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Abstract 
The mineral processing industry, a cornerstone of the global economy, is undergoing a rapid transformation driven by the integration of Artificial 

Intelligence (AI) and Machine Learning (ML). This mini-review summarizes recent advances and current trends in AI/ML applications across key 
domains of mineral processing, including ore characterization and sorting, process modelling and optimization, and predictive maintenance. 
Particular emphasis is placed on how data-driven techniques contribute to enhanced mineral recovery, reduced energy and water consumption, and 
improved workplace safety. The discussion highlights the transition from theoretical potential to demonstrated industrial value, while identifying 
persistent barriers—such as data quality, model interpretability, and workforce skill gaps. Finally, future research directions are outlined, focusing 
on deep learning, hybrid AI–physical modelling, and reinforcement learning for plant-wide optimization and autonomous operation.
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Introduction

The mineral processing industry is a critical component of global 
economic development and sustainable resource management, 
particularly in the era of electrified mobility and renewable-energy 
technologies. However, the sector faces twin challenges: declining 
ore grades and increasing pressure to minimize its environmental 
footprint, including water and energy use [1,2]. These challenges 
expose the limitations of traditional process-control strategies, 
which often struggle to manage the inherent complexity, non-
linearity, and variability of mineral processing circuits [3].

 
The emergence of the Fourth Industrial Revolution (Industry 4.0) 
has created the technological foundation needed to address such 
long-standing inefficiencies [4]. The proliferation of advanced 
sensor networks, low-cost connectivity, and scalable computing 
infrastructure has resulted in an unprecedented flow of data from 
the plant floor. Modern mineral processing facilities are equipped 
with vision systems, online analysers (e.g., prompt gamma neutron 
activation analysis, laser-induced breakdown spectroscopy), 
vibration sensors, and other smart instruments that collectively 
generate large volumes of multidimensional, high-frequency 
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data [1-5]. Yet this data deluge introduces its own challenge: the 
information complexity far exceeds human analytical capacity, 
making it difficult to translate raw data into actionable insights [6].

Within this context, Artificial Intelligence (AI) and Machine 
Learning (ML) have emerged as pivotal technologies, marking a 
paradigm shift from reactive control to predictive and prescriptive 
analytics [7]. These methods can identify complex, non-linear 
correlations within multivariate process data that are typically 
imperceptible to human operators [8]. Early applications of AI in 
mining and metallurgy-primarily in the form of rule-based expert 
systems-date back several decades [9], but progress was limited by 
computational constraints and data scarcity. Today, the convergence 
of big data, high-performance computing, and advanced algorithms 
has transformed AI from a theoretical concept into a practical 
enabler of operational excellence [10,11].

This mini-review synthesizes current progress in integrating 
AI and ML into mineral processing operations. It explores 
transformative applications in ore characterization, process 
optimization, and predictive maintenance, evaluates barriers 
to large-scale implementation, and identifies future research 
directions that may accelerate the transition toward intelligent, 
autonomous mineral processing plants.

Key Application Areas

The application of AI and ML in mineral processing is diverse, 
extending beyond proof-of-concept studies to deliver measurable 
improvements in process performance, efficiency, and safety. 
This section highlights three critical domains in which AI/ML 
integration has demonstrated substantial industrial impact-from 
ore characterization and sorting to process optimization and 
predictive maintenance.

Ore Characterization and Sorting

The heterogeneity of run-of-mine ore is a primary source of 
process variability, causing downstream fluctuations in grade, 
throughput, and recovery. Conventional ore characterization 
methods, such as laboratory assays, provide delayed and 
discontinuous feedback, limiting real-time control. AI, particularly 
computer vision and deep learning, is transforming this space.

Convolutional Neural Networks (CNNs) can now analyse high-
resolution images from conveyor-belt cameras or drone-based 
inspections to perform near-real-time lithological classification 
and grade estimation [12,13]. These networks identify and quantify 
mineralogical features based on visual cues such as colour, texture, 
and reflectance [14]. Such capabilities underpin modern sensor-
based sorting systems, which use AI-driven insights to trigger 
pneumatic or mechanical separation mechanisms, rejecting 
barren material prior to energy-intensive comminution [15]. This 
pre-concentration step reduces energy and water consumption 
per unit of valuable metal produced while stabilizing feed 
quality for downstream processes [16]. Furthermore, integrating 
hyperspectral and laser-induced breakdown spectroscopy (LIBS) 
data with ML algorithms-such as principal component analysis 

(PCA) and clustering-enables a richer geochemical understanding 
of ore variability in real time, enhancing sorting selectivity and 
efficiency [17].

