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Introduction

Spectroscopy is a technique that studies the interaction 
between electromagnetic light radiation and matter by measuring 
the amount of light absorbed, reflected or emitted by an object. Each 
material has a unique spectrum described by the frequencies of light 
emitted or absorbed at different wavelengths, and each wavelength 
corresponds to a different frequency. It is currently applied in much 
of the scientific field including Geology, Archaeology, Heritage, 
Pharmacy, Medicine and Biology among other scientific disciplines. 
In addition, spectroscopy is also used in industrial applications such 
as the identification of chemical compounds, materials analysis, 
etc. Spectrometers provide a large amount of big data for each  
material measuring the interaction between light and the material  

 
under study. One of the most widely used measures is the diffuse 
reflectance and the spectrometers provide a distinctive reflectance 
pattern known as a spectral signature or spectrum for a given 
material. The wavelength range of interest in scientific research is 
350-2500 nm or 400-2500 nm in 1nm increments, which makes 
further analysis very difficult. For this reason, the preprocessing 
of spectral data is of great importance to achieve good results in 
subsequent analysis. In this work we analyze the application of 
different post-processing functions to a set of spectral signatures 
corresponding to rocks and minerals. The objective is to evaluate 
the goodness of the results obtained to highlight the features of the 
different samples used.
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Abstract 
Spectroscopic data are “big data” recorded using a large number of wavelengths of the electromagnetic spectrum, usually [350-2500] nm or 

[400-2500] nm in 1 nm units. However, the interaction between light and matter is a complex process distorted by noise produced by optical 
interference or instrument electronics and, usually, requires the use of the Fourier transform. The application of mathematical and/or statistical 
preprocessing functions to raw data is essential to obtain reliable results. There are several functions that have been used for preprocessing. Models 
based on statistical techniques have the advantage that they are easy to apply and the algorithms affect each of the variables. In this work, rock 
samples are analyzed by opposing raw data to preprocessed data by mean different statistical functions. The results obtained are then evaluated 
in order to highlight the most important shapes associated with the spectral signatures. Two functions, the transformation of each raw data to 
zero mean and standard deviation 1 and the affine function, which is based on the min-max normalization (MMN), stand out from the rest. These 
functions preserve the relations of initial raw data and the graphical representation of the signatures while accentuating peaks, valleys and trends, 
contributing to improve the results obtained by multivariate statistical techniques as well as the results of classification techniques [1]. We propose 
the use of the affine function that highlights the shapes and, in addition, keeps the range of the data in the interval [1].
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Materials and Methods

The materials used correspond to three rocks or minerals 
(alunite, sillimanite and wollastonite) that have different types 
of spectral signatures with very different reflectance values. The 
spectroscopic data were obtained from minerals or rocks recorded 
by NASA’s Jet Propulsion Laboratory (ECOSTRESS 1.0 &1.2 library) 
[2]. These data include the wavelengths of the electromagnetic 
spectrum 400-2500 nm with an interval of 1 nm.

Statistical methods are made up of linear transformations 
based on different statistical parameters.

Raw data and preprocessed data

In spectroscopy, the raw or primary data are the values 
provided by the spectrometers that measure the interaction 
between electromagnetic radiation and the matter under study. 
These data record the reflectance or absorbance values at each 
of the wavelengths provided by the measuring instrument used. 
Subsequently, it is usual to present them as percentages. The 
reliability of the raw data is essential to obtain quality results 
when performing both the detailed allocation of absorption or 
emission bands. In addition, when dealing with big data, the 
application of various mathematical and statistical analyses to 
the data is essential. The interaction between light and matter is 
a complex process limited by the accuracy of the instrument, the 
wavelength range used and the distortion caused by noise in the 
data acquisition [1,3]. 

