Derivative (PID) or
Linear Model-Predictive Control (MPC) systems. ML techniques

multivariable

excel in such environments by learning complex input-output
relationships directly from operational data, providing predictive
models that capture interactions among feed characteristics,
reagent dosage, and key Performance Indicators (KPIs) such as
grade, recovery, and particle size distribution [18,19].

Comminution: In crushing and grinding circuits, ML models
such as Gradient Boosting Machines (GBMs) and Artificial Neural
Networks (ANNs) are used to predict product size and optimize
mill load and power consumption. By integrating sensor data
from acoustic emissions, bearing pressure, and motor power,
these models can recommend setpoints for feed rate and mill
speed to maximize throughput while minimizing overgrinding and
mechanical wear [20,21].

Flotation: Froth flotation has become one of the most
prominent application areas for Al. ML algorithms trained on froth
image features-such as bubble size distribution, froth velocity, and
texture stability-use CNNs to infer process performance parameters
like concentrate grade and recovery [22,23]. Supervised learning
models then relate these image features to control variables (air
flow, froth depth, reagent dosage), allowing for dynamic, closed-
loop control [24].

Beyond supervised learning, Reinforcement Learning (RL) has
emerged as a transformative technology enabling autonomous
process control. RL agents interact continuously with a simulated
or real process environment to learn optimal control policies
that maximize a long-term reward, such as cumulative metal
recovery or energy efficiency [25,26]. Successful implementations
often adopt hybrid architectures that combine deep learning for
feature extraction with physics-informed or regression models for
interpretable prediction [11].

Predictive and Prescriptive Maintenance

Unplanned downtime of critical assets-such as SAG mills,
crushers, slurry pumps-remains a major contributor
to production losses and maintenance costs. The transition
from preventive (time-based) to predictive (condition-based)
maintenance represents a major shift toward data-driven reliability
management.

and

By analysing time-series data from vibration, temperature,
acoustic, and motor-current sensors, ML models can detect early
signs of mechanical degradation long before catastrophic failure
occurs [27,28]. This approach allows maintenance activities to be
scheduled based on asset condition rather than fixed intervals,
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improving equipment availability and operational safety [29].
Advanced anomaly-detection algorithms (e.g, autoencoders,
isolation forests, one-class SVMs) identify deviations from normal
behaviour, while regression and survival models forecast remaining
useful life (RUL) of components such as mill liners or pump
impellers [30].

The next stage-prescriptive maintenance-extends predictive
capabilities by recommending specific actions to prevent or
mitigate failures. This is supported by digital twin technology,
which creates dynamic, virtual replicas of physical assets. When
coupled with real-time sensor feeds, digital twins enable simulation
of alternative maintenance strategies and performance outcomes,
guiding operators toward cost-optimal decisions [31,32]. Industrial

implementations have shown that Al-driven maintenance
frameworks can improve overall equipment effectiveness (OEE) by

up to 20 % and reduce unplanned downtime by over 50 % [33].

Proposed Al Tools for Advanced Mineral Processing

The implementation of Al in mineral processing has advanced
from conceptual demonstrations to robust, plant-scale applications
through an array of specialized software, hardware, and data-
management tools. Table 1 summarizes the principal Al subfields,
key technologies, and their relevance to specific mineral-processing
functions. The classification is organized to reflect the data flow
across a typical plant-from ore feed and processing control to asset
management and system-wide integration.

Table 1: Representative Al Tools and Technologies in Mineral Processing.

Ore characterization and
sorting

Computer Vision (CV)

CNN architectures (e.g., ResNet,
U-Net)

Perform pixel-level classification of ore images for identi-
fying mineral phases and particle boundaries on conveyor
belts.

Hyperspectral Data
Analysis

PCA, k-Means Clustering, Support
Vector Machines (SVM)

Analyze hyperspectral or LIBS data cubes for non-contact,
real-time geochemical assay and mineral identification.

Sensor Fusion and Control

Reinforcement Learning (RL)
Agents

Optimize actuation of air jets or diverter arms based on
live sensor data to maximize grade and recovery.