Process Modelling and Optimization

Core mineral processing operations, particularly comminution 
and flotation, exhibit strong non-linearities, multivariable 
dependencies, and time delays, making them challenging to control 
through traditional Proportional–Integral–Derivative (PID) or 
Linear Model-Predictive Control (MPC) systems. ML techniques 
excel in such environments by learning complex input–output 
relationships directly from operational data, providing predictive 
models that capture interactions among feed characteristics, 
reagent dosage, and key Performance Indicators (KPIs) such as 
grade, recovery, and particle size distribution [18,19].

Comminution: In crushing and grinding circuits, ML models 
such as Gradient Boosting Machines (GBMs) and Artificial Neural 
Networks (ANNs) are used to predict product size and optimize 
mill load and power consumption. By integrating sensor data 
from acoustic emissions, bearing pressure, and motor power, 
these models can recommend setpoints for feed rate and mill 
speed to maximize throughput while minimizing overgrinding and 
mechanical wear [20,21].

Flotation: Froth flotation has become one of the most 
prominent application areas for AI. ML algorithms trained on froth 
image features-such as bubble size distribution, froth velocity, and 
texture stability-use CNNs to infer process performance parameters 
like concentrate grade and recovery [22,23]. Supervised learning 
models then relate these image features to control variables (air 
flow, froth depth, reagent dosage), allowing for dynamic, closed-
loop control [24].

Beyond supervised learning, Reinforcement Learning (RL) has 
emerged as a transformative technology enabling autonomous 
process control. RL agents interact continuously with a simulated 
or real process environment to learn optimal control policies 
that maximize a long-term reward, such as cumulative metal 
recovery or energy efficiency [25,26]. Successful implementations 
often adopt hybrid architectures that combine deep learning for 
feature extraction with physics-informed or regression models for 
interpretable prediction [11].

Predictive and Prescriptive Maintenance

Unplanned downtime of critical assets-such as SAG mills, 
crushers, and slurry pumps-remains a major contributor 
to production losses and maintenance costs. The transition 
from preventive (time-based) to predictive (condition-based) 
maintenance represents a major shift toward data-driven reliability 
management.

By analysing time-series data from vibration, temperature, 
acoustic, and motor-current sensors, ML models can detect early 
signs of mechanical degradation long before catastrophic failure 
occurs [27,28]. This approach allows maintenance activities to be 
scheduled based on asset condition rather than fixed intervals, 
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improving equipment availability and operational safety [29]. 
Advanced anomaly-detection algorithms (e.g., autoencoders, 
isolation forests, one-class SVMs) identify deviations from normal 
behaviour, while regression and survival models forecast remaining 
useful life (RUL) of components such as mill liners or pump 
impellers [30].

The next stage-prescriptive maintenance-extends predictive 
capabilities by recommending specific actions to prevent or 
mitigate failures. This is supported by digital twin technology, 
which creates dynamic, virtual replicas of physical assets. When 
coupled with real-time sensor feeds, digital twins enable simulation 
of alternative maintenance strategies and performance outcomes, 
guiding operators toward cost-optimal decisions [31,32]. Industrial 

implementations have shown that AI-driven maintenance 
frameworks can improve overall equipment effectiveness (OEE) by 
up to 20 % and reduce unplanned downtime by over 50 % [33].

 Proposed AI Tools for Advanced Mineral Processing

The implementation of AI in mineral processing has advanced 
from conceptual demonstrations to robust, plant-scale applications 
through an array of specialized software, hardware, and data-
management tools. Table 1 summarizes the principal AI subfields, 
key technologies, and their relevance to specific mineral-processing 
functions. The classification is organized to reflect the data flow 
across a typical plant-from ore feed and processing control to asset 
management and system-wide integration. 

Table 1: Representative AI Tools and Technologies in Mineral Processing.

Application area AI Sub-Field Specific AI Tools & Technologies Function and Relevance to Mineral Processing

Ore characterization and 
sorting Computer Vision (CV) CNN architectures (e.g., ResNet, 

U-Net)

Perform pixel-level classification of ore images for identi-
fying mineral phases and particle boundaries on conveyor 

belts.