One of the most important problems that arise with raw data are 
related to the values of the spectra recorded by the spectrometers. It 
is usual that the spectra of many materials correspond to monotonic 
functions with a very small range of variation, so that the typical 
shapes are almost indistinguishable and, in addition, there is a large 
amount of detail that remains hidden. In addition, sources of error 
environment, temperature, electric fluctuations, contamination, 
etc. can be produced or heating of the sample by the photometer 
can alter the recorded measurements [4]. Furthermore, previously 
to performing quantitative analyses it is important to evaluate the 
spectra and establish the erroneous regions by means of different 
procedures for error detection [5]. Preprocessing is considered 
to be a crucial step prior to the construction of a quantitative 
calibration model [6].

Preprocessing methods

Preprocessing methods are transformations of spectral 
signatures that belong to three basic groups: functional, statistical 
and geometric [1]. The commonly used spectral preprocessing 
methods include mean centering, auto-scaling, normalization, 
smoothing, derivatives, standard normal variate transformation, 
multiplicative scatter correction, Fourier transform, wavelet 

transform, orthogonal signal correction, and net analyze signal 
[7]. Statistical methods have the advantage that they refer to the 
use of more or less sophisticated parameters and are therefore 
very well adapted to the data. These techniques are not inspired 
by previous theoretical models and are therefore not restricted by 
constraints. Preprocessing is an essential part of the overall process 
called ‘knowledge discovery from data’ (KDD) which is constituted 
by an iterative sequence that has the steps: Data cleaning, Data 
integration, Data selection, Data selection, Data transformation, 
Data mining, Pattern evaluation and Knowledge presentation 
[8]. However, not all preprocessing techniques have the same 
performance. In particular, functional-type techniques correspond 
to mathematical functions of different types, such as logarithmic, 
exponential, etc. Statistical techniques modify the scale of the data 
and focus on homogenizing the data to perform between spectral 
signatures. Geometric transformations are based on the use of 
functions in the vector space R×R in order to highlight the shapes 
in the data [1].

Among the most common statistical techniques stand out to 
typified Z or standardized scores (Z_i=(X_i-μ)/σ) transforming 
the data to a distribution with mean 0 and variance 1, the 
transformation (X_i^’=X_i/(X_max-X_min )) fits the data within 
the range [X_min,X_max], the related to range 0–1 (X_i^’=(X_i-μ)/
(X_max-X_min )), the transformation related to the maximum 
magnitude (X_i^’=X_i/X_max ), to the mean (X_i^’=X_i-μ), or to the 
standard deviation (X_i^’=X_i/σ) [9]. An important transformation 
is the so-called ‘affine transformation’ which is similar to the rank 
transformation but is not referenced to the mean but to X min, thus 
avoiding the smoothing of data. This transformation is expressed by 
f:[r_min,r_max ]→[〖r’〗_min,〖r’〗_max ], expressed by f(x)=(x-r_min)/
(r_max-r_min ), that provides a min–max normalization (MMN) 
[1]. In this paper we propose to compute the above statistical 
transformations and to compare the results with the results of the 
previous transformations. These transformations have a general 
formulation but the associated parameters are different for each 
sample analyzed, which allows to highlight the inherent features 
can remain hidden in the data.

An application case

Three rock samples (Alunite, Sillimanite and Wollastonite) 
have been chosen whose spectral signatures have great differences 
both with respect to the reflectance values and the shapes of each 
of them (Table 1). Furthermore, the spectrum of alunite has a great 
variability of shapes with large reflectance values while the spectra 
of Sillimanite and Wllastonite show an almost horizontal shape 
but the reflectance of Wollastonite is large while that of Sillimanite 
is very low (Figure 1). The data set has been processed using six 
preprocessing transformations to compare the results obtained 
(Figure 2).
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Figure 1: Spectral signatures using raw data.

Figure 2: Graphics using six statistical preprocessing transformations. Abbreviations: Al=Alunite, Wo=Wollastonite, Si=Sillimanite, Z=Z scores 
whit 0 mean and 1 standard deviation, Af=afine transformation scores, Ra=Range transformation scores, Max=Max transformation scores, 
Mean= Mean transformation scores, ST= Standard deviation transformation scores.
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Table 1: Variability of samples.