Process modelling and
optimization

Machine Learning (ML)

Tree-based models (e.g., XGBoost,
Random Forest)

Build non-linear predictive models of grade, recovery, and
throughput from operational plant data.

Deep Learning

Recurrent Neural Networks
(RNNs/LSTMs)

Model long-delay time-series data in flotation or thickener
circuits to forecast process states.

Autonomous Control

Deep Reinforcement Learning
(DRL) frameworks (e.g., OpenAl
Spinning Up, Google Dopamine)

Develop agents that autonomously learn optimal control
policies for multivariate processes (e.g., reagent dosing,
mill speed).

Hybrid Modelling

Physics-Informed Neural Net-
works (PINNs)

Integrate first-principles physical laws (e.g., mass and
energy balances) with ML models to enhance interpret-
ability and robustness.

Predictive and prescrip-
tive maintenance

Anomaly Detection

Isolation Forest, Autoencoders,
One-Class SVM

Detect abnormal vibration, temperature, or acoustic
patterns that precede equipment failure.

Prognostics

Survival Analysis Models (e.g., Cox
Proportional Hazards, Random
Survival Forests)

Estimate Remaining Useful Life (RUL) of critical compo-
nents such as mill liners or gearboxes.

Digital Twin Technology

Commercial Platforms (e.g.,
Siemens Process Simulate, ANSYS
Twin Builder, Dassault 3DEXPE-
RIENCE)

Create virtual replicas of assets or circuits to simulate
alternative operational or maintenance strategies.

Cross-cutting Enablers

Data Infrastructure

Cloud Platforms (e.g., AWS IoT
SiteWise, Azure Digital Twins,
Google Cloud Al Platform)

Enable ingestion, storage, and processing of high-frequen-
cy sensor data essential for all Al applications.

Model Operationalization
(MLOps)

MLflow, Kubeflow, Azure ML

Manage end-to-end ML life cycles, including training,
deployment, monitoring, and retraining of production
models.

Explainable Al (XAI)

SHAP, LIME

Provide interpretability for complex CNN and DRL mod-
els, increasing operator trust and regulatory acceptance.

Illustrative Case Examples

(a)

Intelligent Ore Sorter using CNNs: A U-Net convolutional
architecture processes high-resolution belt images in real

time. Each rock fragment is segmented and classified as “ore”
or “waste” and the output mask triggers pneumatic actuators

within milliseconds. This results in accurate rejection of barren
material, improving energy efficiency and feed consistency.
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(b) Froth Flotation Optimizer with XG Boost and Deep
Q-Learning: An XG Boost model predicts concentrate grade
several minutes ahead based on froth image features, chemical
assays, and air-flow data. Its output informs a Deep Q-Network
(DQN) agent trained to maximize a composite reward function-
e.g., (Grade x Recovery) - Reagent Cost-thereby enabling
autonomous reagent-dosage control.

(c) Mill-Liner Wear Prognostics with a Digital Twin: Sensor
data (vibration and acoustic) feed a Random Survival Forest
model that estimates liner failure probability. These predictions
are visualized in a digital twin of the SAG mill, allowing
maintenance planners to simulate the trade-off between
continued operation and immediate liner replacement, thereby
supporting prescriptive, cost-optimal decisions.

Discussion

The ecosystem of Al tools in mineral processing demonstrates
a clear trend toward integration-across data collection, model
development, and real-time decision support. Cloud and edge
computing platforms provide the scalability necessary for industrial
deployment, while MLOps frameworks ensure reproducibility and
continuous model improvement. Equally critical are explainability
techniques such as SHAP and LIME, which help translate opaque
model outputs into interpretable insights for engineers and
operators, fostering confidence and compliance in Al-assisted
control environments [35,36].

Challenges and Future Directions

Despite remarkable progress, the widespread adoption of
Al and ML in mineral processing remains constrained by several
technical, organizational, and human-centric challenges. These
barriers must be systematically addressed to unlock the full
potential of intelligent, autonomous mineral processing systems.