Hyperspectral Data 
Analysis

PCA, k-Means Clustering, Support 
Vector Machines (SVM)

Analyze hyperspectral or LIBS data cubes for non-contact, 
real-time geochemical assay and mineral identification.

Sensor Fusion and Control Reinforcement Learning (RL) 
Agents

Optimize actuation of air jets or diverter arms based on 
live sensor data to maximize grade and recovery.

Process modelling and 
optimization Machine Learning (ML) Tree-based models (e.g., XGBoost, 

Random Forest)
Build non-linear predictive models of grade, recovery, and 

throughput from operational plant data.

Deep Learning Recurrent Neural Networks 
(RNNs/LSTMs)

Model long-delay time-series data in flotation or thickener 
circuits to forecast process states.

Autonomous Control
Deep Reinforcement Learning 

(DRL) frameworks (e.g., OpenAI 
Spinning Up, Google Dopamine)

Develop agents that autonomously learn optimal control 
policies for multivariate processes (e.g., reagent dosing, 

mill speed).

Hybrid Modelling Physics-Informed Neural Net-
works (PINNs)

Integrate first-principles physical laws (e.g., mass and 
energy balances) with ML models to enhance interpret-

ability and robustness.

Predictive and prescrip-
tive maintenance Anomaly Detection Isolation Forest, Autoencoders, 

One-Class SVM
Detect abnormal vibration, temperature, or acoustic 

patterns that precede equipment failure.

Prognostics
Survival Analysis Models (e.g., Cox 

Proportional Hazards, Random 
Survival Forests)

Estimate Remaining Useful Life (RUL) of critical compo-
nents such as mill liners or gearboxes.

Digital Twin Technology

Commercial Platforms (e.g., 
Siemens Process Simulate, ANSYS 
Twin Builder, Dassault 3DEXPE-

RIENCE)

Create virtual replicas of assets or circuits to simulate 
alternative operational or maintenance strategies.

Cross-cutting Enablers Data Infrastructure
Cloud Platforms (e.g., AWS IoT 
SiteWise, Azure Digital Twins, 

Google Cloud AI Platform)

Enable ingestion, storage, and processing of high-frequen-
cy sensor data essential for all AI applications.

Model Operationalization 
(MLOps) MLflow, Kubeflow, Azure ML

Manage end-to-end ML life cycles, including training, 
deployment, monitoring, and retraining of production 

models.

Explainable AI (XAI) SHAP, LIME Provide interpretability for complex CNN and DRL mod-
els, increasing operator trust and regulatory acceptance.

Illustrative Case Examples

(a)	 Intelligent Ore Sorter using CNNs: A U-Net convolutional 
architecture processes high-resolution belt images in real 

time. Each rock fragment is segmented and classified as “ore” 
or “waste” and the output mask triggers pneumatic actuators 
within milliseconds. This results in accurate rejection of barren 
material, improving energy efficiency and feed consistency.
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(b)	 Froth Flotation Optimizer with XG Boost and Deep 
Q-Learning: An XG Boost model predicts concentrate grade 
several minutes ahead based on froth image features, chemical 
assays, and air-flow data. Its output informs a Deep Q-Network 
(DQN) agent trained to maximize a composite reward function-
e.g., (Grade × Recovery) – Reagent Cost-thereby enabling 
autonomous reagent-dosage control.

(c)	 Mill-Liner Wear Prognostics with a Digital Twin: Sensor 
data (vibration and acoustic) feed a Random Survival Forest 
model that estimates liner failure probability. These predictions 
are visualized in a digital twin of the SAG mill, allowing 
maintenance planners to simulate the trade-off between 
continued operation and immediate liner replacement, thereby 
supporting prescriptive, cost-optimal decisions.

Discussion

The ecosystem of AI tools in mineral processing demonstrates 
a clear trend toward integration-across data collection, model 
development, and real-time decision support. Cloud and edge 
computing platforms provide the scalability necessary for industrial 
deployment, while MLOps frameworks ensure reproducibility and 
continuous model improvement. Equally critical are explainability 
techniques such as SHAP and LIME, which help translate opaque 
model outputs into interpretable insights for engineers and 
operators, fostering confidence and compliance in AI-assisted 
control environments [35,36].