 Variability Range

Alunite [0.4061,0.8713] 0.4652

Sillimanite [0.7727,0.8346] 0.0619

Wollastonite [0.0762,0.1240] 0.0478

Some of these transformations do not produce any adequate 
effect to better distinguish between the analyzed materials and, 
sometimes, worsen the result obtained with raw data. These 
are the cases c) and f) which do not highlight the shapes and, in 
addition, reduce those corresponding to alunite. Transformation e) 
only performs a translation of the parameter data to the mean. The 
results of d) are confusing and do not provide any new information. 
On the other hand, transformations a) and b) provide information 
that is hidden in the raw data. The values obtained from these 
transformations show a high reflectance in the visible region (VIS) 
λ≤900 nm. However, in the region λ>1100 nm the results of b) 
indicate that Wollastonite has quite a lot of shape variability while 
the reflectance of Sillimanite is very small and has little variability 
although singular points (peaks, valleys, etc.) are well highlighted. 
Features in the visible and near-infrared spectra carry significant 
details regarding the physical and molecular makeup of materials, 
such as chert. These signatures identify molecules through 
absorbed wavelengths, including water, hydroxyls, phosphates, 
nitrates, carbonates, sulfates, and metal oxides and hydroxides 
[10,11]. Finally, the application of some of these functions can lead 
to false positives, i.e. peaks very close to each other with similar 
values. This problem is usually solved by using a local regression 
technique such as “loess” or “lowess” [12] or by the Saviztky-Golay 
filter [13].

Conclusions

The collection and recording of spectroscopic data is of the 
big data type and is affected by the complexity of the nature of the 
interaction between light and matter. This problem is compounded 
by instrument limitations and the distortion introduced by the 
noise inherent in the process. For this reason it is necessary to 
apply mathematical techniques to preprocess the raw data. The use 
of mathematical preprocessing functions is a widely used method 
to enhance the shapes of spectral signatures. Statistical functions 
constitute a methodology of great importance to largely avoid the 
problems of analyzing raw data. Among the statistical techniques 
used in this work, the affine function min–max normalization 
(MMN) and the standardization of the spectrum to mean 0 and 
variance 1 stand out. Statistical functions constitute a methodology 
of great importance to highlight the hidden shapes and provide 
better results when applying algorithms of analysis. Among the 
statistical techniques used in this work, the affine function min–
max normalization (MMN) and the standardization of the spectrum 
to mean 0 and variance 1 stand out. The preprocessed data preserve 
the features of the original distribution, including local maximum, 
minimum as well as the underlying trends.

Funding

This work has been partially supported by grants PP2023-
EI-07 funded by University of Granada, Spain, and PID2021-
128077NB-I00 funded by MCIN/AEI/10.13039/501100011033/
ERDF A way of making Europe, EU.

References
1. Esquivel FJ, Esquivel JA, Morgado A, Romero Béjar JL, García del 

Moral LF (2022) Preprocessing of Spectroscopic Data Using Affine 
Transformations to Improve Pattern-Recognition Analysis: An 
Application to Prehistoric Lithic Tools. Mathematics 10(22): 4250-4255.

2. Meerdink SK, Hook SJ, Roberts DA, Abbott EA (2019) The ECOSTRESS 
spectral library version 1.0. Remote Sensing of Environment 230 
(111196): 1-8.

3. Pyle D (1999) Data Preparation for Data Mining. Morgan Kauffman 
Publisher, San Francisco, United States.

4. Reule AG (1976) Errors in Spectrophotometry and Calibration 
procedures to avoid them. Journal of Research of the National Bureau of 
Standards - A. Physics and Chemistry 80(4): 609-624. 

5. Bazar G, Kovacs Z, Tsenkova R (2016) Evaluating Spectral Signals to 
Identify Spectral Error. PLoS ONE 11(1): e0146249-e0146253.

6. Skibsted ETS, Boelens HFM, Westerhuis JA, Witte DT, Smilde AK (2004) 
New indicator for optimal preprocessing and wavelength selection of 
near-infrared spectra. Applied Spectroscopy 58(3): 264-271.