Data Quality, Availability, and Standardization

High-quality, representative data are the foundation of any Al
system. However, mineral processing data are often heterogeneous,
sparse, and noisy, reflecting diverse sensors, process configurations,
and measurement frequencies. The lack of standardized data
architectures and ontologies hampers interoperability between
sites and vendors [34]. Moreover, labelled datasets-essential for
supervised learning-remain scarce because of limited historical
records and confidentiality restrictions within mining companies.

Future work should prioritize the creation of open, anonymized
benchmark datasets and the adoption of Industrial Data Space (IDS)
principles to enable secure data sharing and model transferability.

Model Interpretability and Operator Trust

The “black-box” nature of advanced Al models-especially
deep neural networks and reinforcement-learning agents-often
undermines user confidence. In critical process industries such as
mining, operators must understand why an algorithm recommends
a certain action before implementing it in production. Explainable
Al (XAI) methods, including Shapley Additive explanations (SHAP)
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and Local Interpretable Model-agnostic Explanations (LIME),
have emerged as effective tools to improve transparency [35,36].
Developing domain-specific XAl frameworks that can relate model
behaviour to physical and chemical process parameters will be key
to integrating Al into day-to-day operations.

Workforce SKkills and Cultural Transformation

Bridging the skills gap is another critical requirement for
successful Al integration. Most metallurgical and process-
engineering curricula still emphasize traditional control and design
methods rather than data-centric thinking. Consequently, there is a
growing need for interdisciplinary training programs that combine
mineral-processing expertise with data science, machine learning,
and automation [37]. Equally important is cultivating a culture
of collaboration between domain experts and data scientists.
Embedding Al specialists within operational teams can accelerate
adoption and ensure that algorithms address real industrial
challenges rather than abstract optimization goals.

Toward Hybrid and Autonomous Operations

Future research is expected to focus on hybrid modelling, where
first-principles (mechanistic) equations are coupled with data-
driven approaches to exploit their complementary strengths [38].
These physics-informed models promise improved generalizability
across ore types and plant configurations. Furthermore, deep
reinforcement learning (DRL) presents a compelling path toward
plant-wide optimization and fully autonomous control loops [39].
Transfer learning and domain adaptation techniques will also play
a major role in scaling ML solutions across geographically and
geologically diverse operations [40]. Finally, the ongoing evolution
of 10T, cloud computing, and edge analytics will expand the real-
time data infrastructure required to support these advanced Al
frameworks, enhancing connectivity and decision-making across
the entire mining value chain [41].

Conclusion

Artificial Intelligence (AI) and Machine Learning (ML) are
reshaping the mineral processing industry, shifting it from
empirical and experience-based operation toward data-driven,
adaptive, and increasingly autonomous systems. Their integration
across key domains-ore characterization, process optimization, and
maintenance-has demonstrated tangible benefits in productivity,
resource efficiency, and safety. Al-driven approaches enable a
deeper understanding of process dynamics, facilitate real-time
optimization, and support predictive and prescriptive decision-
making. These advancements not only enhance recovery and reduce
energy and water consumption but also contribute to sustainability
objectives by lowering environmental impact and operational risk.

Despite the substantial progress, the transition from isolated
pilot applications to fully autonomous, Al-empowered plants is
still in its early stages. Persistent barriers-including limited data
availability, model interpretability, and workforce readiness-
require targeted research and strategic organizational adaptation.
In this context, explainable Al, hybrid modelling, and reinforcement
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learning are expected to play pivotal roles in bridging the gap
between theoretical promise and industrial practice.

Ultimately, the future of mineral processing will be defined by

the ability to integrate Al technologies seamlessly with existing
process-control frameworks and domain expertise. By fostering
collaboration between metallurgists, control engineers, and data
scientists, the industry can accelerate the realization of intelligent,
sustainable, and resilient mineral processing operations capable of
meeting the demands of a rapidly evolving global economy.
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