 Challenges and Future Directions

Despite remarkable progress, the widespread adoption of 
AI and ML in mineral processing remains constrained by several 
technical, organizational, and human-centric challenges. These 
barriers must be systematically addressed to unlock the full 
potential of intelligent, autonomous mineral processing systems.

 Data Quality, Availability, and Standardization

High-quality, representative data are the foundation of any AI 
system. However, mineral processing data are often heterogeneous, 
sparse, and noisy, reflecting diverse sensors, process configurations, 
and measurement frequencies. The lack of standardized data 
architectures and ontologies hampers interoperability between 
sites and vendors [34]. Moreover, labelled datasets-essential for 
supervised learning-remain scarce because of limited historical 
records and confidentiality restrictions within mining companies. 

Future work should prioritize the creation of open, anonymized 
benchmark datasets and the adoption of Industrial Data Space (IDS) 
principles to enable secure data sharing and model transferability.

Model Interpretability and Operator Trust

The “black-box” nature of advanced AI models-especially 
deep neural networks and reinforcement-learning agents-often 
undermines user confidence. In critical process industries such as 
mining, operators must understand why an algorithm recommends 
a certain action before implementing it in production. Explainable 
AI (XAI) methods, including Shapley Additive explanations (SHAP) 

and Local Interpretable Model-agnostic Explanations (LIME), 
have emerged as effective tools to improve transparency [35,36]. 
Developing domain-specific XAI frameworks that can relate model 
behaviour to physical and chemical process parameters will be key 
to integrating AI into day-to-day operations.

 Workforce Skills and Cultural Transformation

Bridging the skills gap is another critical requirement for 
successful AI integration. Most metallurgical and process-
engineering curricula still emphasize traditional control and design 
methods rather than data-centric thinking. Consequently, there is a 
growing need for interdisciplinary training programs that combine 
mineral-processing expertise with data science, machine learning, 
and automation [37]. Equally important is cultivating a culture 
of collaboration between domain experts and data scientists. 
Embedding AI specialists within operational teams can accelerate 
adoption and ensure that algorithms address real industrial 
challenges rather than abstract optimization goals.

Toward Hybrid and Autonomous Operations

Future research is expected to focus on hybrid modelling, where 
first-principles (mechanistic) equations are coupled with data-
driven approaches to exploit their complementary strengths [38]. 
These physics-informed models promise improved generalizability 
across ore types and plant configurations. Furthermore, deep 
reinforcement learning (DRL) presents a compelling path toward 
plant-wide optimization and fully autonomous control loops [39]. 
Transfer learning and domain adaptation techniques will also play 
a major role in scaling ML solutions across geographically and 
geologically diverse operations [40]. Finally, the ongoing evolution 
of IoT, cloud computing, and edge analytics will expand the real-
time data infrastructure required to support these advanced AI 
frameworks, enhancing connectivity and decision-making across 
the entire mining value chain [41].

 Conclusion

Artificial Intelligence (AI) and Machine Learning (ML) are 
reshaping the mineral processing industry, shifting it from 
empirical and experience-based operation toward data-driven, 
adaptive, and increasingly autonomous systems. Their integration 
across key domains-ore characterization, process optimization, and 
maintenance-has demonstrated tangible benefits in productivity, 
resource efficiency, and safety. AI-driven approaches enable a 
deeper understanding of process dynamics, facilitate real-time 
optimization, and support predictive and prescriptive decision-
making. These advancements not only enhance recovery and reduce 
energy and water consumption but also contribute to sustainability 
objectives by lowering environmental impact and operational risk.

Despite the substantial progress, the transition from isolated 
pilot applications to fully autonomous, AI-empowered plants is 
still in its early stages. Persistent barriers-including limited data 
availability, model interpretability, and workforce readiness-
require targeted research and strategic organizational adaptation. 
In this context, explainable AI, hybrid modelling, and reinforcement 
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learning are expected to play pivotal roles in bridging the gap 
between theoretical promise and industrial practice.

Ultimately, the future of mineral processing will be defined by 
the ability to integrate AI technologies seamlessly with existing 
process-control frameworks and domain expertise. By fostering 
collaboration between metallurgists, control engineers, and data 
scientists, the industry can accelerate the realization of intelligent, 
sustainable, and resilient mineral processing operations capable of 
meeting the demands of a rapidly evolving global economy.
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