7. Mishra P, Biancolillo A, Roger JM, Marini F, Rutledge DN (2020) New 
data preprocessing trends based on ensemble of multiple preprocessing 
techniques. Trends in Analytical Chemistry 132(3): 116045-116053.

8. Han J, Kamber M, Pei J (2023) Data mining: concepts and techniques, 4th 
ed. Morgan Kauffman Publisher, San Francisco, United States.

9. Dodge Y (2003) The Oxford Dictionary of Statistical Terms, 6th ed. 
Oxford University Press, Oxford.

10. Sgavetti M, Pompilio L, Meli S (2006) Reflectance spectroscopy (0.3–2.5 
µm) at various scales for bulk-rock identification. Geo-sphere 2(3): 142-
160.

11. Roque Malherbe RMA (2020) The Physical chemistry of materials CRC 
Press. Boca Ratón, Taylor & Francis Group.

12. Cleveland WS, Devlin SJ (1988) Locally-Weighted Regression: An 
Approach to Regression Analysis by Local Fitting. Journal of the 
American Statistical Association 83(403): 596-610.

13. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by 
simplified least squares procedures. Analytical Chemistry 36(8): 1627-
1639.

https://www.researchgate.net/publication/365391927_Preprocessing_of_Spectroscopic_Data_Using_Affine_Transformations_to_Improve_Pattern-Recognition_Analysis_An_Application_to_Prehistoric_Lithic_Tools
https://www.researchgate.net/publication/365391927_Preprocessing_of_Spectroscopic_Data_Using_Affine_Transformations_to_Improve_Pattern-Recognition_Analysis_An_Application_to_Prehistoric_Lithic_Tools
https://www.researchgate.net/publication/365391927_Preprocessing_of_Spectroscopic_Data_Using_Affine_Transformations_to_Improve_Pattern-Recognition_Analysis_An_Application_to_Prehistoric_Lithic_Tools
https://www.researchgate.net/publication/365391927_Preprocessing_of_Spectroscopic_Data_Using_Affine_Transformations_to_Improve_Pattern-Recognition_Analysis_An_Application_to_Prehistoric_Lithic_Tools
https://www.sciencedirect.com/science/article/abs/pii/S0034425719302081
https://www.sciencedirect.com/science/article/abs/pii/S0034425719302081
https://www.sciencedirect.com/science/article/abs/pii/S0034425719302081
https://nvlpubs.nist.gov/nistpubs/jres/80A/jresv80An4p609_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/80A/jresv80An4p609_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/80A/jresv80An4p609_A1b.pdf
https://pubmed.ncbi.nlm.nih.gov/26731541/
https://pubmed.ncbi.nlm.nih.gov/26731541/
https://pubmed.ncbi.nlm.nih.gov/15035705/
https://pubmed.ncbi.nlm.nih.gov/15035705/
https://pubmed.ncbi.nlm.nih.gov/15035705/
https://www.researchgate.net/publication/344316278_New_data_preprocessing_trends_based_on_ensemble_of_multiple_preprocessing_techniques
https://www.researchgate.net/publication/344316278_New_data_preprocessing_trends_based_on_ensemble_of_multiple_preprocessing_techniques
https://www.researchgate.net/publication/344316278_New_data_preprocessing_trends_based_on_ensemble_of_multiple_preprocessing_techniques
https://www.researchgate.net/publication/249517879_Reflectance_spectroscopy_03-25_m_at_various_scales_for_bulk-rock_identification
https://www.researchgate.net/publication/249517879_Reflectance_spectroscopy_03-25_m_at_various_scales_for_bulk-rock_identification
https://www.researchgate.net/publication/249517879_Reflectance_spectroscopy_03-25_m_at_various_scales_for_bulk-rock_identification
https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478639
https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478639
https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478639
https://agora.cs.wcu.edu/~huffman/figures/sgpaper1964.pdf
https://agora.cs.wcu.edu/~huffman/figures/sgpaper1964.pdf
https://agora.cs.wcu.edu/~huffman/figures/sgpaper1964.pdf

	Abstract  

